
Citation: Alajlan, N.N.; Ibrahim,

D.M. TinyML: Enabling of Inference

Deep Learning Models on

Ultra-Low-Power IoT Edge Devices

for AI Applications. Micromachines

2022, 13, 851. https://doi.org/

10.3390/mi13060851

Academic Editors: Zebing Mao,

Jin Xie and Hong Ding

Received: 27 April 2022

Accepted: 27 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

TinyML: Enabling of Inference Deep Learning Models on
Ultra-Low-Power IoT Edge Devices for AI Applications
Norah N. Alajlan 1 and Dina M. Ibrahim 1,2,*

1 Department of Information Technology, College of Computer, Qassim University,
Buraydah 51452, Saudi Arabia; 411200285@qu.edu.sa

2 Department of Computers and Control Engineering, Faculty of Engineering, Tanta University,
Tanta 31733, Egypt

* Correspondence: d.hussein@qu.edu.sa or dina.mahmoud@f-eng.tanta.edu.eg

Abstract: Recently, the Internet of Things (IoT) has gained a lot of attention, since IoT devices are
placed in various fields. Many of these devices are based on machine learning (ML) models, which
render them intelligent and able to make decisions. IoT devices typically have limited resources,
which restricts the execution of complex ML models such as deep learning (DL) on them. In addition,
connecting IoT devices to the cloud to transfer raw data and perform processing causes delayed
system responses, exposes private data and increases communication costs. Therefore, to tackle these
issues, there is a new technology called Tiny Machine Learning (TinyML), that has paved the way
to meet the challenges of IoT devices. This technology allows processing of the data locally on the
device without the need to send it to the cloud. In addition, TinyML permits the inference of ML
models, concerning DL models on the device as a Microcontroller that has limited resources. The aim
of this paper is to provide an overview of the revolution of TinyML and a review of tinyML studies,
wherein the main contribution is to provide an analysis of the type of ML models used in tinyML
studies; it also presents the details of datasets and the types and characteristics of the devices with an
aim to clarify the state of the art and envision development requirements.

Keywords: Internet of Things; edge devices; machine learning; deep learning; tiny machine learning

1. Introduction

Over the last decade, we have seen the development of machine learning algo-
rithms with the development of the Internet of Things (IoT) as in microelectronics, com-
munication, and information technology. The IoT concept has been widely used in
different aspects of our lives with applications and technologies [1,2] including smart
cities, smart environments, smart homes, etc. Billions of IoT devices are connected to
the internet; with extensive numbers of IoT devices comes the mass production of IoT
platforms [1,3]. The role of these devices is to sense the physical features of their deploy-
ment environments—twenty-four hours a day, seven days a week. This leads to a rise in
the volume of data generated that in turn needs high computing performance and large
amounts of storage space. Recently, the integration of Machine Learning (ML) algorithms
with the IoT devices has aimed to process huge amounts of data and make the devices
intelligent in order to make decisions [3].

Deep neural networks (DNNs) or deep learning (DL) is a subset of ML and considers
the most advanced algorithms to process data. In recent years DL has witnessed rapid
development in successful applications in different areas, e.g., image classification, object
detection and speech recognition. Meanwhile, DL enables many applications in IoT edge
devices such as mobiles, which become intelligent microcontrollers once equipped with
DL, e.g., Apple Siri to enable human-computer interactions [4]. Efforts have been made to
deploy DL into IoT devices, due to advantages in terms of reducing response time latency,
bandwidth connection, energy consumption, security, and privacy [5]. IoT edge devices

Micromachines 2022, 13, 851. https://doi.org/10.3390/mi13060851 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13060851
https://doi.org/10.3390/mi13060851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-2426-2668
https://orcid.org/0000-0002-7775-0577
https://doi.org/10.3390/mi13060851
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13060851?type=check_update&version=2

Micromachines 2022, 13, 851 2 of 22

can collect data using only the device itself, take action and make decisions based on the
data capture. Local processing can be performed once a running pre-trained DL-model
capable of making inferences is added into the device. In addition, some data is sent to
micro-cloud computing, e.g., fog computing to perform processing before returning results
to the device. However, inference of DL in edge devices is not yet prepared enough to be
fully executed [3,4,6].

Many challenges involved in integrating DL with edge devices are listed here. (i) Training
DL models is the most difficult challenge involved in integrating edge devices with DL,
wherein the training DL models consist of dense parameters that constitute heavy weight
to achieve high accuracy. It is computationally expensive, consuming massive CPU and
GPU resources, power, memory, and time. However, edge devices have not yet become
cost-efficient enough to take training DL models due to limited resources [7–9]. For instance,
in [10] it is shown that the training of DL is the main obstacle in integrating DL with the
industries internet of things (IIoT), due to the complications of DL models which take up
time in the training phase. (ii) Inference of DL in edge devices is a significant challenge;
based on the complicated DL models, training inference in DL models takes a long time
and can cause delays in response times.

Currently, DL is partially deployed on edge devices and the remaining data are
transferred to processing in the cloud, or DL models are deployed in the cloud to process
raw data that are received from edge devices, thus causing a delay in latency [9]. For
instance, Ref. [11] edge devices are used to sense water data and then transfer the data to
the cloud to analyze; data can also be forecast using DL models. (iii) Power and memory
consumption are present challenges; heavy-weight DL models consume memory and a
lot of power. The size of memory and power capacity in edge devices is limited, since
these devices have small memory and short energy lifetimes. Thus, the performance of
DL models will be significantly affected compared to the servers in data centers or devices
that have large resource as power and memory [12]. (iv) Security constitutes a challenge to
integrating DL with edge devices. The proliferation of IoT edge devices lead to collection
of sensitive data from society, wherein transmission of data to the cloud may expose it to
hacking and eavesdropping [13].

A new concept has emerged of a meeting point and intersection between machine
learning (deep learning) and an edge device called TinyML. TinyML enables deploy of
small DL models into a tiny edge device that has tough resource constraints e.g., limited
computation (clock speed about tens of megahertz), small memory and a few milliwatts
(mW) of power. TinyML allows analysis and interpretation of data locally on the devices
and takes action in real time [14]. Furthermore, deployment of pre-trained DL models
into tiny edge devices is now possible, after performing some techniques to compress DL
models and optimize the inference. For instance, using quantization techniques, which are
conversion techniques that convert float-point numbers to minimize precision numbers,
intending to shrink the size of the DL model with minimal degradation of accuracy. Pruning
techniques allow removal of redundant structures of network and parameters [15,16].
Figure 1 depicts the capability of TinyML to process the data from various IoT devices
locally into tiny edge devices (e.g., a microcontroller) without the need to connect to the
cloud to process the data. However, TinyML has many advantages that can translate into
saving huge costs, energy, and better protection of privacy. Details of TinyML will be
mentioned in the next section.

The main contribution of this paper is to review the emerging topic of TinyML and
their techniques in order to support the researchers in this field. The contributions are listed
as follows:

(i) TinyML studies are reviewed in two aspects; first, studies that have developed the DL
model and applied it in IoT applications. Second, studies that design frameworks and
libraries for TinyML.

(ii) Analysis and findings from previous studies are provided for the main three items
used in TinyML (Model, Dataset and Devices).

Micromachines 2022, 13, 851 3 of 22

(iii) Discussion of main findings in TinyML (Model, Dataset and Devices) is presented.
(iv) Light is shed on the most relevant limitation concerning TinyML, which will provide

the directions for future research.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 22

(ii) Analysis and findings from previous studies are provided for the main three items
used in TinyML (Model, Dataset and Devices).

(iii) Discussion of main findings in TinyML (Model, Dataset and Devices) is presented.
(iv) Light is shed on the most relevant limitation concerning TinyML, which will provide

the directions for future research.
The rest of the paper is organized as follows. Section 2 presents an overview of Ti-

nyML with mentions of the advantages of TinyML. In Section 3, our research methodol-
ogy approach is demonstrated. Section 4 summarizes the related work of TinyML. Section
5 discusses the findings of the dataset and devices of TinyML studies. Section 6 contains
analysis of the limitations of TinyML approaches. Finally, Section 7 illustrates the conclu-
sions.

Figure 1. A framework of IoT applications with Cloud computing, Edge computing and TinyML.

2. Overview of TinyML
The Tiny Machine Learning (TinyML) is an emerging field that has resulted in many

inventions and is leading to the rapid growth of IoT fields e.g., smart manufacturing,
smart health, autonomous driving, etc. TinyML is an alternative paradigm that allows
implementing DL tasks locally on ultra-low-power devices, typically under a milliWatt.
Thus, it allows for real-time analysis and interpretation of data, which translates to mas-
sive advantages in terms of latency, privacy, and cost [17,18].

The primary goal of TinyML is to improve the adequacy of DL systems through re-
quiring less computation and less data, which will facilitate the giant market of edge AI
and the IoT [17]. According to the universal tech market advisory company, ABI Research,
a total of 2.5 billion devices are expected to be shipped with a TinyML chipset in 2030.
These devices focus on advanced automation, low cost, low latency in transmitting data,
and ultra-power-efficient Artificial Intelligence (AI) chipsets. The chipsets are known as

Figure 1. A framework of IoT applications with Cloud computing, Edge computing and TinyML.

The rest of the paper is organized as follows. Section 2 presents an overview of TinyML
with mentions of the advantages of TinyML. In Section 3, our research methodology ap-
proach is demonstrated. Section 4 summarizes the related work of TinyML. Section 5
discusses the findings of the dataset and devices of TinyML studies. Section 6 contains anal-
ysis of the limitations of TinyML approaches. Finally, Section 7 illustrates the conclusions.

2. Overview of TinyML

The Tiny Machine Learning (TinyML) is an emerging field that has resulted in many
inventions and is leading to the rapid growth of IoT fields e.g., smart manufacturing,
smart health, autonomous driving, etc. TinyML is an alternative paradigm that allows
implementing DL tasks locally on ultra-low-power devices, typically under a milliWatt.
Thus, it allows for real-time analysis and interpretation of data, which translates to massive
advantages in terms of latency, privacy, and cost [17,18].

The primary goal of TinyML is to improve the adequacy of DL systems through
requiring less computation and less data, which will facilitate the giant market of edge AI
and the IoT [17]. According to the universal tech market advisory company, ABI Research, a
total of 2.5 billion devices are expected to be shipped with a TinyML chipset in 2030. These
devices focus on advanced automation, low cost, low latency in transmitting data, and
ultra-power-efficient Artificial Intelligence (AI) chipsets. The chipsets are known as edge
AI or embedded AI, since they perform AI inference almost fully on the board, whereas in
the training phase for these devices it will continue to depend on the external resources,
such as gateways, on-premises servers, or the cloud.

Micromachines 2022, 13, 851 4 of 22

Recently, TinyML has attracted the interest of industry giants. For instance, Google
has released the TensorFlow Lite platform which allows the running of Neural Network
(NN) models on IoT devices [19]. Likewise, Microsoft has released EdgeML [20], whereas
ARM [21] has published an open-source library for Cortex-M processors that increase the
performance of NN, known as Cortex Microcontroller Software Interface Standard Neural
Network (CMSIS-NN). In addition, there is a new package called X-Cube-AI [22], which
was released to execute DL models on STM 32-bit microcontrollers [5].

Microcontroller units (MCUs) are considered ideal hardware platforms for TinyML,
due to typically being small (~1 cm3), low power (~1 mW), and cheap (~$1). MCUs combine
a CPU, digital and analog peripherals on the chip embedded flash (eFlash) memory in
order to store the program, in addition to the Static Random-Access Memory (SRAM) for
intermediate data [17].

Benefits of TinyML

In this section, a series of benefits of TinyML are mentioned that exceed the possible
cons when integrated with IoT devices, especially with edge or daily use devices:

• Energy efficiency: this is a great benefit when adopting TinyML that works on MCUs.
Since IoT devices that work on MCUs rely on batteries or even energy harvesting, they
consume less energy in comparison with powerful processors and Graphics Processing
Units (GPUs) that demand a great amount of power. Therefore, IoT devices can be
placed everywhere without the need to be plugged into the power grid. Thus, it
opens the door for novel cognitive itinerant applications. In addition, scarce power
consumption allows the IoT devices to be coupled with larger battery-powered devices,
hence converting them into connected smart entities, e.g., personal mobility devices
such as scooters or seaways [23].

• Low cost: IoT devices performed a variety of tasks in many IoT applications. Therefore,
they require excellent specifications such as high computation processing power, large
storage and memory. Further required is large amounts of storage in the cloud to con-
duct processing and store the data; thus, it has a high cost due to use of large resources.
TinyML processes data locally in microcontroller devices that have low cost and can
apply AI locally on the device itself to process the data with high performance [23].
Microcontrollers have low cost compared to other solutions due to their limited use of
resources, as processor compute in the range of 1 MHz to 400 MHz. The memory for
microcontroller can be of 2 KB to 512 K, whilst the storage capacity can be 32 KB to
2 MB. The cost of a Microcontroller is a few dollars in comparison to other smart IoT
devices used to process data locally using DL models.

• Latency: In TinyML, data processing is executed locally in the device since the compu-
tations are performed in the device. Thus, IoT devices do not suffer from latency. The
real-time local processing of data in the devices leads to faster response and rapid anal-
ysis in emergency scenarios. Besides this, the burden on the cloud is reduced [24,25].

• System reliability and data security: IoT devices require communication channels to
transfer stream raw data from the IoT device to the cloud. When the data is transmitted
to the cloud, it is prone to transmission errors, cyber-attacks e.g., eavesdropping or
man-in-the-middle issues. Thereby, the transmitted data may be compromised or
lost. According to the IBM Cost of Data Breach report 2020, the average cost of a data
breach is pegged at USD 3.86 million [26]. Therefore, data need to be processed locally
to limit cloud traffic. TinyML can prevent these issues through performing processing
of data locally in the same device. which permits it to perform fewer transmissions
with aggregated or meaningless data for an attack [23,25].

Figure 2 clarifies the comparison in characteristics between two IoT devices (micro-
processor and microcontroller). Microprocessors are most used in IoT with DL and have
high requirements for resources such as processing power, memory, and storage. However,
it is high in cost, consumes lots of memory and is not easily portable. In contrast micro-
controllers are used in TinyML which have a low level of resource requirements such as

Micromachines 2022, 13, 851 5 of 22

processing power, memory, and storage. However, it also has low cost, energy efficiency,
portability and simplicity.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 22

Figure 2 clarifies the comparison in characteristics between two IoT devices (micro-
processor and microcontroller). Microprocessors are most used in IoT with DL and have
high requirements for resources such as processing power, memory, and storage. How-
ever, it is high in cost, consumes lots of memory and is not easily portable. In contrast
microcontrollers are used in TinyML which have a low level of resource requirements
such as processing power, memory, and storage. However, it also has low cost, energy
efficiency, portability and simplicity.

Figure 2. Comparison between the main characteristics of devices powered either by microcontrol-
ler or microprocessor.

3. Research Methodology
This section presents the methodology to locating, selecting, and critically assessing

papers that address all topics related to TinyML. The objective of the paper was to import
all the papers related to emerging topic which are TinyML and impart details regarding
the reviewing of the research works performed in this domain and their key contributions,
along with mentioning details for datasets, models, and devices. This paper was carried
out following the guidelines in PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) [27]. The method is described in the following subsections.

3.1. Core Questions
The selection of the studies based on the whether or not the study answering research

questions, the research questions comprising the focus in this study are:
1. What are the datasets, models and devices used in TinyML?
2. What are the types of application domains that are used with TinyML?
3. What are the frameworks and libraries used to develop TinyML?
4. What are the existing limitations for developing TinyML and objects for future

research?

Figure 2. Comparison between the main characteristics of devices powered either by microcontroller
or microprocessor.

3. Research Methodology

This section presents the methodology to locating, selecting, and critically assessing
papers that address all topics related to TinyML. The objective of the paper was to import
all the papers related to emerging topic which are TinyML and impart details regarding
the reviewing of the research works performed in this domain and their key contributions,
along with mentioning details for datasets, models, and devices. This paper was carried
out following the guidelines in PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) [27]. The method is described in the following subsections.

3.1. Core Questions

The selection of the studies based on the whether or not the study answering research
questions, the research questions comprising the focus in this study are:

1. What are the datasets, models and devices used in TinyML?
2. What are the types of application domains that are used with TinyML?
3. What are the frameworks and libraries used to develop TinyML?
4. What are the existing limitations for developing TinyML and objects for future research?

3.2. Search Strategy

The web-based resources (Google Scholar) and Clarivate’s Web of Science (WoS), which
is a powerful and trusted database, contain various academic resources which are base
databases for searching about TinyML, in addition to other databases as complementary
sources: Science Direct, IEEE, MDPI and Springe. The first publication for TinyML was on
13 December 2019. The keywords used for searching are listed in Table 1.

Micromachines 2022, 13, 851 6 of 22

Table 1. Search plan/approach.

Source Criteria

Database web-based resources and Web of Science

Date of publication 2019–2021

Keywords

TinyML
Tiny Machine Learning
Tiny Deep Learning
Deep learning AND Ultra-power-device
Deep Learning AND Microcontroller

Language English

Type of publication
Conference Proceedings
Research Article
ArXiv preprint

Inclusion criteria
TinyML Use Cases paper
Develop Framework
Develop library for TinyML

Exclusion criteria
Challenges and directions paper
Compression models techniques on Ultra power devices
Not related to research questions

3.3. Eligibility Criteria

The published studies with dataset, models and the type of devices were included.
The published studies must include the experiment with outcomes described.

3.4. Inclusion and Exclusion Criteria

The Inclusion Criteria were select studies that aimed to: apply TinyML in various
cases, develop models, use various types of datasets in TinyML, apply TinyML on different
devices and develop frameworks and libraries.

Exclusion criteria included studies relating to challenges and directions for TinyML,
compression model techniques as quantization and pruning studies, studies concerning
memory reduction, TinyML services, technical report articles and TinyML experiments
published on websites.

3.5. Data Extraction and Synthesis

After selecting a study for review, next an in-depth study of each selected paper was
carried out. To extract the main contribution, implementation including datasets, models,
devices, and the evaluation criteria for models and devices results of each paper were
examined. The purpose of the data synthesis approach is to answer research questions. The
information extracted from studies is described in Section 6.

3.6. Data Selection

A total of 38 relevant published papers/articles were retrieved using search engines
from the electronic data source. The first published paper on the emerging topic was
on 19 December 2019, using Mendeley Desktop software to import papers and filtering
a duplication. The papers were included and excluded in this study according to the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement as
shown in Figure 3, which describes the process for selecting papers.

Micromachines 2022, 13, 851 7 of 22

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 22

duplication. The papers were included and excluded in this study according to the pre-
ferred reporting items for systematic reviews and meta-analyses (PRISMA) statement as
shown in Figure 3, which describes the process for selecting papers.

Figure 3. PRISMA flowchart for the study.

4. Related Work to TinyML
A methodical search was performed through the TinyML literature. We found stud-

ies concerning optimization in two aspects which are currently being carried out: optimiz-
ing models to fit into devices and optimization of framework, library, or tools. Therefore,
we divided studies into two categories: The first category is focused on the studies that
are concerned with the development of DL algorithms and their methodologies. Besides
this, they are applied in a variety of IoT applications. There are many studies focused on
developing models to fit into devices with high accuracy and high computational capa-
bilities on various applications such as hand gestures, recognition of sign language, iden-
tification of medical masks on persons, etc. The second category is focused on the studies
that are more related to design frameworks and libraries. The aim is to optimize the inte-
gration process and inference of the model into edge devices, for instance, the proposed
framework specially for deploying tiny models into tiny edge devices in order to easily
deploy code and inference into devices. Further projects include designing a library for
quantizing the neural network for deployment on the microcontroller, convolution kernel
with multiple bit precision 8, 4, and 2 bits, etc.

4.1. TinyML Use Cases Studies
This section presents use cases for tinyML studies. TinyML can be applied to several

cases in a variety of fields. The list of use cases can include, but are not limited to, the
following: sign language detection, handwriting recognition, medical face mask detection,
gesture recognition, speech recognition and autonomous mini vehicles.

4.1.1. Environment

Figure 3. PRISMA flowchart for the study.

4. Related Work to TinyML

A methodical search was performed through the TinyML literature. We found studies
concerning optimization in two aspects which are currently being carried out: optimizing
models to fit into devices and optimization of framework, library, or tools. Therefore,
we divided studies into two categories: The first category is focused on the studies that
are concerned with the development of DL algorithms and their methodologies. Besides
this, they are applied in a variety of IoT applications. There are many studies focused
on developing models to fit into devices with high accuracy and high computational
capabilities on various applications such as hand gestures, recognition of sign language,
identification of medical masks on persons, etc. The second category is focused on the
studies that are more related to design frameworks and libraries. The aim is to optimize the
integration process and inference of the model into edge devices, for instance, the proposed
framework specially for deploying tiny models into tiny edge devices in order to easily
deploy code and inference into devices. Further projects include designing a library for
quantizing the neural network for deployment on the microcontroller, convolution kernel
with multiple bit precision 8, 4, and 2 bits, etc.

4.1. TinyML Use Cases Studies

This section presents use cases for tinyML studies. TinyML can be applied to several
cases in a variety of fields. The list of use cases can include, but are not limited to, the
following: sign language detection, handwriting recognition, medical face mask detection,
gesture recognition, speech recognition and autonomous mini vehicles.

Micromachines 2022, 13, 851 8 of 22

4.1.1. Environment

The authors [5] developed an Edge Learning Machine (ELM) framework to exe-
cute ML inference in edge devices such as Microcontroller. Four algorithms were imple-
mented on six devices from ARM Cortex-M microcontrollers released by STM-32, namely
(F091RC, F303RE, F401RE, F746ZG, H743ZI2, and L452RE). Three supervised algorithms
were used, which are K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and De-
cision Tree (DT) algorithms and one unsupervised algorithm, which is an Artificial Neural
Network (ANN). the performance of selected edge devices was evaluated, all algorithms
and a six-dataset on each one of the devices were applied. The six-benchmark dataset is
representative of IoT applications, namely Heart, Virus, Sonar, Peugeot 207 * EnviroCar,
and AQI. They used the accuracy or coefficient of determination metrics to evaluate the
binary and Multiclass dataset and R2 scores for the regression dataset. As a rough sum-
mary result, the best performance was that of ANN in all datasets except Sonar dataset.
In contrast the SVM achieved the best results on the Heart and EnviroCar dataset. The
performance of DT was on Virus and Peugeot 14. However, KNN achieved the best result
in the Sonar dataset only.

4.1.2. Sign Language Detection

TinyML can accommodate the sign language detection use case. A DL model was
introduced to detect Sign Language Alphabet on tiny edge devices, with an aim to enable
deaf-mute to easily communicate with the community. Authors in [28] proposed a model
to detect the American Sign language (ASL) Alphabet and transcribed to text and speech
in real time on tiny wearable IoT devices. The device has the smallest and cheapest
microcontrollers. Four datasets were used that contain sign language alphabet images
since the third dataset was created by authors through OpenMV H7 camera. The proposed
CNN model with two augmentation techniques has been used. First, basic augmentation
techniques as rotation, flip, etc. were used; second, five interpolation strategies were
used in OpenCV (INTER_NEAREST, INTER_LINEAR, INTER_AREA, INTER_CUBIC, and
INTER_LANCZOS4). The outcomes were 98.53% and 99.02% accuracy. The author used
TF Lite to quantize the model from 32float into int8, with an attempt to deploy on OpenMV
H7 board-based microcontroller STM32H743VI, which has low memory. The outcomes
after deploying the model on the device showed a model with five interpolation strategies
outperforming another model with 98.84% accuracy and 20 frames per second (FPS), whilst
the accuracy of the model with basic augmentation techniques was 95.24%.

4.1.3. Handwriting Recognition

TinyML can help to easily train and deploy the model to recognize handwriting on a
microcontroller and has the low performance to pave the way to the Internet of Conscious
Things. In [25], various models are developed to apply to TinyML. They conducted
an experiment on the MNIST dataset using the STMicroelectronics NUCLEO-F746ZG
board through the X-CUBE-AI tool. For the training phase, the Neural Network (NN)
algorithm has been implemented with two hidden layers between input and output using
the TensorFlow library and then built CNN using Keras library. CNN improved the training
accuracy from 97.25% to 99% with ReLu and Sigmoid activation functions. The weights
of the NN and Keras models were around 15 MB and 7172 KB, respectively. The Keras
model was sequentially deployed on the real embedded devices by converting the model
using TF Lite and TFliteConverter tools. Since TFLite and TFliteConverter tools reduce the
model size to 2.4 MB, embedded devices have memories of a few hundred KB. Pruning
and post-training Quantization techniques were applied with a slight loss in accuracy;
pruning enhances the speed of inference of the model and reduces the amount of energy
required. Post-training quantization minimizes energy consumption and computing power
demand. The result of the prediction model was 100% accuracy, while the model consumed
135.68 KB of RAM, 668.97 KB of flash memory, and 330 ms computation.

Micromachines 2022, 13, 851 9 of 22

4.1.4. Medical Face Mask Detection

COVID-19 has suddenly put the world in a cautious mode where cough-related
medical face mask detection has become an important task. TinyML can help IoT-based
smart health to be more secure and preserve battery. Puranjay Mohan et al. [29] presented a
tiny CNN model to detect Medical Face Masks using real-time on devices. This was carried
out considering the preservation of reliability and privacy without transmitting images to
the server and the results being sent back to the application. Four datasets have been used
with various augmentation techniques to train and test the model. Notably, the third dataset
was constructed by the author using an OpenMV camera to find the classification metrics.
A CNN model was proposed for use on the OpenMV Cam H7 housing STMicroelectronics’
STM32H743VI. In addition, a SqueezeNet model was modified in order to compare the
results with the proposed model. Overall, after performing the quantization technique on
all three models to reduce the size, the results demonstrated that only the proposed model
can deploy on the device, with 138 KB model size; the inference speed was 30 FPS and the
accuracy was 99.83%.

4.1.5. Gesture Recognition

Gesture recognition is considered a promising field for the TinyML domain. Several
methods are applied to hand and foot gestures using the limited resources of IoT devices.
A study in [30] tries to deploy DL on compact wearable devices for gesture recognition that
in turn helps to reduce the consumption of both power and time. They created a prototype
ring sensor to be used in collecting data and to deploy NN models on it. The ring sensor
consists of Taiyo Yuden EYSHSNZWZ NRF52 as the main controller, Bluetooth modem
and an ST Micro LIS3DH three-axis acceleration data. They collected data for ten gestures
(from 0 to 9) from the device to train the Keras model and a multilayer long short-term
memory (LSTM) model in TensorFlow. The result showed that the Keras model did not
perform well, with 19% accuracy, while LSTM attained 93% accuracy in the training phase,
83% validation accuracy, and 84.5% accuracy in the final evaluation. The model size for
LSTM was 2.8 MB. Unfortunately, they did not deploy an LSTM model on the device due
to the lack of support for it by TF Lite Micro. Other authors have recognized and classified
a set of hand gestures using classified time series values.

In [31], an ANN model was developed to recognize and classify the time series values
of a sensor for the set of hand gestures (Forward, Backward, Select, and Abort). They used a
hand gesture sensor that has a compound eye camera with an ATMega4809 microcontroller
to implement the experiment. The microcontroller characteristics were 6 KB of RAM,
48 KB of flash memory and a clock speed processing up to 20 M. They created a dataset by
recording various gestures performed by an entire hand, an arm or fingers from different
distances, then performing synthetic data as in Table 2. Two models are used: RNN and
Feed Forward Neural Networks (FFNN). The performance of the models showed that
the FFNN outperform the RNN. FFNN achieved 84% accuracy with the ReLu activation
function, while RNN achieved 83% accuracy. Both algorithms confirmed that 2 KB RAM
and 32 KB flash memory of the ATMega328P microcontroller are sufficient to enable a
40 Hz frame rate.

TinyML is also applied to recognition of foot gestures. The authors in [32] proposed a
low-cost wearable system that has the ability to recognize foot gestures. Furthermore, it
can transfer messages via long-range (low-power wide-area networks) using LoRa radio
technology in an emergency case. Once the person is exposed to danger, the system notified
his/her emergency contacts using secret methods. The proposed classifier is based on
the Neural Network to differentiate between activities (such as walking, jogging, and
standing) and two gestures (double-tap at the toe tip and double-tap at the heel). The
proposed system consists of two force sensors placed at the top and heel of the shoe and
connected to LPWAN MCU (containing ESP32 MCU and an RFM95 LoRa modem). They
also used another LPWAN as a receiver that is directly connected to the laptop as a gateway
and Arduino-LMIC software. They collected 30,000 data points for ten minutes, then

Micromachines 2022, 13, 851 10 of 22

divided them into batches of 100 samples (2 s of recording); a total of 300 arrays for each
activity/gesture were created. The experimental was implemented using the NN model
indoors and outdoors via two people. The overall accuracy result for indoor tests was
99.33%, whereas outdoor tests showed a slight drop in accuracy, with 97.5%.

Table 2. Comparison between earlier studies related to DL methodologies based on the used models,
the results, and the inference devices.

Study Model
Model Result in Desktop Inference in Devices Result after Deployment

ACC Model
Size Platform Name Platform Metrics Latency Ram Flash

Memory

[5]

SVM 84% - - All devices

STM
X-Cube-AI
expansion

package, and
C language

platform

All 84% <1 ms - -

ANN1 99%—<1 m - - F746ZG
Both 99% 1 ms - -

H743ZI2

KNN 99%—<1 ms - - F746ZG
Both 92% Both 10 ms - -

H743ZI2

ANN2 99%—<1 ms - - F746ZG
Both 99% Both <1 ms - -

H743ZI2

DT 99%—<1 ms - - F746ZG
Both 99% Both <1 ms - -

H743ZI2

ANN3 0.86 - -

F401RE

0.86 R2 <1 ms - -F746ZG
H743ZI2
L452RE

[25] NN
CNN

97.25%
99%

15 MB
7172 KB

TFLite and
TFliteConver F746ZG X-CUBE-AI

tool 100% 330 ms 135.68 668.97

[28] CNN1
CNN2

98.53%
99.02% 185 KB TF Lite

OpenMV H7
board

STM32H743VI.
TF-Convert 95.28%

98.84% 20 FPS - -

[29]
CNN 99.83% 1.5 MB

- OpenMV H7
STM32H743VI.

-
99.83%

30 FPS - -SqueezeNet 98.50% 8.0 MB 98.53%
SqueezeNet2 98.93% 3.8 MB 98.99%

[30]

Keras 19% - TensorFlow

Taiyo Yuden
EYSH-

SNZWZ
NRF52

- - - - -

LSTM 93% 2.8 MB TensorFlow -

Tensor Flow
Lite Micro-

Not Support
it

- - - -

[31] RNN
FFNN 61% - - ATMega4809 TensorFlow.

84%
Both 40 Hz Both

2 KB
Both

32 KB93%

[32] NN - - - ESP32
Arduino-

LMIC
software

99.33%
indoor
97.5%.

outdoor

2 min per
activity.
0.5 per

gesture.

- -

[33]

TinySpeech-X. 96.4% -
TensorFlow

Lite for
Microcontroller

- - - - - -TinySpeech-Y 93.6% 48.8 KB
TinySpeech-Z 92.4% 21.6 KB
TinySpeech-M 91.9% -

[34]

LetNet5 model
Vehicle Neural

Networks
(VNN1,2)

99.53%
79.62%
81.27%

- PyTorch

STM32 L476
board

X-Cube-AI
(float32

operations)
- 14.15 ms 80 MHz -

NXP k64f ARM
CMSIS-NN. - 0.97 120 MHz -

GAP8 PULP-NN - 1000 fps
with 1 ms - -

4.1.6. Speech Recognition

Speech recognition is a popular application for IoT with DL. TinyML is applied to
speech recognition to solve challenges of speech recognition on tiny edge devices such as
latency, computing resources and memory constraints. Study [33] presented TinySpeech for
speech recognition on tiny devices. TinySpeech aims to build a deep convolution network
that has low architecture, low computation on the devices and required low storage. First,
they used the Google Speech Commands dataset for recognition of limited-vocabulary
speech to train the model. Next, they applied pre-processing to the dataset to extract
the Mel-frequency cepstral coefficient (MFCC) to feed into the TinySpeech network. The
design of the TinySpeech network consists of attention condensers and machine-driven

Micromachines 2022, 13, 851 11 of 22

design exploration. The new attention condenser was incorporated into generative syn-
thesis. During the generative process, they take the four constructed generators, namely
TinySpeech-X, TinySpeech-Y, TinySpeech-Z, and TinySpeech-M, which were generated in
different stages with different levels of performance and efficiency. The results offered
by TinySpeech X achieved the highest accuracy, with 96.4%. TinySpeech-Y, TinySpeech-Z
and TinySpeech-M achieved 93.6%, 92.4%, and 91.9% accuracy respectively. TinySpeech-Z
possesses the smallest architecture with a model size of 21.6 kbits and 92.4% accuracy. In
comparison with other studies based on the Legendre Memory Unit (LMU), the model size
was 49 kbits and achieved 92.7% accuracy.

4.1.7. Autonomous Mini Vehicles

Autonomous mini vehicles are used in many fields such as smart industry, smart
environment, smart monitoring, etc. TinyML improves the performance of autonomous
mini vehicles through enhancing the learning complex action a few times with low con-
sumption of energy. Miguel de Prado et al. [34] enable the execution of DL on low-power
autonomous driving vehicles with an aim to enhance the performance, e.g., actions/s
by learning complex challenges. Thus, it can take decisions (image classification) in a
complex environment with less latency and low energy. They substituted a Computer
Vision Algorithm (CVA) which was predicted only under stable light conditions by CNN
by using LeNet5 model. Subsequently, modified the LetNet5 and constructed a family of
networks called Vehicle Neural Networks (VNNs). They created three datasets (Dset-2.0,
Dset-1.5 and Dset-1.0), each one containing 1000 per class in the training set and 300 for
the test set; details of the datasets. After training the VNNs on the combined datasets
(Dset-All), post-training quantization was applied for both weights and activations on the
VNN model to fixed-point 8-bit to reduce memory and power consumption. The authors
deploy VNN networks on different platforms and devices such as GAP8 (GAP8, a parallel
ultra-low-power RISC-V SoC), STM32L4 (Cortex-M4), and NXP k64f (Cortex-M4). The
results obtained VNN3, VNN4, and LeNet5 models reach an accuracy of 98.74% on the
reinforced dataset Dset-All (I1, I2, and I3) by using GAP8.

4.2. Studies Related to Design TinyML Frameworks and Libraries

This section offers studies related to the design environment as frameworks
(e.g., TensorFlow Lite Micro) and libraries. These aim to address issues encountered
by developers using code in devices that have restricted resources while maintaining suc-
cessful performance, e.g., high accuracy and low inference time. In addition, we present
studies that optimize the power consumption and memory of devices by using design
libraries and enabling efficient learning in the devices. Subsequently, various models are
implemented into different devices to validate them.

4.2.1. TinyML Framework Studies

TinyML frameworks have been developed by some developers, research groups, and
incorporations. Robert David et al. [35] demonstrate use of the TensorFlow Lite Micro
(TF Micro) framework to tackle issues that the developers faced when developing and
training models, and after that, deploy them on tiny devices. TF Lite Micro introduced
many benefits for developers and hardware vendors, such as providing unified platforms
with various features. It allows mitigation of the cost for training and deploying models
and further allow vendors to optimize incrementally their kernel. On the other hand, the
system has undergone many tests using different datasets and devices. They used two
devices; the first was the Sparkfun Edge, which has an Ambiq Apollo3 MCU. The second
device, Xtensa Hifi Mini, has digital signal processors (DSP), which were based on the
Cadence Tensilica architecture (Cadence, 2020) using two benchmark models which are the
VWW model and the Google Hotword model. Overall, the results show that the optimized
models achieved high performance specifically in total run time and memory. The results
of the VWW model were 4.857 K and Google Hotword achieved 36.4 K on the Sparkfun

Micromachines 2022, 13, 851 12 of 22

Edge device. VWW achieved 49,952.3 K and Google Hotword 88.4 K on Xtensa HiFi Mini
DSP. Our benchmarks are INT8 TF Lite models in serialized FlatBuffer format.

Another framework was designed by authors in [17], who proposed the MCUNet
framework which combined the designs of TinyNAS and TinyEngine simultaneously
into an optimized inference of ML on MCU. TinyNAS is an efficient two-stage piece
of neural architecture, whereas the TinyEngine is a lightweight inference engine. They
used multiple benchmark datasets, namely ImageNET and Wake Word; Visual Wake
Words (VWW) and Google Speech Commands (GSC). They used many devices such
as the STM32F746 and STM32H743. Quantization techniques were applied to convert
the model into an 8-bit version. The results of the co-design TinyNAS with TinyEngine
on the ImageNET dataset and STM32F746 device achieved the best accuracy, with 62%.
MCUNET achieved the highest accuracy on the STM32H743 device, with 70.0%. Meanwhile,
MCUNET outperforms other models for SRAM, with 0.49 MB, and consumed 0.9 MB of
Flash memory. Furthermore, MCUNET improves the performance of different latency
constraints with 49.9% at 5 FPS and 40.5% at 10 FPS. Concerning the results of the VWW
and GSC dataset, MCUNET achieved state-of-the-art accuracy on visual & audio wake
words tasks and runs 2.4–3.4× faster than MobileNetV2 and ProxylessNAS-based solutions
with 3.7–4.1× smaller peak SRAM.

Several authors have tried to deploy DL into different tiny devices in order to predict
with high efficiency. However, there are challenges due to a lack of a standard framework
to implement TinyML in devices from different companies. The authors in [6] proposed a
general environment for deploying DL model into various tiny devices. The environment
consists of TF Lite and Mbed OS software with an aim to enable inference of DL in many
edge devices from different companies, such as ARM and NXP. In addition, a comparison
was conducted to evaluate the performances of the edge device and a personal computer
(PC) using the family of MobileNet (V1, V2, and V3) on a single case of human detection.
VWW was used to evaluate the model, since the dataset was split into 115,287 for training
the model and 100 images (50 images containing a person and 50 images that did not
contain a person) for testing. The authors experimented on both STM32H747I-Disco
and OpenMV Cam H7 and divided them into three phases. The first phase aims to
ensure the proposed environment can integrate DL into devices. The result was that the
MobileNet-V2 achieved high accuracy on STM, with 88%, and high latency, with 220
ms. The second phase of the experiment aims to evaluate and compare the performance
of different models on edge devices and PC. The results of the comparison showed the
MobileNet-V2 model with (Depth Multiplier: 0.1 and Resolution: 96 × 96) on STM and
PC attained a high accuracy of 88%, with the highest model consumed for (Matrix size:
213,184 KB and RAM: 138,240 KB). The experiment had three aims to analyze the effect of
application during and after quantization on MobileNet-V2 using STM. The result showed
that quantization after the training was better to improve the accuracy model.

4.2.2. TinyML Libraries Studies

TinyML Designing libraries optimize power and memory consumption in tinyML
and enable efficient learning in devices. The authors implement DL models into different
devices with constraint resources to validate them.

A study in [36] also attempted to solve issues in memory constraints on the microcon-
troller. They presented an open-source CMix-NN library which is a Mixed Low-Precision
library that aims to quantize the neural network to deploy on microcontrollers. CMix-NN
provides a convolution kernel with multiple-bit precision 8, 4 and 2 bits (independent
tensors, quantization of weight, and activations in 8, 4, and 2 bits). To evaluate the sys-
tem, the ImageNet dataset and MobileNet-V1 model were used for deployment on an
STM32H743 SoC device for the classification task. The performance of CMIX-NN was more
accurate than other libraries such as X-CUBE-AI (FloatPoint 32) and CMSIS-NN (8-bit),
achieving the highest accuracy on the ImageNet problem, with 68%. However, the model

Micromachines 2022, 13, 851 13 of 22

size was 1.97 MB, which is larger than the others, the latency was 1.86 s and the energy
was 491.15 µJ.

On the other hand, a novel method can be provided to reduce the memory size of
the training model to fit into the tight-memory constraint of the device, with an aim to
enable efficient learning on the device. The study in [37], introduced a Tiny-Transfer-
Learning (TinyTL) model, which aims to reduce the model size by freezing the weight of
the pre-trained feature extractor with a continuous update and learning a bias module. To
preserve the adaption capacity, a lite residual module is presented, which in turn polishes
the feature extractor through learning small residual feature maps. The authors conducted
extensive experiments to evaluate the proposed methods through performing a comparison
with other transfer learning. The comparison was conducted on nine image classification
datasets, namely Flower, Cars, CUB, Food, Pets, Aircraft, CIFAR10, CIFAR100, and CelebA,
as in Table 3. In the experiment, they used ProxyNAS-mobile as a pre-trained model,
then applied TinyTL and the full fine-tuned network (FT-Full) to evaluate the model. The
result showed that TinyTL reached the level of accuracy of FT-Full, consuming 37 MB of
memory for all datasets while FT-Full consumed 391 MB. Further, with a combined feature
extractor adaptation (FA) TinyTL saves 66 MB of memory, compared with the FT-Full with
Inception-V3 model which consumed 850 MB; also, FA achieved the highest accuracy on
the Pets dataset, with 93.5%.

Table 3. Comparison between earlier studies related to Design tinyML frameworks and libraries
based on the used models, the results and the inference devices.

Study Model
Model Result in Desktop Inference in Devices Result after Deployment

ACC Model
Size Platform Name Platform Metrics Latency Ram Flash

Memory

[37]

VWW model
Google

Hotword
Optimized

- - -

Sparkfun
Edge

Xtensa Hifi
Mini digital

signal
processors

(DSP)

TensorFlow
Lite Micro - -

4.857 KB
49.95 KB
36.4 KB
88.4 KB

81.79 KB
12.80 KB

[17]
TinyNAS model
and TinyEngin

library
- - - STM32F746 MCUNET

61.8%
49.5% at 5 FPS

and 40.5%
at 10 FPS

0.49 MB 1.9 MB

87%
89% at 5 FPS

and 87%
at 10 FPS

91 KB <140 MB

-
94% at 5 FPS

and 91%
at 10 FPS

- <124 MB

36.4 KB
88.4 KB

[6] MobileNet-V2 - - -

STM32H747I-
Disco TensorFlow

Lite and
MbedOS

88% 220 ms 138,240 KB Matrix Size:
611,912OpenMV

Cam H7

[36] MobileNet-V1 - 1.97 MB STM32H743
SoC CMix-NN 68.2% 1.86 s - -

[35]

ProxyNAS with
FT-Full

- - Computation
theory

- - - -

391 MB

-
ProxyNAS with

tinyTL 65 MB

Inception-V3
with FT-Full 850 MB

TinyTL with FA 66 MB

5. Discussion and Findings

Based on the related works of tinyML, we have derived the following findings con-
cerning models, datasets, and devices. In addition, we analyze the main results for each
section. The following section is divided into three subsections: findings based on the
dataset, findings based on the machine and DL model, and findings based on the devices.

Micromachines 2022, 13, 851 14 of 22

5.1. Findings Based on the Datasets

There are many types of datasets used in TinyML studies, such as images, audio,
physiological/ behavioral metrics and other data, e.g., virus dataset, sonar dataset, etc.
Figure 4 shows the ratio of dataset types that were used. Images constitute 46% of the
data. Next, other data were used, e.g., a sonar dataset that includes data for Miners and
Rocks to analyze the materials. Next, physiological/behavioral metrics constitute 29%, and
contain data for biometrics such as a heart dataset or activity recognition in people, such as
walking, jogging and standing. Audio data constitute 11%; notably, the GSC dataset was
the most used in the audio dataset.

Micromachines 2022, 13, x FOR PEER REVIEW 14 of 22

5.1. Findings Based on the Datasets
There are many types of datasets used in TinyML studies, such as images, audio,

physiological/ behavioral metrics and other data, e.g., virus dataset, sonar dataset, etc.
Figure 4 shows the ratio of dataset types that were used. Images constitute 46% of the
data. Next, other data were used, e.g., a sonar dataset that includes data for Miners and
Rocks to analyze the materials. Next, physiological/behavioral metrics constitute 29%, and
contain data for biometrics such as a heart dataset or activity recognition in people, such
as walking, jogging and standing. Audio data constitute 11%; notably, the GSC dataset
was the most used in the audio dataset

Figure 4. Dataset type distribution in previous studies.

Table 4, presents the datasets of the studies. The first section depicts image datasets;
the most frequently used datasets in previous studies were the ImageNET and VWW da-
tasets. The authors used some of the classes from these, such as Flower, CIFAR10, CIFAR-
100, etc., for training the models. The second section comprised physiological/behavioral
metrics, including various datasets such as heart, hand gesture, foot, and activities ges-
tures dataset. Physiological/behavioral scale datasets consist of time-series data recorded
by smart sensors for recognition. The third section contains the datasets related to many
fields as viruses and transportation; these contain data to predict the surface of the road
and traffic. They also contain datasets such as Dset-2.0, Dset-1.5 and Dset-1.0 that have
data created by authors related to autonomous vehicles. The final section is audio; we
found only one dataset used in studies created by Google, who designed a dataset for tiny
devices called Google Speech Commands (GSC) dataset. GSC includes Speech Commands
data for keyword spotting (e.g., “Hey Siri”), requiring classifying a spoken word from a
vocabulary of size 35.

Table 4. Summary of datasets used in TinyML studies including input type.

Input Type Dataset Reference

Images

Handwritten digits [38]
Sign MNIST dataset from Kaggle [39]
Kaggle ASL dataset (26 classes) [40]
ASL dataset created by authors [28]
Kaggle ASL Alphabet test set. [41]

46%

14%

29%

11%

Images

Physiological/ Behavioral Metrics

Data

Audio

Figure 4. Dataset type distribution in previous studies.

Table 4, presents the datasets of the studies. The first section depicts image datasets; the
most frequently used datasets in previous studies were the ImageNET and VWW datasets.
The authors used some of the classes from these, such as Flower, CIFAR10, CIFAR-100, etc.,
for training the models. The second section comprised physiological/behavioral metrics,
including various datasets such as heart, hand gesture, foot, and activities gestures dataset.
Physiological/behavioral scale datasets consist of time-series data recorded by smart
sensors for recognition. The third section contains the datasets related to many fields as
viruses and transportation; these contain data to predict the surface of the road and traffic.
They also contain datasets such as Dset-2.0, Dset-1.5 and Dset-1.0 that have data created
by authors related to autonomous vehicles. The final section is audio; we found only
one dataset used in studies created by Google, who designed a dataset for tiny devices
called Google Speech Commands (GSC) dataset. GSC includes Speech Commands data for
keyword spotting (e.g., “Hey Siri”), requiring classifying a spoken word from a vocabulary
of size 35.

The details of each dataset are mentioned in Table 5. The description of each dataset
was used in the studies and, in addition to the total number of datasets the number of
training and testing datasets was also obtained, since 80% of samples were employed for
training and the other 20% for testing. Many studies used the augmentation techniques
through training tiny models to increase the number of samples in the dataset, e.g., basic
augmentation techniques and OpenCV’s interpolation augmentation in order to obtain
accurate results and high performance.

Micromachines 2022, 13, 851 15 of 22

Table 4. Summary of datasets used in TinyML studies including input type.

Input Type Dataset Reference

Images

Handwritten digits [38]
Sign MNIST dataset from Kaggle [39]
Kaggle ASL dataset (26 classes) [40]
ASL dataset created by authors [28]
Kaggle ASL Alphabet test set. [41]

Face Mask 12 K Images dataset from Kaggle [42]
Face Mask Classification dataset from Kaggle [43]

Face Mask Dataset created by authors [29]
Face Mask testing dataset created by authors [29]

ImageNET (Flower, CUP, Pets, Food, CIFAR10 and CIFAR100) [44–52]
Visual Wake Word (VWW)

Physiological/
Behavioral

Metrics

Heart dataset [53]
Hand gesture recorded ((Forward, Backward, Select and Abort)

using fingers created by authors [30]

Hand Gesture data (0–9) Created by the authors [31]
Foot gesture and activity data Created by authors [32]

Data

Virus dataset [54]
Sonar dataset [55,56]

Peugeot 14 [57]
Peugeot 15 [57]
EnviroCar [58]

Air Quality Index (AQI) [59]
Dset-2.0 created by authors [34]
Dset-1.5 created by authors [34]
Dset-1.0 created by authors [34]

Audio Google Speech Commands (GSC) [60]

Table 5. Summary of dataset descriptions used in previous TinyML-based studies.

Study Dataset Description Total Training Dataset Testing
Dataset

[5]

Heart dataset

Heart dataset produced by the University of
California Irvine (UCI), contains 13 features.
In these, 0 represents an absence of coronary

heart disease (CHD) in the patient and
labels 1–4 represent the presence of CHD

300 data - -

Virus dataset Developed to be used in data traffic analysis - - -

Sonar dataset
Contains reading sonar system for two

classes (Miners and Rocks) to
materials analysis

208 data - -

Peugeot 14 Contains different parameters from cars to
predict road surface 8615 data - -

Peugeot 15 Contains different parameters from cars to
predict the traffic 8615 data - -

EnviroCar

Contains anonymized tracks of car
measurements collected by citizen bus

The used dataset contains approximately
1.7 million data points. Each data record

contains 24 attributes reflecting sensor
values of the vehicle (e.g., speed, rpm...)

Around 1.7 million
data point - -

AQI
Air Quality Index (AQI) dataset includes
measurement of air quality for one year

in Australia.

Real-time data
from website - -

[25] Handwritten Digits Handwritten digit images from (0 to 9) 70,000 images 60,000 10,000

Micromachines 2022, 13, 851 16 of 22

Table 5. Cont.

Study Dataset Description Total Training Dataset Testing
Dataset

[28]

Sign MNIST dataset Used 24 of the 26 letters of the alphabet in
English, leaving out the letters J and Z 34,627 images 27,455 images 7172 images

Kaggle ASL dataset
Used 3000 images per class, 24 classes for

26 letters of the alphabet in English, except
for J and Z

72,024 images 72,000 images 24 images

Sign Language dataset
Used 400 images for each of the 24 classes,
used inter_area interpolation OpenCV to

downscale the images into 28 × 28
400 images 40 images 360 images

Kaggle ASL Alphabet
test set.

30 images per 24 classes, used as
generalization dataset or as final testset 720 images - -

[29]

Face Mask 12 K
Images Dataset

Faces images with/without a mask with a
variety of backgrounds and cropped to

face region
58,960 images. 58,960 images -

Face Mask
Classification dataset Face images with/Without Mask 22,200 images 22,200 images -

Medical face OpenMV

Used the OpenMV Cam H7 camera to create
a dataset. The size of images was 200 × 200

then saved on the SD Card of the
development board

49,895 images 49,895 images -

Medical face testing
dataset OpenMV

Dataset.
Used OpenMV camera to create a dataset 4794 images 4794 images -

[30] Hand Gesture data
from numbers (0–9) Data for 10 numbers of gestures (from 0 to 9) 1000 gestures - -

[32] Foot gestures and
activity data

Set of data activities (walking, jogging,
standing) and two gestures (double tap

at the toe tip and double tap at heel).
30,000 data 24,000 data 6000 data

[31] Hand gestures
A set of gestures were recorded such

(Forward, Backward, Select and Abort)
using fingers, arms and entire hands.

-

-RNN 15 data
recorded then

augmented to 540
-FFNN 350 data

recorded then
augmented to 1400

24 signals

[33]
Google Speech

Commands
(GSC) dataset.

65,000 of 1 s verbal command for short
words with background noise. 65,000 - -

[34]

Dset-2.0 Dset-2.0 contains samples (clear images)
with (2.0 ms) - 1000 sample 300 sample

Dset-1.5 Dset-1.5 contains samples with (low-contrast
images) with (1.5 ms) - 1000 sample 300 sample

Dset-1.0 Dset-1.0 contains samples (low-contrast
images) with (1.0 ms) - 1000 sample 300 sample

[17]

ImageNET:

the standard large-scale benchmark for
image classification consists of Set of 1000

object categories containing internal and leaf
nodes, but do not interfere with each other.

10,000 images - -

Wake word: Visual
Wake Word (VWW):

VWW: is a set of natural images of a
complex day. Each image classifies to label 1
images present (Person) or 0 (Not Person)

5000 images - -

Wake word: Google
Speech Commands

(GSC) dataset

GSC: Speech Commands is an audio dataset
for keyword spotting (e.g., “Hey Siri”),

requiring classifying a spoken word from a
vocabulary of size 35.

- - -

[36] ImageNET Dataset Set of 1000 object categories contains
internal and leaf nodes. 200,000 images 50,000 images 150,000 images

[6] VWW
VWW: is a set of natural images of a

complex day. Each image classifies to label 1
images present (Person) or 0 (Not Person)

115,387 115,287 images 100 images

[35]

9 datasets (Flower,
Cars, CUB, food, Pets,

Aircraft, CIFAR10,
CIFAR-100

and CelebA)

Used ImageNet at pre-train on eight object
classification datasets (Flower, Cars, CUB,

Food, Pets, Aircraft, CIFAR10 and
CIFAR-100)

used VGG Face2 as a pre-train to one human
facial attribute classification dataset

(CelebA)

- - -

[37] Visual Wake Word
(VWW)

Each image classifies to label images (1
present Person or 0 Not Person) 115 k 115 k images 8 k

Micromachines 2022, 13, 851 17 of 22

5.2. Findings Based on the Machine and Deep Learning Models

Figure 5 shows model types that achieved the best results in previous TinyML studies.
The results obtained show that the most common models used were ANN with 21%,
CNN with 12% and MobileNet-V1 with 6%. Despite this, neural networks (NN) were the
dominant force in traditional ML as well as achieving the best result in TinyML. On the
other hand, ML algorithms that are non-NN based, such as Decision Tree (DT) represent 9%,
Support Vector Machine (SVM) with 6% and k-nearest neighbors (KNN) with 6% achieved
the best results in some cases for TinyML that have data using tiny devices.

Micromachines 2022, 13, x FOR PEER REVIEW 17 of 22

Recently, ML has specifically enabled DL on tiny devices which have constrained
resources; low-computing and low-memory devices are feasible. However, we explored
challenges that prevent the community from producing and developing models and en-
hancing accuracy. For example, one problem is a lack of a standard methodology for de-
ploying models on all devices. Most companies producing devices have their own frame-
work. In addition, no common models are used, such as MobileNet models for mobile
devices. Thirdly, for compression techniques, there are no standard methods to DL, where
the performance of compression is shown once the model has been deployed on the de-
vice.

Figure 5. Machine and deep-learning models distributed in previous studies.

5.3. Findings Based on the Devices
In this section, the devices that were used in tinyML studies as shown in Figure 6 that

demonstrate the percentage of device usage are examined. Furthermore, in Table 6, the
characteristics of each device are illustrated. We notice that the costs of these devices are
low, ranging approximately from USD 16.00 to USD 28.00, due to the use of limited re-
sources. In addition, we notice that most of the devices make use of the STM32-microcon-
troller. STM32 is a family of 32-bit microcontroller-integrated circuits by STMicroelectron-
ics [61]. STM32-F746ZG and STM32-H743ZI2 devices were both frequently used in studies
too, with 22% and 20% frequency. These devices achieved high performance and success-
ful inference of DL models. STM32-F746ZG has 1 MB of flash memory and has 340 KB of
RAM, whereas STM32-H743ZI2 has 1 MB of flash memory and 2 MB of RAM. These de-
vices have costs of USD 24.47 and USD 27.00, respectively.

We found that the devices used mostly achieved high performance as well as having
many other advantages. First, it has a Nucleo-144 board that presents an affordable and
flexible way for the users to create a creative application and build prototypes. Second, it
works on the STM32 Cube.AI toolkit, which is a free software library and publicly availa-
ble. STM32 Cube.AI toolkit permits integration of pre-trained Neural Network models
within STM32 ARM Cortex- M-based microcontroller, as well as generate suitable C code
from Neural Network models by Keras, TensorFlow, Lite Caffe and other frameworks.
STM32 Cube.AI toolkit allows storage weights and activation buffers of large Neural

ANN
21%

CNN
12%

MobileNet-V1
6%MobileNet-V2

3%

Keras model
3%

LSTM
3%TinyNas

3%
TinySpeech Y & Z

3%

ProxyNas
3%

Inception-V3
3%

MobileModel
3%

RNN
3%

FFNN
3%

LetNet5
3%

SqueezeNet
3%

Modified
SqueezeNet

3%

KNN
6%

SVM
6%

DT
9%

Figure 5. Machine and deep-learning models distributed in previous studies.

Recently, ML has specifically enabled DL on tiny devices which have constrained
resources; low-computing and low-memory devices are feasible. However, we explored
challenges that prevent the community from producing and developing models and en-
hancing accuracy. For example, one problem is a lack of a standard methodology for
deploying models on all devices. Most companies producing devices have their own frame-
work. In addition, no common models are used, such as MobileNet models for mobile
devices. Thirdly, for compression techniques, there are no standard methods to DL, where
the performance of compression is shown once the model has been deployed on the device.

5.3. Findings Based on the Devices

In this section, the devices that were used in tinyML studies as shown in Figure 6 that
demonstrate the percentage of device usage are examined. Furthermore, in Table 6, the
characteristics of each device are illustrated. We notice that the costs of these devices are low,
ranging approximately from USD 16.00 to USD 28.00, due to the use of limited resources.
In addition, we notice that most of the devices make use of the STM32-microcontroller.
STM32 is a family of 32-bit microcontroller-integrated circuits by STMicroelectronics [61].
STM32-F746ZG and STM32-H743ZI2 devices were both frequently used in studies too,
with 22% and 20% frequency. These devices achieved high performance and successful
inference of DL models. STM32-F746ZG has 1 MB of flash memory and has 340 KB of RAM,
whereas STM32-H743ZI2 has 1 MB of flash memory and 2 MB of RAM. These devices have
costs of USD 24.47 and USD 27.00, respectively.

Micromachines 2022, 13, 851 18 of 22

Micromachines 2022, 13, x FOR PEER REVIEW 18 of 22

Networks in flash memory and RAM, respectively. In addition, it integrates with the ST-
LINK debugger/programmer; thus, it does not require any separate probe.

Figure 6. TinyML devices distribution in previous studies.

Table 6. Summary of TinyML devices used in different previous studies.

Processor Flash Memory RAM Processor Speed (MHz)
STM32-L476RG 1 MB 128 KB 80 MHz
STM32-H743VI 2 MB 1 MbB 480 MHz

STM32 Nucleo-64 F091RC 256 KB 32 KB 48 (max: 48)
STM32 Nucleo-64 F303RE 512 KB 80 KB 72 (max: 72)
STM32 Nucleo-64 F401RE 512 KB 96 KB 84 (max: 84)

STM32 Nucleo-144 F746ZG 1 MB 340 KB 96 (max: 216)
STM32 Nucleo-144 H743ZI2 2 MB 1 MB 96 (max: 480)
STM32 Nucleo-64 L452RE 512 KB 160 KB 80 (max: 80)

STM32H747I-Disco_CPU (ARM
Cortex M4+ ARM Cortex M7)

1 MB 2 MB 240 MHz (M4) + 480 MHz (M7)

STM32H743VI 2 MB 1 MB 400 MHz

GAP 8 based PULP architecture 512 kB 80 KB
22.65

Giga Operations Per Secon (GOPS)
NXP Semiconductors FRDM-K64F 1 MB 256 KB 120 MHz

ATMEGA4809 48 KB 6 KB 20 MHz
Arm CPU Cortex-M4 0.38 MB 1 MB 96 MHz
Xtensa DSP HiFi Mini 1 MB 1 MB 10 MHz

STM32H743 SoC- ARM Cortex- M7 2 MB 512 KB 480 MHz
Sparkfun Edge (Ambiq Apollo3),

Arm CPU Cortex-M4 1 MB 0.38 MB 96 MHz

Tensilica HiFi, Xtensa DSP HiFi Mini
processor

1 MB 1 MB 10 MHz

ESP32 448 KB 520 KiB SRAM 160 MHz–240 MHz
Taiyo Yuden EYSHSNZWZ NRF52 512 KB 64 KB 2402 MHz–2480 MHz

OpenMV Cam H7—Processor (ARM
Cortex M7 480 MHz)

2 MB 1 MB 480 MHz

STM32H747I-Disco_CPU (ARM
Cortex M4+ ARM Cortex M7)

1 MB 2 MB 240 MHz (M4) + 480 MHz (M7)

STM32H743VI 2 MB 1 MB 400 MHz

6. TinyML Limitation

5%

22%

20%

10%
10%

7%
7%
2%

3%
2% 2%

2%
2%
2% 2%

2%

2%

OpenMV Cam H7 STM32- F746ZG
STM32-H743ZI2 STM32-L452RE
STM32-F401RE STM32-F303RE
STM32-F091RC STM32-F746ZG
STM32-H743VI STM32-H747I
STM32-L476 GAP8
NXP Semiconductors FRDM-K64F ATMEGA4809
Sparkfun Edge (Ambiq Apollo3) Tensilica HiFi (Xtensa DSP HiFi Mini processor)
Taiyo Yuden EYSHSNZWZ NRF52 ESP32

Figure 6. TinyML devices distribution in previous studies.

Table 6. Summary of TinyML devices used in different previous studies.

Processor Flash Memory RAM Processor Speed (MHz)

STM32-L476RG 1 MB 128 KB 80 MHz
STM32-H743VI 2 MB 1 MbB 480 MHz

STM32 Nucleo-64 F091RC 256 KB 32 KB 48 (max: 48)
STM32 Nucleo-64 F303RE 512 KB 80 KB 72 (max: 72)
STM32 Nucleo-64 F401RE 512 KB 96 KB 84 (max: 84)

STM32 Nucleo-144 F746ZG 1 MB 340 KB 96 (max: 216)
STM32 Nucleo-144 H743ZI2 2 MB 1 MB 96 (max: 480)
STM32 Nucleo-64 L452RE 512 KB 160 KB 80 (max: 80)

STM32H747I-Disco_CPU (ARM Cortex M4+ ARM
Cortex M7) 1 MB 2 MB 240 MHz (M4) + 480 MHz (M7)

STM32H743VI 2 MB 1 MB 400 MHz

GAP 8 based PULP architecture 512 kB 80 KB 22.65
Giga Operations Per Secon (GOPS)

NXP Semiconductors FRDM-K64F 1 MB 256 KB 120 MHz
ATMEGA4809 48 KB 6 KB 20 MHz

Arm CPU Cortex-M4 0.38 MB 1 MB 96 MHz
Xtensa DSP HiFi Mini 1 MB 1 MB 10 MHz

STM32H743 SoC- ARM Cortex- M7 2 MB 512 KB 480 MHz
Sparkfun Edge (Ambiq Apollo3), Arm CPU

Cortex-M4 1 MB 0.38 MB 96 MHz

Tensilica HiFi, Xtensa DSP HiFi Mini processor 1 MB 1 MB 10 MHz

ESP32 448 KB 520 KiB
SRAM 160 MHz–240 MHz

Taiyo Yuden EYSHSNZWZ NRF52 512 KB 64 KB 2402 MHz–2480 MHz
OpenMV Cam H7—Processor (ARM Cortex M7

480 MHz) 2 MB 1 MB 480 MHz

STM32H747I-Disco_CPU (ARM Cortex M4 + ARM
Cortex M7) 1 MB 2 MB 240 MHz (M4) + 480 MHz (M7)

STM32H743VI 2 MB 1 MB 400 MHz

Micromachines 2022, 13, 851 19 of 22

We found that the devices used mostly achieved high performance as well as having
many other advantages. First, it has a Nucleo-144 board that presents an affordable and
flexible way for the users to create a creative application and build prototypes. Second, it
works on the STM32 Cube.AI toolkit, which is a free software library and publicly available.
STM32 Cube.AI toolkit permits integration of pre-trained Neural Network models within
STM32 ARM Cortex- M-based microcontroller, as well as generate suitable C code from
Neural Network models by Keras, TensorFlow, Lite Caffe and other frameworks. STM32
Cube.AI toolkit allows storage weights and activation buffers of large Neural Networks
in flash memory and RAM, respectively. In addition, it integrates with the ST-LINK
debugger/programmer; thus, it does not require any separate probe.

6. TinyML Limitation

TinyML achieved remarkable breakthroughs in many cases of use. In addition, high
accuracy was obtained with various DL models on IoT devices with limited resources.
However, despite the powerful perception capability of TinyML it has many limitations
that constitute obstacles to the development of TinyML. Some of TinyML’s limitations are
presented in the following subsections.

6.1. Device Heterogeneity

Heterogeneity of hardware and software presents the main challenge to adoption
of the TinyML system. Authors have tried to provide various methods to reduce the
size of ML and use it in devices with low resources without a drop in their accuracy.
However, the result of accuracy is not the same as on desktop computers. Due to the fact
that manufacturing companies’ embedded systems do not have a generalized method,
each company has its own software to fit the system into their devices. Thus, there is
no standardized method including software as framework to implement and execute
DL models inside various devices from different companies without drops in accuracy.
Developing a generalized framework is necessary for increasing adoption and awareness
of TinyML [62,63].

6.2. Process Power

MCU from various company such as ARM Cortex have high-end processors, but
their processing power and speed is still low in comparison with cloud-based systems as
edge devices. Cloud based systems have the ability to process massive amounts of data
with large DL models. Therefore, perhaps quality of data analysis will be hampered when
shifting from cloud to device.

6.3. Limited Memory

Limited memory with only a few KB is one of the main motivations for the creation of
TinyML. Traditional inference of DL models requires drastically higher peak memory (in
the order of gigabytes) than TinyML devices can provide. This poses challenge, therefore
creating a need for innovation in optimization techniques appropriate for each algorithm.
As a consequence of compression DL models, it is important that the performance of
parameters matches the original model [64].

6.4. Limited DL Models

There is lack of development DL models that achieve good performance with high
accuracy and small models. Still, DL models process a variety of data with huge parameters
and accrue results. Thus, TinyML needs to optimize the training and inference DL models
to analyze data on low-power devices without loss of accuracy and with low latency.

Micromachines 2022, 13, 851 20 of 22

7. Conclusions

TinyML is a dynamic and rapidly developing field that requires interoperability
between IoT devices to ensure stability and continuous progress. TinyML is a coming field
that intersects hardware, software, and machine-learning algorithms and that is gaining
enormous traction. Recent studies in this field contain building DL networks with sizes
of a few hundred KBs. TinyML is deployed into tiny devices to turn them into intelligent
devices. TinyML has many benefits, e.g., reduced computation, power consumption and
response time. In this paper, we present an overview of TinyML and showed its advantages.
After that, we reviewed two kinds of TinyML studies; first, some studies developed models
and applied TinyML in different IoT applications using a variety of devices with limited
resources. Second, other studies have developed libraries, frameworks for optimization
using TinyML. Subsequently, analysis and discussion of the main findings of TinyML
studies were presented, including datasets, models, and devices to draw the main findings
of TinyML overall. Lastly, we discuss the main limitations that constitute obstacles to the
development of TinyML applications, which will guide researchers to solve open problems
in the TinyML field for future works.

Author Contributions: Conceptualization, N.N.A. and D.M.I.; Data Curation, D.M.I.; methodology,
N.N.A.; software, D.M.I.; validation, N.N.A. and D.M.I.; formal analysis, D.M.I.; investigation,
N.N.A. and D.M.I.; writing—original draft preparation, N.N.A.; writing—review and editing, D.M.I.;
visualization, N.N.A. and D.M.I.; supervision, N.N.A. and D.M.I. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020,

20, 6441. [CrossRef] [PubMed]
2. Wu, Z.; Qiu, K.; Zhang, J. A Smart Microcontroller Architecture for the Internet of Things. Sensors 2020, 20, 1821. [CrossRef]

[PubMed]
3. Signoretti, G.; Silva, M.; Andrade, P.; Silva, I.; Sisinni, E.; Ferrari, P. An Evolving Tinyml Compression Algorithm for IoT

Environments Based on Data Eccentricity. Sensors 2021, 21, 4153. [CrossRef] [PubMed]
4. Chen, Y.; Zheng, B.; Zhang, Z.; Wang, Q.; Shen, C.; Zhang, Q. Deep Learning on Mobile and Embedded Devices: State-of-the-Art,

Challenges, and Future Directions. ACM Comput. Surv. 2020, 53, 1–37. [CrossRef]
5. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine Learning on Mainstream Microcontrollers. Sensors 2020, 20, 2638. [CrossRef]
6. Gorospe, J.; Mulero, R.; Arbelaitz, O.; Muguerza, J.; Antón, M.Á. A Generalization Performance Study Using Deep Learning

Networks in Embedded Systems. Sensors 2021, 21, 1031. [CrossRef]
7. Atitallah, S.B.; Driss, M.; Boulila, W.; Ghezala, H. Ben Leveraging Deep Learning and IoT big data analytics to support the smart

cities development: Review and future directions. Comput. Sci. Rev. 2020, 38, 100303. [CrossRef]
8. Bhattacharya, S.; Somayaji, S.R.K.; Gadekallu, T.R.; Alazab, M.; Maddikunta, P.K.R. A review on deep learning for future smart

cities. Internet Technol. Lett. 2020, 5, e187. [CrossRef]
9. Wang, F.; Zhang, M.; Wang, X.; Ma, X.; Liu, J. Deep learning for edge computing applications: A State-of-the-Art survey. IEEE

Access 2020, 8, 58322–58336. [CrossRef]
10. Khalil, R.A.; Saeed, N.; Masood, M.; Fard, Y.M.; Alouini, M.S.; Al-Naffouri, T.Y. Deep Learning in the Industrial Internet of Things:

Potentials, Challenges, and Emerging Applications. IEEE Internet Things J. 2021, 8, 11016–11040. [CrossRef]
11. Thai-Nghe, N.; Thanh-Hai, N.; Ngon, N.C. Deep learning approach for forecasting water quality in IoT systems. Int. J. Adv.

Comput. Sci. Appl. 2020, 11, 686–693. [CrossRef]
12. Chen, Q.; Wang, W.; Wu, F.; De, S.; Wang, R.; Zhang, B.; Huang, X. A Survey on an Emerging Area: Deep Learning for Smart City

Data. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 392–410. [CrossRef]
13. Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges.

Smart Cities 2021, 4, 429–475. [CrossRef]
14. Warden, P.; Situnayake, D. Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers, 2nd ed.;

Loukides, M., Taché, N., Eds.; O’Reilly Media: Sebastopol, CA, USA, 2019.
15. Wang, Y.; Zhang, X.; Xie, L.; Zhou, J.; Su, H.; Zhang, B.; Hu, X. Pruning from Scratch. In Proceedings of the AAAI Conference

on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; AAAI Press: Palo Alto, CA, USA, 2020; Volume 34,
pp. 12273–12280. [CrossRef]

http://doi.org/10.3390/s20226441
http://www.ncbi.nlm.nih.gov/pubmed/33187267
http://doi.org/10.3390/s20071821
http://www.ncbi.nlm.nih.gov/pubmed/32218211
http://doi.org/10.3390/s21124153
http://www.ncbi.nlm.nih.gov/pubmed/34204300
http://doi.org/10.1145/3398209
http://doi.org/10.3390/s20092638
http://doi.org/10.3390/s21041031
http://doi.org/10.1016/j.cosrev.2020.100303
http://doi.org/10.1002/itl2.187
http://doi.org/10.1109/ACCESS.2020.2982411
http://doi.org/10.1109/JIOT.2021.3051414
http://doi.org/10.14569/IJACSA.2020.0110883
http://doi.org/10.1109/TETCI.2019.2907718
http://doi.org/10.3390/smartcities4020024
http://doi.org/10.1609/aaai.v34i07.6910

Micromachines 2022, 13, 851 21 of 22

16. Wardana, I.N.K.; Gardner, J.W.; Fahmy, S.A. Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction.
Sensors 2021, 21, 1064. [CrossRef]

17. Lin, J.; Chen, W.M.; Lin, Y.; Cohn, J.; Gan, C.; Han, S. MCUNet: Tiny Deep Learning on IoT Devices. arXiv 2020, arXiv:2007.10319v2.
18. Banbury, C.R.; Reddi, V.J.; Lam, M.; Fu, W.; Fazel, A.; Holleman, J.; Huang, X.; Hurtado, R.; Kanter, D.; Lokhmotov, A.; et al.

Benchmarking TinyML Systems: Challenges and Direction. arXiv 2020, arXiv:2003.04821.
19. TensorFlow Lite. Available online: http://www.tensorflow.org/lite (accessed on 23 September 2021).
20. Dennis, D.K.; Gopinath, S.; Gupta, C.; Kumar, A.; Kusupati, A.; Patil, S.G.; Simhadri, H.V. EdgeML Machine LEARNING for

Resource-Constrained Edge Devices. Available online: https://github.com/Microsoft/EdgeML (accessed on 23 September 2021).
21. Suda, N.; Loh, D. Machine Learning on ARM Cortex-M Microcontrollers; Arm Ltd.: Cambridge, UK, 2019.
22. X-CUBE-AI—AI Expansion Pack for STM32CubeMX—STMicroelectronics. Available online: http://www.st.com/en/embedded-

software/x-cube-ai.html (accessed on 29 September 2021).
23. Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits Syst. Mag.

2020, 20, 4–18. [CrossRef]
24. Puthal, D.; Mohanty, S.; Wilson, S.; Choppali, U. Collaborative Edge Computing for Smart Villages. IEEE Consum. Electron. Mag.

2021, 10, 68–71. [CrossRef]
25. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for Ai-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.

[CrossRef]
26. IBM Security. Cost of a Data Breach Report 2021. 2021, pp. 1–73. Available online: https://www.ibm.com/downloads/cas/

OJDVQGRY (accessed on 26 May 2022).
27. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021,
88, 105906. [CrossRef]

28. Paul, A.J.; Mohan, P.; Sehgal, S. Rethinking Generalization in American Sign Language Prediction for Edge Devices with
Extremely Low Memory Footprint. In Proceedings of the 2020 IEEE Recent Advances in Intelligent Computational Systems,
RAICS, Thiruvananthapuram, India, 3–5 December 2020; pp. 147–152. [CrossRef]

29. Mohan, P.; Paul, A.J.; Chirania, A. A Tiny Cnn Architecture for Medical Face Mask Detection for Resource-Constrained Endpoints.
In Innovations in Electrical and Electronic Engineering; Springer: Singapore, 2020; pp. 657–670. [CrossRef]

30. Coffen, B.; Mahmud, M.S. TinyDL: Edge Computing and Deep Learning Based Real-Time Hand Gesture Recognition Using
Wearable Sensor. In Proceedings of the 2020 IEEE International Conference on E-Health Networking, Application & Services
(HEALTHCOM), Shenzhen, China, 1–2 March 2021; pp. 1–6. [CrossRef]

31. Venzke, M.; Klisch, D.; Kubik, P.; Ali, A.; Missier, J.D.; Turau, V. Artificial Neural Networks for Sensor Data Classification on
Small Embedded Systems. arXiv 2020, arXiv:2012.08403v1.

32. Orfanidis, C.; Hassen, R.B.H.; Kwiek, A.; Fafoutis, X.; Jacobsson, M. A Discreet Wearable Long-Range Emergency System Based
on Embedded Machine Learning. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops and Other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 182–187.
[CrossRef]

33. Wong, A.; Famouri, M.; Pavlova, M.; Surana, S. TinySpeech: Attention Condensers for Deep Speech Recognition Neural Networks
on Edge Devices. arXiv 2020, arXiv:2008.04245v6.

34. De Prado, M.; Rusci, M.; Donze, R.; Capotondi, A.; Monnerat, S.; Benini, L.; Pazos, N. Robustifying the Deployment of TinyML
Models for Autonomous Mini-Vehicles. Sensors 2021, 21, 1339. [CrossRef]

35. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. TensorFlow Lite
Micro: Embedded Machine Learning on TinyML Systems. arXiv 2020, arXiv:2010.08678.

36. Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L. CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge
Devices. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 871–875. [CrossRef]

37. Cai, H.; Gan, C.; Zhu, L.; Han, S. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. arXiv 2020,
arXiv:2007.11622.

38. LeCun, Y.; Cortes, C.; Burges, C.J.C. MNIST Handwritten Digit Database. 1998. Available online: http://yann.lecun.com/exdb/
mnist/ (accessed on 26 May 2022).

39. Tecperson. Sign Language MNIST from Kaggle. Kaggle. 2017. Available online: https://www.kaggle.com/datamunge/sign-
language-mnist/metadata (accessed on 26 May 2022).

40. Akash. ASL Alphabet from Kaggle. Kaggle. 2020. Available online: https://www.kaggle.com/grassknoted/asl-alphabet
(accessed on 26 May 2022).

41. Rasband, D. ASL Alphabet Test from Kaggle. Kaggle. 2018. Available online: https://www.kaggle.com/datasets/danrasband/
asl-alphabet-test (accessed on 26 May 2022).

42. Ashish Jangra. Face Mask Detection ~12K Images Dataset from Kaggle. Kaggle. 2020. Available online: https://www.kaggle.
com/ashishjangra27/face-mask-12k-images-dataset (accessed on 26 May 2022).

43. Makwana, D. Face Mask Classification. Kaggle. 2020. Available online: https://www.kaggle.com/dhruvmak/face-mask-
detection (accessed on 26 May 2022).

http://doi.org/10.3390/s21041064
http://www.tensorflow.org/lite
https://github.com/Microsoft/EdgeML
http://www.st.com/en/embedded-software/x-cube-ai.html
http://www.st.com/en/embedded-software/x-cube-ai.html
http://doi.org/10.1109/MCAS.2020.3005467
http://doi.org/10.1109/MCE.2021.3051813
http://doi.org/10.3390/s20092533
https://www.ibm.com/downloads/cas/OJDVQGRY
https://www.ibm.com/downloads/cas/OJDVQGRY
http://doi.org/10.1016/j.ijsu.2021.105906
http://doi.org/10.1109/RAICS51191.2020.9332480
http://doi.org/10.1007/978-981-16-0749-3_52
http://doi.org/10.1109/HEALTHCOM49281.2021.9399005
http://doi.org/10.1109/PerComWorkshops51409.2021.9430981
http://doi.org/10.3390/s21041339
http://doi.org/10.1109/TCSII.2020.2983648
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/datamunge/sign-language-mnist/metadata
https://www.kaggle.com/datamunge/sign-language-mnist/metadata
https://www.kaggle.com/grassknoted/asl-alphabet
https://www.kaggle.com/datasets/danrasband/asl-alphabet-test
https://www.kaggle.com/datasets/danrasband/asl-alphabet-test
https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset
https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset
https://www.kaggle.com/dhruvmak/face-mask-detection
https://www.kaggle.com/dhruvmak/face-mask-detection

Micromachines 2022, 13, 851 22 of 22

44. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

45. Bulat, A.; Tzimiropoulos, G. XNOR-Net++: Improved Binary Neural Networks. In Proceedings of the 30th British Machine Vision
Conference 2019, BMVC 2019, Cardiff, UK, 9–12 September 2019; pp. 1–12.

46. Imagenet. ImageNet Object Localization Challenge from Kaggle. 2018. Available online: https://www.kaggle.com/c/
imagenet-object-localization-challenge/data%0Ahttps://www.kaggle.com/c/imagenet-object-localization-challenge (accessed
on 26 May 2022).

47. Nilsback, M.E.; Zisserman, A. Automated Flower Classification over a Large Number of Classes. In Proceeding of the 6th Indian
Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008, Bhubaneswar, India, 16–19 December 2008;
pp. 722–729. [CrossRef]

48. Englert, B.; Lam, S. The Caltech UCSD Birds 200-2011 Dataset; California Institute of Technology: Pasadena, CA, USA, 2011.
49. Parkhi, O.M.; Vedaldi, A.; Zisserman, A.; Jawahar, C.V. Cats and Dogs. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, Washington, DC, USA, 16–21 June 2012; pp. 3498–3505. [CrossRef]
50. Vu, T.H.; Olsson, C.; Laptev, I.; Oliva, A.; Sivic, J. Food-101–Mining Discriminative Components with Random Forests; LNCS 8693;

Springer International Publishing: Zurich, Switzerland, 2014. [CrossRef]
51. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009; Volume 34,

Available online: https://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf (accessed on 26 May 2022).
52. Chowdhery, A.; Warden, P.; Shlens, J.; Howard, A.; Rhodes, R. Visual Wake Words Dataset. arXiv 2019, arXiv:1906.05721v1.
53. Avigan, A. Cleveland Clinic Heart Disease Dataset. Kaggle. 2020. Available online: https://www.kaggle.com/aavigan/cleveland-

clinic-heart-disease-dataset (accessed on 26 May 2022).
54. Boero, L.; Cello, M.; Marchese, M.; Mariconti, E.; Naqash, T.; Zappatore, S. Statistical Fingerprint-Based Intrusion Detection

System (SF-IDS). Int. J. Commun. Syst. 2016, 30, e3225. [CrossRef]
55. Gorman, R.P.; Sejnowski, T.J. Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets. Neural Netw.

1988, 1, 75–89. [CrossRef]
56. Gorman, P.; Sejnowski, T. Connectionist Bench (Sonar, Mines vs. Rocks) Dataset. UCI Machine Learning Repository. 1989.

Available online: https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks) (accessed on
26 May 2022).

57. Loseto, G. Traffic, Driving Style and Road Surface Condition. Kaggle. 2019. Available online: https://www.kaggle.com/gloseto/
traffic-driving-style-road-surface-condition (accessed on 26 May 2022).

58. EnviroCar—Datasets—The Datahub. Available online: http://www.old.datahub.io/dataset/envirocar (accessed on 23 May 2022).
59. Search for and Download Air Quality Data|NSW Dept of Planning, Industry and Environment. Available online: http:

//www.dpie.nsw.gov.au/air-quality/search-for-and-download-air-quality-data (accessed on 23 May 2022).
60. Zhang, Y.; Suda, N.; Lai, L.; Chandra, V. Hello Edge: Keyword Spotting on Microcontrollers. arXiv 2018, arXiv:1711.07128v3.
61. STMicroelectronics. Available online: https://www.st.com/content/st_com/en.html (accessed on 23 May 2022).
62. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for internet of things data

analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]
63. Ian, G.; Bengio, Y.; Courville, A. Deep Learning; Massachusett of Institute of Technology: London, UK, 2016; p. 706, ISBN 9780262035613.
64. Wu, Z.; Jiang, M.; Li, H.; Zhang, X. Mapping the knowledge domain of smart city development to Urban Sustainability:

A Scientometric Study. J. Urban Technol. 2020, 28, 29–53. [CrossRef]

http://doi.org/10.1109/cvprw.2009.5206848
https://www.kaggle.com/c/imagenet-object-localization-challenge/data%0Ahttps://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge/data%0Ahttps://www.kaggle.com/c/imagenet-object-localization-challenge
http://doi.org/10.1109/ICVGIP.2008.47
http://doi.org/10.1109/CVPR.2012.6248092
http://doi.org/10.1007/978-3-319-10602-1_28
https://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf
https://www.kaggle.com/aavigan/cleveland-clinic-heart-disease-dataset
https://www.kaggle.com/aavigan/cleveland-clinic-heart-disease-dataset
http://doi.org/10.1002/dac.3225
http://doi.org/10.1016/0893-6080(88)90023-8
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
https://www.kaggle.com/gloseto/traffic-driving-style-road-surface-condition
https://www.kaggle.com/gloseto/traffic-driving-style-road-surface-condition
http://www.old.datahub.io/dataset/envirocar
http://www.dpie.nsw.gov.au/air-quality/search-for-and-download-air-quality-data
http://www.dpie.nsw.gov.au/air-quality/search-for-and-download-air-quality-data
https://www.st.com/content/st_com/en.html
http://doi.org/10.1016/j.dcan.2017.10.002
http://doi.org/10.1080/10630732.2020.1777045

	Introduction
	Overview of TinyML
	Research Methodology
	Core Questions
	Search Strategy
	Eligibility Criteria
	Inclusion and Exclusion Criteria
	Data Extraction and Synthesis
	Data Selection

	Related Work to TinyML
	TinyML Use Cases Studies
	Environment
	Sign Language Detection
	Handwriting Recognition
	Medical Face Mask Detection
	Gesture Recognition
	Speech Recognition
	Autonomous Mini Vehicles

	Studies Related to Design TinyML Frameworks and Libraries
	TinyML Framework Studies
	TinyML Libraries Studies

	Discussion and Findings
	Findings Based on the Datasets
	Findings Based on the Machine and Deep Learning Models
	Findings Based on the Devices

	TinyML Limitation
	Device Heterogeneity
	Process Power
	Limited Memory
	Limited DL Models

	Conclusions
	References

