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Abstract: In this article, the trajectory planning of the two manipulators of the dual-arm robot
is studied to approach the patient in a complex environment with deep reinforcement learning
algorithms. The shape of the human body and bed is complex which may lead to the collision between
the human and the robot. Because the sparse reward the robot obtains from the environment may not
support the robot to accomplish the task, a neural network is trained to control the manipulators of
the robot to prepare to hold the patient up by using a proximal policy optimization algorithm with a
continuous reward function. Firstly, considering the realistic scene, the 3D simulation environment
is built to conduct the research. Secondly, inspired by the idea of the artificial potential field, a new
reward and punishment function was proposed to help the robot obtain enough rewards to explore
the environment. The function is consisting of four parts which include the reward guidance function,
collision detection, obstacle avoidance function, and time function. Where the reward guidance
function is used to guide the robot to approach the targets to hold the patient, the collision detection
and obstacle avoidance function are complementary to each other and are used to avoid obstacles,
and the time function is used to reduce the number of training episode. Finally, after the robot is
trained to reach the targets, the training results are analyzed. Compared with the DDPG algorithm,
the PPO algorithm reduces about 4 million steps for training to converge. Moreover, compared with
the other reward and punishment functions, the function used in this paper will obtain many more
rewards at the same training time. Apart from that, it will take much less time to converge, and the
episode length will be shorter; so, the advantage of the algorithm used in this paper is verified.

Keywords: dual-arm robot; deep reinforcement learning; trajectory planning; complex
environment; reward

1. Introduction

The arrival of an aging society in the world has increased the social proportion of the
elderly population. The care of the elderly has become one of the important concerns of
medical care. Recently, COVID-19 has also greatly increased the burden on healthcare. With
the progress and development of science and technology, medical robots also began to enter
the field of biomedicine. If robots can replace humans to care for patients or the elderly, the
burden on society will be greatly reduced [1]. While for the paralytic or seriously injured
patient lying on the bed, turning over, or getting up may be a challenging job, it would help
a lot if there is a service robot assisting him. Moreover, the interaction between the service
robot and the elderly or patients is mainly completed by the robotic arm. Therefore, it is of
interest to take on the research on the motion and trajectory planning of the robotic arm.

There are several related works about reinforcement learning and trajectory planning.
The emergence of deep reinforcement learning (DRL) solved some of the problems in
traditional path planning algorithms, such as A* [2], with hard to construct cost function,
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artificial potential field (APF) method [3], which is limited by the problem of the local
optimum, fast-expanding random tree (FERT) method [4] which is arduous to obtain for an
ideal movement trajectory in a narrow area, and so on. DRL does not necessarily rely on
data models, and it only requires setting planning goals; then, the robot itself will interact
with the environment. Throughout the process, DRL would help avoid obstacles and
use path planning to maximize the reward to find an optimal path for a robot [5]. Joshi
et al. [6] used imitation learning to study human dressing assistance, but they did not
consider obstacle avoidance. To solve this problem, a control algorithm for the whole-body
obstacles avoidance of anthropomorphic robots is proposed by Sangiovanni et al. [7]. Wong
et al. [8], based on the soft actor–critic (SAC) algorithm, trained the neural network of the
robot’s left and right arms agents using dual agent training, distributed training structure,
and a progressive training environment. However, the research mentioned above has not
involved the interaction between the human and the robot, which is necessary for the robot
to explore the environment fully to achieve better performance.

Traditional reinforcement learning (RL) deals with dynamic planning in the state of
limited space. Li et al. [9] proposed an integral RL method to calculate the linear quadratic
regulation (LQR) to reduce the motion tracking error of the manipulator. Perrusquía
et al. [10] used RL to learn the required force when using impedance control to control
the force and position of the robot and then generated the required position through
proportional-integral admittance control. Ai et al. [11,12] used reinforcement learning to
optimize their control effect when studying space robots catching satellites. However, in
the references [9–12], environment models are still indispensable to obtaining the optimal
control strategy, and the reliance on environment models remains a problem unsolved.
On the contrary, DRL, as a combination of the perception ability of deep learning and
the decision-making ability of RL, can handle more complex continuous scenarios with
larger action and sample space compared with RL, and it makes the robot interact with
the environment directly and master the operation skills. Li et al. [13] designed a DRL-
based strategy search method to realize the point-to-point automatic learning of the robotic
arm and used a convolutional neural network to maintain the robustness of the robotic
arm. Li et al. [14] proposed a method of processing multimodal information with a deep
deterministic policy gradient (DDPG) for an assembly robot so that the robot can complete
the assembly task without position constraints. However, references [13,14] concerned
only the control methods for single-arm robots. Tang et al. [15] compared the control
effect of the rapid search random tree (RRT) algorithm and the DDPG algorithm on the
coordinated motion planning of space robots, and the results showed that the DDPG
algorithm is working with higher efficiency. Beltran-Hernandez et al. [16] proposed a
force control framework based on reinforcement learning for the control of rigid robot
manipulators, which combined traditional force control methods with the SAC algorithm
and thus avoided damage to the environment. Shahid et al. [17] used the proximal policy
optimization (PPO) algorithm to study a robot grasping task and designed a rewards
and punishments function (RPF) with intensive rewards, but the RPF and requirements
of the task are relatively simple. As for the obstacle avoidance of the robotic arm in the
process of moving, Prianto et al. [18] proposed to use collision detection (CD) to punish the
robot, but the robot will not receive the penalty signal when touching the obstacle, which
will lengthen the training time. Ota et al. [19] proposed a trajectory planning method for
manipulators working in a constrained space to avoid obstacles outside the constrained
space, but the definition of the constrained space has a certain particularity.

Inspired by the reference [20] on the recognition of the human lying position on the
hospital bed, this paper further develops the research on the trajectory planning of the dual-
arm robot to help patients turn over or to transport them from the bed. Considering the
complicated situation between the human body and the environment, this paper proposes
a DRL-based method to form the trajectory of both arms autonomously. In this study, when
the dual-arm robot lifts a patient, the robot’s arms have to be inserted into the narrow
space between the human body and the bed; they need to avoid obstacles to prevent
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the mechanical arm from colliding with the bed or the human body. Because the human
body and the bed have complex shapes, this is relatively difficult to achieve. The major
difficulty of this duty arises with the high dimension of the robot state and its behavior.
When training the robot with DRL, the robot needs to control each joint of the robotic arm
according to the position of the human body and the bed in the environment. The states
and behaviors involved in this process are very complex to describe, which leads to slow
convergence and long calculation time. This is also a classic problem in DRL—the curse of
dimensionality. To tackle the problem of DRL, accelerate the training to find the optimal
strategy, optimize the length of training step, and reduce the training time, this research
designed the RPF based on the idea of the APF method. The RPF is composed of three
parts: goal guidance, obstacle avoidance, and time function.

Due to the complex shapes of the human body and the bed, there are two problems
setting the RPF during the reinforcement learning training process. One problem is that
when the robot approaches the targets, with an alteration of the minimum distance between
the end of the robotic arm and the targets, the robot may not obtain enough rewards
to support the exploration of the environment. Therefore, a multifaceted consideration
of the weight of the reward and the penalty signals during the training is needed. The
other problem is that the collision constraint of the human body or the bed is complicated
to represent. Multiple obstacle points and collision configurations have to be set up to
construct the outline of the human body and the bed. Furthermore, the two problems will
introduce a more challenging situation—while avoiding these obstacles contours the robot
may also avoid the target areas between the human body and the bed. Therefore, it is
also a challenging task to set the obstacle avoidance function (OAF) and CD reasonably to
obtain desired results from reinforcement learning. In response to the above problems, this
paper studies the dual-arm trajectory control strategies based on reinforcement learning.
During the training process, based on the idea of the APF method, the RPF is designed, in
which the reward guide function (RGF), OAF, CD, and time function are set up reasonably.
According to the gravity function of the artificial potential field, RGF is designed based on
the distance between the targets and manipulators, and it guides the robot to approach the
targets continuously by updating the minimum distance between the end of the robot arm
and the targets, and finally makes the end of the robot arm reach the required position. In
terms of obstacle avoidance, inspired by the repulsion function and 13 obstacle points set
to obtain penalty signals to achieve better performance, this paper combined it with the
collision detection configuration. Compared with only using the CD method from [21], the
present method further improves the efficiency of obstacle avoidance by reducing about
500 thousand training steps, and constructing a new RPF to ensure the agents receive
more rewards. Furthermore, the time function is used to guide the agent to train faster.
Finally, through simulation, the effectiveness of the RPF and obstacle avoidance method is
verified, and the robot can accurately avoid obstacles to reach the expected targets. The
contributions of this article are mainly the following three points:

(1) Proposed a dual-arm robot trajectory planning method based on DRL, which enables
the robot to interact with the environment to find an optimal path to the targets;

(2) Designed the RPF based on the idea of the APF method, which creates a suitable
signal for the robot to support the exploration of the environment and arrive at the
ideal position to hold the patients;

(3) Combined OAF and CD, reducing the training time on obstacle avoidance and en-
hancing the stability of training.

The rest of the article is structured as follows; Section 2 describes the model of the
dual-arm robot and presents the preliminaries on deep reinforcement learning algorithms.
In Section 3, according to the challenge mentioned above, the RPF setting method is
proposed. The simulation result and discussion about the RPF setting are given in Section 4.
Finally, conclusions are given in Section 5. The graphical abstract of this paper is shown in
Figure 1 below.
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Figure 1. The graphical abstract of this article.

2. Preliminaries on Robot and Deep Reinforcement Learning
2.1. Model of the Robot

The dual-arm robot studied in this paper has five rotating joints for every single
arm. The left arm of the manipulator is marked as A, and the right arm is marked
as B. The robot joint coordinate system can be established according to the Denavit–
Hartenberg (DH) parameter method. As shown in Figure 2, {A− xi(yi, zi)}(i= 1, 2, 3, 4, 5)
and {B− xi(yi, zi)}(i= 1, 2, 3, 4, 5) , respectively, correspond to the 1~5 joints of both ma-
nipulators of the robot. The joints rotate with their Z-axis, respectively, as shown in Figure 2.
The coordinates of the left and right arms are marked as Ae and Be. According to [22], the
motion of both manipulators can be defined as Equation (1), the position and orientation
vector of the end of the left arm can be defined as PAR, and the right arm end position and
orientation vector are expressed as PBR and ΦBR:

XA =

[
PAR
ΦAR

]
XB =

[
PBR
ΦBR

]
(1)

Figure 2. The overall structure of the robot.
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2.2. Deep Reinforcement Learning

DRL is a Markov decision process (MDP). The mathematical model of reinforcement
learning is mainly composed of two parts, one is the agent, and the other is the environment,
as shown in Figure 3.

Figure 3. The agent–environment interaction in a Markov decision process.

MDP can be defined by a tuple {S, Ac, P, R, γ}, where the state set of a limited envi-
ronment Ac is the set of actions performed by the agent in the environment, P is the state
transition probability matrix, and γ is the discount factor, which is the future impact on the
present. Furthermore, P is the immediate reward obtained by calculating the action after
the environment receives action Ac [23,24].

MDPs are meant to be a straightforward framing of the problem of learning from
interaction to achieve a goal, and the process is shown as follows: The agent will interact
with the environment and receives a state St (St ∈ S) at the time step t in the sequence of
discrete-time steps, and selects an action (At ∈ Ac). One step later, in part as a consequence
of its action, the agent receives a numerical reward and finds itself in a new state St+1. The
process thereby gives rise to a sequence that begins as [25].

The goal of reinforcement learning is required to find the optimal strategy that can obtain
the largest long-term cumulative reward. The cumulative reward under strategy π is [26];

R = Rt+1 + γRt+2 + . . . =
∞

∑
k=0

γkRt+k+1 (2)

DRL algorithms used in robot control mainly include DDPG, trust region policy
optimization (TRPO), proximal policy optimization (PPO) algorithm, and other algorithms.
Although the policy gradient algorithm has made some progress, the method is very
sensitive to the number of iterative steps. If the number is too large, the feedback signal will
be submerged in noise, and it may even lead to an avalanche of decline in model training.
When the sampling efficiency is also very low, learning simple tasks requires millions of
iterations. The PPO algorithm draws on the TRPO algorithm, uses first-order optimization,
and achieves a new balance between sampling efficiency, algorithm performance, and
the complexity of implementation and debugging. Therefore, this paper selects the PPO
algorithm. The PPO algorithm is an improved algorithm based on the TRPO. After the
conjugate gradient method is used to reduce the amount of calculation, the amount of
calculation may still be large, which makes the algorithm not ideal in terms of speed. On
this basis, the PPO algorithm improves the objective function so that the algorithm can
use the gradient descent method to solve the model, which improves the simplicity of the
algorithm and the efficiency of the solution.
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In practice, the reinforcement learning algorithm uses the Monte Carlo method to
approximate the expectation, and the objective function of the confidence region strategy
for the optimization algorithm is shown in Equation (3) [27]:

maximize
1
N ∑N

t=1 [
π(a|s)

πold(a|s) A
πold(s, a)] (3)

where π(a|s) is the probability distribution on the new policy action set, πold(a|s) is the
distribution of the old policy action set and is the estimator of the advantage function of
the old policy.

The TRPO algorithm defines the trust region restriction strategy update for each round
of optimization of the model, thereby ensuring the stability of the optimization. The trust
region is limited by the Kullback–Leibler Divergence (KLD) in the constraint condition. It
is required that the probability distribution between the new strategy and the old strategy
is not too big. Therefore, the value of rt(θ) can be considered to be close to 1. The PPO
algorithm proposes another objective function, such as Equation (4) [28]:

LCLIP
t =

1
N
[min(rt(θ)Aπold(st, at), clip(rt(θ), 1− ε, 1 + ε)Aπold(st, at))] (4)

where ε is the maximum difference between the new strategy and the old strategy, and
Aπold(st, at) is the advantage function, which is the relative advantage of a certain action
under the current strategy. To achieve the effect of the trust region in the TRPO algorithm,
the algorithm has made two restrictions: The first part is the restriction on the probability
ratio Aπold(st, at) of the new and old strategies. ε limits the probability ratio Aπold(st, at)
of the new and old strategies to [1 − ε, 1 + ε], which means, when Aπold(st, at) > 0, if
rt(θ) > 1 + ε, then Lclip(θ) takes the upper limit (1 + ε)Aπold(st, at). When Aπold(st, at) < 0,
if rt(θ) < 1− ε, then Lclip(θ) takes the lower limit (1− ε)Aπold(st, at), and it makes sure
that each update does not have too much fluctuation. The second part is in the minimum
function, which takes the lower value of the calculation as a result. The lower value can be
optimized to the level of excellent performance, and then for other situations, the model
will perform better.

At the same time, the PPO algorithm improves the value model, uses the general-
ized advantage estimator (GAE) algorithm to approximate the advantage function in the
objective function, and adds the goal of the state value function and the entropy of the
strategy model to the objective function. The complete objective function is shown in
Equation (5) [29]:

LCLIP+VF+S
t (θ) = Êt[LCLIP

t (θ)− c1LVF
t (θ) + c2S[πθ ](st)] (5)

LVF
t = (Vθ(st)−Vtarget

t )
2

estimates the state value function, S[πθ ] of the strategy model is
added to increase the diversity of the model, and the objective function can be solved by
the gradient descent method.

3. Learning to Generate Motion

When training robots to generate a trajectory, it is time consuming and costs a lot
to use real robots. Therefore, an effective simulation environment plays an increasingly
important part in the application of robots. This paper chooses Unity as the reinforcement
learning platform.

3.1. Introduction to Unity Real-Time Environment

Unity is a real-time 3D interactive creation and operation platform. In this research,
firstly, the robot 3D model needs to be imported into the Unity 3D environment. Secondly,
before training the robot, it is necessary to use ML agents (machine learning agents) to
establish the interactive communication between the simulation environment and the
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reinforcement learning and use the algorithm to train the robot. The operation mechanism
of the environment is shown in Figure 4.

Figure 4. The relationship and structure diagram of the three major components of ML agents.

The learning environment is built with Unity, and the python application program-
ming interface (API) contains machine learning algorithms. External communicator con-
nects Unity with python API. When using ML agents, it is necessary to collect real-time
information about the robot and determine the following action of the robot. Therefore,
three parts must be defined at each moment in the environment:

(1) Observation is the robot’s view of the environment; the robot can collect environmen-
tal information through visual recognition.

(2) Action refers to the action the robot can take.
(3) A reward signal is a scalar value indicating how the robot behaves, which will be

provided only when the robot performs well or badly rather than every moment
during the training.

After defining the above three parts, the train can commence. The logic of ML agents
during reinforcement learning training is shown in Figure 5 below.

Figure 5. Training logic diagram.
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In training, regarding the robot as an agent, the agent can be used more than once, and
the data obtained by the agents can be shared, which will accelerate the speed of training.

3.2. Action and State Initialization

Various entities in the environment need to be properly set for better training. The
trajectory that the robot’s arms need to generate should consider the position of the robot
and other obstacles. According to the operating range and reasonable service area of the
robot, the targets are supposed to be under the back and knees of the man. The position of
the obstacle (bed, pillow, and the human body) remain unchanged. To ensure the stability
of training, the positions of the targets, the robot, and the obstacle should avoid conflicts.
In the experimental environment, to achieve effective training of dual-arm robot trajectory
planning, it is necessary to observe the position of the robot, the targets, and robot joints.
With the information that can be obtained in the actual service environment, the joint
rotation of the dual-arm robot, the coordinates of the targets, and the coordinates of the
robot, here the position observation set Op is defined as:

Op = (PAJi , PBJi , PG, PR)(i = 1, 2, 3, 4, 5) (6)

where PAJ , PBJ is the position of the left and right manipulators, respectively. PG and
PR are the position of targets and the obstacles, respectively. Whether the human body
can be lifted successfully is decided by the position of the targets and the posture of the
human body during lifting. There are five joints for each robot arm of the dual-arm robot.
Trajectory planning for the dual-arm robot aims to find the shortest and collision-free
trajectory to reach the targets and posture after setting the initial information. The targets
of the arms are considered to be under the shoulders and the knees of the human body
for the convenience of holding. The center of the targets area is shown by the red dot in
Figure 6. According to the model in Section 2.1, the initial and targets configuration of the
robot can be expressed as follows:

Xinti =

[
PARinti PBRinti
ΦARinti ΦBRinti

]
Xgoal =

[
PARgoal PBRgoal
ΦARgoal ΦBRgoal

]
(7)

where Xinti represents the initial configuration including position and orientation of the
robot, Xgoal represents the targets configuration of the robot, PARinti represents the initial
position of the left manipulator, ΦARinti represents the initial posture of the end of the left
manipulator, other symbols are similar. The motion control drives each joint angle so that
the end of the robotic arm can reach the targets. Here, by limiting the range of joint angle
changes during the training process, the robotic arm will explore the training environment
constantly, and feed back the value of rewards. We let the joint space of the robot be Q, and
it can be expressed as follows:

Q =


qA1 qB1
qA2 qB2
qA3 qB3
qA4 qB4
qA5 qB5

 (8)

The exploration of the robot’s dual-arm joint angle is as follows:

qAj = qA0j + 15ContinuousAction[j]
qBj = qB0j + 15ContinuousAction[j]

(9)

where qAj and qBj(j = 1, 2, . . . , 5) represent the joint angles of the left and right arms
of the robot, qA0j and qB0j(j = 1, 2, . . . , 5) is the initial value of each joint angle, and
15ContinuousAction[j] means that the output of the joint, which is calculated by reinforce-
ment learning and its range of change, is limited to [−15, 15].
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Figure 6. The target setting diagram.

3.3. Training Scheme

After the environment is established, the training agent scheme can be further determined.
In this paper, we considered training multiple agents with a single brain, every agent

associated with a robot. That means there are multiple independent reward signals and
multiple independent agents communicating with each other, collecting data, and calculat-
ing gradients. The data is summarized together to update network parameters, and mutual
feedback between strategies is carried out.

Figure 7 shows that multiple agents are working at the same time during the training.
Every agent is independent, but the data obtained will be uploaded to the same network
for parameters updating, and the reward signals will be feedback to the agent as evidence
for taking action. With repetition, the training will finally achieve the goal.

Figure 7. Training scheme.

3.4. The Reward Guidance Mechanism Design

After initialization of the action state of the robot, the agent can randomly derive
different action strategies according to the state, but it cannot evaluate the quality of the
action according to the state. The design of the reward guiding the function will evaluate
the behavior of the agent and increase the probability of high-scoring behavior. The
reward mechanism determines the effect of the training results. A reasonable RPF will
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increase the training speed, reduce the consumption of computer resources, and make the
training converge faster. In most cases, continuous reward and punishment information
can continuously allow the agent to get feedback on the action strategy adopted, which is
more effective than sparse reward signals.

This paper is inspired by the idea of the APF method and sets up a continuous
reward function. There are three main considerations in setting up the reward mechanism:
(1) reaching the targets; (2) avoiding obstacles; (3) minimizing training time. For problem (1),
this paper sets up a guidance function, which will reward the robot when it approaches the
targets and punish it when it moves away. For problem (2), two methods are proposed here.
One is the obstacle avoidance function (OAF), inspired by the idea of the APF method. The
second is collision detection (CD) which will punish the agent if the robot collides with
obstacles. The OAF will penalize the robot when it approaches obstacles; the closer the
distance, the higher the penalty. As the penalty signal is continuous, the training time will
be shorter compared with CD, but whether the selection of obstacle points is representative
will affect the training. The agent will be unable to identify obstacles if the obstacle points
do not describe the obstacle well. The signals obtained by CD will penalize the robot only
when the robot collides with the obstacle, which means the reward signal is discrete. The
training time will be longer compared with OAF, but because the CD will divide the entire
workspace into two parts, Wcollide and W f ree, the CD will have a more comprehensive
description of obstacles, and the training effect will be more stable. The two methods have
their advantages and disadvantages. In the specific implementation process, it is necessary
to set the weight of the penalty of the two methods reasonably to obtain better results. For
the problem (3), a time function is set, and a constant penalty is given for each round of
training to reduce the training time.

3.4.1. Reward Guide Function

The guide function setting is inspired by the traditional APF method when setting
the reward function for path planning. The gravity of the APF method is determined by
the current position of the object, the gravity is represented by the reward signal, and
the reward signal is determined by the action of the agent. Otherwise, the agent will
be punished. For example, in a certain state St, there is a certain distance between the
end PAend = (xAt, yAt, zAt), PBend = (xBt, yBt, zBt) of the dual-arm robot, and the targets
PAgoal = (xAg, yAg, zAg) and PBgoal = (xBg, yBg, zBg), which is represented by the distances
disAt and disBt. If the distance is continuously reducing, it means that the robot’s action
strategy is correct, and the behavior should be rewarded. The guide function equation is
set as:

disAt =
√
(xAt − xAg)

2 + (yAt − yAg)
2 + (zAt − zAg)

2

disBt =
√
(xBt − xBg)

2 + (yBt − yBg)
2 + (zBt − zBg)

2
(10)

disAmin/Bmin =

{
dis0 t = 0

min(disAt/Bt, disAmin/Bmin) t > 0
(11)

Rg =


k1(disAmin/Bmin − disAt/Bt) (i f disAmin/Bmin < disAt/Bt)
k2(disAmin/Bmin − disAt/Bt) (i f disAmin/Bmin > disAt/Bt)
k3 (i f disAmin/Bmin = 0)

(12)

In the Equations (10)–(12), k1, k2, and k3 are appropriately selected positive constants,
disAt/disBt represents the distance between the end of the robot’s arms and the targets at
time t, and disAmin/Bmin represents the minimum distance between the end of the robot’s
arms and the targets at time t. They are not constants and will change with time. Equation
(12) gives the update method: (xAt, yAt, zAt) and (xBt, yBt, zBt), respectively, represent the
position coordinates of the end of the left and right arms of the robot at time t. The meaning
of RPF is to take the minimum distance disAmin/Bmin between the end of the robot arms and
the targets at time t. When the time changes if the newly generated distance disAt/disBt
is less than disAmin/Bmin, it means that the distance between the end of the robot’s arms
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and the targets is decreasing. Then a reward k2(disAmin/Bmin − disAt/Bt) can be given. If
disAt/disBt is greater than disAmin/Bmin, it means that the distance between the end of
the robot’s arms and the targets is increasing, and a penalty k1(disAmin/Bmin − disAt/Bt)
is given. When the distance disAt/disBt is zero, it means that the robot has reached the
targets correctly. The training is deemed successful, and the highest reward k3 is given, and
then this round of training can be ended. However, when the end of the robot’s arms gets
closer and closer to the targets, the reward will be lowered, which will affect the training
speed. Therefore, k1 < k2 is set here, that means the weight of the reward is greater than
the weight of the penalty.

3.4.2. Collision Detection

This part mainly focuses on how to avoid the obstacle. Here are two main ideas for
obstacle avoidance. One is to set up collision detection (CD), which is to set penalties by
detecting whether the robotic arm collides with obstacles, and the other is to set obstacle
avoidance function (OAF), inspired by the idea of the APF method. The robot will obtain
different penalty signals according to the distance between the end of the manipulator and
the obstacle. The OAF will improve the training faster than the CD, according to what is
mentioned before, but the selection of obstacle points cannot represent all the shapes of the
human body and the bed after all; therefore, to construct a better RPF, the CD and the OAF
should complement each other. This section will first introduce CD.

In real life, collision detection is realized using an impact sensor, but in the virtual
environment in Unity, it is realized in other ways. Let the operating space of the robotic
arm be W, which can be divided into two subsets, Wcollide and W f ree, the former represents
the space where the obstacle stays, the latter represents the space where the robot can move
freely, and the space occupied by the robot is M. If the robot belongs to W f ree, it means
the robot does not collide with any obstacles. If the robot arm belongs to Wcollide, it means
that there is a collision between the obstacle and the robot arm. The division of Wcollide and
W f ree will be taken by CD. The CD is mainly about the collision between the robot arm and
the obstacle. The obstacle here specifically includes the human body and bed.

The CD is used to detect whether objects collide with each other [18]. If the object
is very regular, such as a sphere, it is easy to directly detect whether the distance from
the center of the circle is less than the radius. However, if the object is irregular, such as
a robot, it will become very difficult to distinguish whether two objects collide with each
other. Therefore, it is necessary to use simple geometry to approximate complex shapes of
objects. Taking the situation mentioned above into consideration to obtain more accurate
training results, the human body and robot arms are shaped by colliders, which will cover
a layer of the grid on the surface of the robot, the human body, and the bed. During the
detection, the collider will check whether the robot manipulators collide with obstacles.
The configuration of the collision detection between the robot and the human body is
shown in Figure 8:

Figure 8. Cont.
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Figure 8. Collision detection configuration diagram. (a) Robot collision detection configuration.
(b) Human body and bed collision detection configuration diagram.

According to collision detection, the penalty function can be set as follows:

Ro = −ko (if M∩Wcollide 6= ∅) (13)

where ko is a positive constant and M ∩Wcollide means that the robot collides with the
obstacles; if there is a collision, the agent will be punished with a penalty −ko.

3.4.3. Obstacle Avoidance Function

The APF method makes the robot avoids obstacles by setting the repulsive force
function. The repulsive force function is designed according to the distance between the
robot and the obstacle. Here the idea of the function to design the penalty function is
considered, taking the reciprocal of the distance between the end of the robot manipulators
and the targets as the penalty signal. In the real world, to recognize the shape of an object,
there are always some mark points attached to it. In this subsection, an arrangement
method of the mark points is proposed.

Both the human body and the bed have the characteristics of complex shapes. The
OAF designed according to the APF method is like the repulsive force between points, and
it is necessary to calibrate the shape of the human body and the bed, as shown in Figure 9.

According to Figure 9, it is known that the targets of the robot are below the back and
the knees of the human body. The obstacle points Ai, Bi, C (i = 1, 2, . . . , 6) in Figure 9 are set
to ensure that the robot will not collide with the human body or the bed while approaching
the targets, where the area enclosed by points Ai and C is the ideal activity space for the
left arm, and the area enclosed by points Bi and C is the ideal activity space for the right
arm. It can be seen that point C divides the movement space of the left and right arms to
prevent the left and right arms from being too close during work. This arrangement has
two advantages. One is to prevent collisions between the left and right arms of the robot,
and the other is to enable the robot to use a proper posture to pick up people.

After setting the obstacle point, we can set the OAF, as shown below:

R′o = −k′o(1/disAi + 1/disAC + 1/disBi + 1/disBC)(i = 1, 2, . . . , 6) (14)

where k′o is a positive constant, disAi represents the distance between the end of the left
arm of the robot and Ai, disAC represents the distance between the end of the left arm of
the robot and point C, disBi represents the distance between the end of the right arm of
the robot and point Bi, and disBC is the distance between the end of the right arm of the
robot and point C. As can be seen from Equation (14), when the end of the robot is far away
from the targets, that is, when the dis∗(∗= Ai, AC, Bi, BC) is large, the penalty obtained
by the robot, namely, 1/dis∗ can be ignored. When the distance is too close, the penalty is
1/dis∗ will tend to infinity. This produces a continuous penalty signal for the robot, and at
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the same time, it can also obtain the penalty signals when the robot is approaching targets
compared with the CD, which will speed up the training.

Figure 9. Diagram of Barrier point.

3.4.4. Time Function

In the simulation training, to reduce the training time, a constant penalty item can
be set, and a penalty will be performed for every additional round of training. The time
penalty function is represented by Rp, which can be set according to the length of the
training time, but the value should not be set too large; otherwise, the robot will be unable
to perform effective exploration because of the excessive punishment in the early stage of
training. The function equation can be expressed as:

Rp = −kt (15)

where kt is the time penalty constant, which is positive.
The design of the total reward function is the cumulative sum of the above three

functions, which can be expressed as:

R = Rg + Ro + R′o + Rt (16)

3.5. Training Process

The goal of reinforcement learning is to find the optimal strategy for maximizing the
total rewards of the agent in the path planning. If the iterative training time is limited, the
agent can find the trajectory to the goal by maximizing the total rewards, but when the
agent does not receive enough training, it is difficult to find the targets because the action
is mainly determined by experimental methods, which means that many iterations cannot
reach the targets before the agent is well trained. In this case, there are only a few states
and actions helpful for learning. The process is called the Markov process with sparse
reward. To overcome this problem, this paper designed a trajectory planning algorithm
using the PPO algorithm. The PPO algorithm is known for its easy implementation and
high efficiency. It improves the sample efficiency of the scant reward in the DRL training.

According to Section 2.1, the state S could be expressed as:

S = {pA, nA, pB, nB} (17)
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where pi and ni(i = A, B) represent the positions and orientations of the end of the
manipulator pi and ni(i = A, B) ∈W f ree, which means that state quantities are considered
to belong to free space.

The action Ac can be defined by Equation (9), where qA and qB represent the angle
vector of each joint of both arms of the robot. The action at time t means that the robot must
meet the joint position at time t + 1:

Ac = {qA, qB} (18)

The PPO algorithm needs to build three neural networks: Actor-New—the new policy
network, Actor-Old—the old policy network, and Critic-nn—the evaluation network. The
old and new strategic network is proposed to predict the action strategy, and the evaluation
network is responsible for evaluating the effect of the action. During the training, firstly,
the environmental observation information Op is input to the new strategic network.
The new strategy network obtains the normal distribution parameters according to the
observed environmental information, and action is sampled. The action interacts with the
environment to generate rewards or punishments and obtain the next state St+1. After
storing the state, action, rewards, and punishments in the memory bank, the state St+1
is then input into the new strategic network. This process repeats continuously until the
storage capacity in the memory bank meets the requirements. In the evaluation network,
through the continuous acquisition of observations and rewards, the agent will perform
a back-propagation update of network parameters so that the evaluation value of the
evaluation network for different situations is getting closer and closer to the setting value
of the reward function; at the same time, the old and new networks output strategies
according to the state set, and calculate the weights and update the parameters of the new
strategic network according to Equation (17). After training for a certain time, the agent will
use the new strategy network parameters to update the old strategy network parameters.
This process repeats continuously until the set number of training steps is reached, and
the training is completed. The training process is shown in Figure 10. The PPO algorithm
is based on the actor–critic framework but with the style of policy gradient at the same
time. In a specific implementation, when the Actor-New network obtains the environment
information S, it will obtain two values. Using these two values, a normal distribution can
be constructed. The action will be sampled from this normal distribution. The obtained
action interacts with the environment to obtain the reward R and state S of the next step.
Reward R and state S will be stored in a memory bank, and the R and S in the memory
bank will be input into Actor-New, and so on. The critic network calculates the reward
value according to the obtained information and updates the network according to c_loss
(adv). The actor network update method is similar to the critic network.

Figure 10. PPO algorithm network training flowchart.
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4. Simulation Result Analysis

The experimental platform is configured in Windows 10 system equipped with
NVIDIA GeForce GT 710 graphics card and i5-6400 processor of Dell. To verify the effec-
tiveness of the system, the analysis of the training result is conducted, as shown below.

4.1. Training Environment

In the experiment, there are 16 agents, and the training environment adopts a lightweight
layout, as shown in Figure 11.

Figure 11. Training environment.

After the simulation environment is configured in Unity, the PPO algorithm will be
called from the Python API to train the robot. The relevant parameters of the algorithm are
shown in Table 1. The maximum number of training steps is set to 500 million (of course, it
can be stopped in advance when the desired results are obtained), the entropy regularization
strength β (Beta) is set to 0.001, the acceptable difference range value ε (Epsilon) of the new
and old strategies is set to 0.2, the number of hidden layers of the network is 128, and the
reward signal parameter is set to 0.99.

Table 1. Hyper-parameters and reward signals.

Name Value Name Value

Batch size 64 γ 0.99
Buffer size 12,000 Strength 1.0

Learning rate 0.0003 Keep checkpoints 5
β 0.001 Max steps 500,000,000
ε 0.2

Lambda 0.99 Time horizon 1000
Number epoch 3 Summary frequency 12,000
Hidden units 128 Number layers 2

In the training process, (Rinti, Rgoal) is input into the agent at the beginning, and
the action will be output. The reward and state are generated at the same time and will
be returned to the agent later. The same process will repeat until the expected result is
achieved. Figure 12 shows the process of path formation:
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Figure 12. The Agent training process of generating trajectory.

After the agent is trained well, it will calculate the shortest path from the initial point
to the targets according to the RPF. The training result is shown in Figure 13, where the
human body is placed at a certain position on the left, and the robot is in a certain space on
the right. The robot will move randomly to explore the environment to reach the targets
for lifting the human body. It can be seen that the robot finally reaches the targets without
collisions with the bed and the human body.

Figure 13. Diagram of training results. The number in the upper right corner of the picture represents
the moving order of the robot.

4.2. Training Analysis

To verify the effectiveness of the method in this paper, the robot performance under
different RPF is carried out. The simulation in this paper is as follows: (1) No penalty
function, that is, in the process of approaching the targets, if the robot collides with an
obstacle, only the number of collisions is recorded, which means there is no penalty. (2) The
RPF based on CD is used to detect whether the robot arm collides with the human body
or the bed, and only if a collision occurs will the agent be punished. (3) The RPF is based
on the OAF, and the advantage of the OAF is that the rewards or punishments the agent
receives are continuous when approaching the targets. (4) RPF with OAF and CD, namely
the combination of (2) and (3). Among all the RPFs mentioned above, the targets guidance
mechanisms are all the same. Table 2 shows the training effect of all the RPFs. The times
of success are the times the robot avoids the obstacle successfully to reach the expected
position. The usage time is the time it takes to repeat the action 200 times. It can be seen
from Table 2 that the success rate of training without penalty is only 20%, and the result
is very bad. Because the space for the robot to approach the targets is relatively narrow,
the robot arms can easily touch the bed or the human body, which is not allowed. The test
results reflect the importance of obstacle avoidance for training.
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Table 2. The effect of different RPF.

Method RPF Category Times of Success (Total Number
of Experiments) Success Rate/% Usage Time/s

1 Accessibility penalty function 40 (200) 20 124
2 RPF based on CD 183 (200) 91.5 152
3 RPF based on OAF 191 (200) 95.5 133
4 RPF based on CD and OAF 198 (200) 99 128

The data during the training can be obtained through a tensorboard-1.7.0, and the
data downloaded are imported into Matlab 2019b for drawing, as shown in Figure 14. The
results obtained after training are as follows: It can be seen from Figure 14a that, compared
with only one method of OAF or CD, the convergence of the combination of the two
methods is the fastest. The use of both methods reduces the time by about 500,000 steps
compared with the OAF and reduces about 1 million steps compared with the CD. The
reward curve does not change sharply, which reflects the stability of the training results.
Furthermore, it can be seen in Figure 14b that in terms of the curve of the episode length,
the training result in this section is generally at the lowest position, and the time to zero is
also the shortest.

Figure 14. Training results diagram. (a) Cumulative Reward. (b) Episode Length.

From Figure 14, on the problem of obstacle avoidance, the CD can achieve a complete
division of the workspace and a more comprehensive description of obstacles and robot
shapes; hence the curve of the training results seems more stable because the penalty signal
is more specific. However, since the CD gives the agent a penalty signal only when the end
of the robot arm collides with an obstacle, the training time of the CD is longer. The use
of the OAF requires the preselection of obstacle points, and then the agent will receive a
penalty signal according to the distance between the robot arm and the obstacle point. The
farther the distance is, the smaller the penalty is, and the closer the distance is, the greater
the penalty. Therefore, the OAF is more sensitive to obstacles than the CD and will make
the penalty signal continuous, which will effectively reduce the training time required for
obstacle avoidance. However, due to the complex shapes of the human body and the bed,
whether the selected obstacle points are representative will decide whether the robot can
effectively avoid obstacles. According to the advantages and disadvantages of the CD and
the OAF, this paper combined the two methods to construct a new RPF. Furthermore, the
RPF has been proved to be faster and more effective than the OAF or the CD, according to
the data analysis above.

To show the advantage of the reinforcement learning and PPO algorithm further,
another experiment is conducted. When the robot is approaching the targets, the posture
of the human changes within a certain range when training, and the DDPG algorithm is



Micromachines 2022, 13, 564 18 of 20

used to accomplish the task again. The posture change diagram and rewards curves of
both training are shown in Figures 15 and 16.

Figure 15. The human posture changing diagram.

Figure 16. The training results in posture changing.

From the training result in Figure 16, it can be seen that even though the human
posture is changing, the trajectory can still be generated, which shows the advantage of the
PPO algorithm. However, there are another 500 thousand steps for training, which means
that the task is becoming harder. From Figure 17, it can be seen that it takes many more
steps for the robot to obtain the same results; where the DDPG algorithm takes 5 million
steps, the PPO only takes 1 million steps. The rewards curve of the DDPG is fluctuant,
which means that the algorithm is not that good for the robot to generate the trajectory,
which shows the advantage of the PPO algorithm again.

Figure 17. The training result of DDPG.

5. Discussion and Conclusions

The research is conducted to provide inspiration for the application of robots in the
field of medical care and reduce the social burden.
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This paper carried out the trajectory planning research with the reinforcement learning
of the dual-arm robot on the assistance with the patient and designed a kind of reward
function which consists of RGF, CD, OAF, and time function. Where the RGF is used to
guide the robot to reach the targets, the CD and OAF are used to avoid obstacles, and the
training time is reduced, enhancing the stability of the training effect by using the RPF. The
time function is used to make the agent train faster. The RPF effectively enables the robot
to obtain a higher reward and alleviate the negative effect of the sparse reward problem of
robot training in a high-dimensional environment.

As for the problem of obstacle avoidance, this article explored the use of the CD and
the OAF, the two methods complementary to each other, considering both advantages
and disadvantages of both, and the training results showed their superiority. Finally, to
show the superiority of the PPO algorithm further, the DDPG algorithm is applied for
the research, and the latter shows slower training and fewer rewards for the robot when
accomplishing the task.

However, the robot only accomplishes the trajectory planning for holding the human
up as a preparatory action, and the force information has not been considered, which
may hurt humans during the operation. Furthermore, to study the problem more deeply,
next, we will use force/position control to complete the task with deep reinforcement
learning algorithms.
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