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Abstract: Over the past few decades, NAND flash memory has advanced with exponentially-
increasing bit growth. As bit cells in 3D NAND flash memory are stacked up and scaled down
together, some potential challenges should be investigated. In order to reasonably predict those
challenges, a TCAD (technology computer-aided design) simulation for 3D NAND structure in mass
production has been run. By aggressively stacking-up and scaling-down bit cells in a string, the
structure of channel hole was varied from a macaroni to nanowire. This causes the threshold voltage
difference (∆Vth) between the top cell and bottom cell in the same string. In detail, ∆Vth between the
top cell and bottom cell mostly depends on the xy-scaling, but the way how ∆Vth is affected is not
very dependent on the stack height.

Keywords: 3D NAND flash; nanowire channel; macaroni channel; tapered channel

1. Introduction

Over the past decade, NAND flash memory technology has been transformed from
2D NAND to 3D NAND. As of today, the 8th generation of 3D NAND (i.e., the number of
NAND bit cells in a string >200 stack) is about to be ready for mass production. There still
exists some technical challenges for next-generation 3D NAND products [1], such as reten-
tion issue originated from charge trap layer, coupling issue by floating channel structure,
and/or manufacturing TAT (turn-around-time) by process complexity, etc. Among them,
the device design for achieving higher memory density becomes trickier. In other words,
the physical size of NAND bit cell should be aggressively scaled down for higher memory
density with better performance and less power consumption as well as cost effective-
ness [2]. When it comes to scaling down the physical dimension of a 3D NAND cell, three
possible approaches, i.e., z-stacking, z-direction scaling, and xy-direction scaling, would be
available (see Figure 1) [1]. Showing off how advanced the 3D NAND technology has been,
the z-stacking has been the conspicuous approach for implementing high memory density.
With the help of the z-direction scaling, the total height of a string was not increased as
much as the number of vertical wordlines. In reality, the height of vertical channel hole
has increased by 1.5 times, while the number of vertical wordlines (i.e., the number of 3D
NAND bit cells in a string) has increased by two times [3]. It is expected that the pitch
between two neighboring channel holes becomes widened, as long as the vertical channel
hole is slightly tilted. However, the pitch along the xy-direction was not increased with the
help of improved dry etching techniques as well as the adoption of double-deck etching
scheme (i.e., two separate etching steps for a single channel hole) [3].
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Figure 1. (a) 3D bird’s-eye view of vertical 3D NAND flash memory. There exist three ways to
increase the memory density, i.e., (b) increasing the number of stacks in z-direction, (c) decreasing the
thickness of each stack, and (d) decreasing the cell-to-cell pitch in the xy-plane.

With the three different approaches of xy-/z-scaling and z-stacking for higher memory
capacity discussed above in mind, it is logical to bring up nanowire structure as a technical
question related to the shape of the channel hole in 3D NAND (not of macaroni, which
is the current structure of the channel hole in 3D NAND). In this work, a tectonic shift in
the channel hole of 3D NAND is investigated. Some potential assumptions on how the
electrical characteristics of 3D NAND are affected are to be provided/reviewed, and then,
a few scenarios for xy-scaling and z-stacking are simulated for quantitative analysis.

2. Potential Challenges in 3D NAND Structure

A Gate-all-around (GAA) device structure has been adopted for NAND Flash memory
device, so that the channel region was surrounded by gate oxide (more specifically, tunnel
oxide). In addition, a macaroni device structure in the 3D NAND bit cell was used/formed
because of the oxide filler (see Figure 2a). Taking into account the device structure in 3D
NAND, the shape of the channel hole would evolve from a macaroni into a nanowire, in
the end. In this work, two cases for the shape of the channel hole are investigated, one is
associated with xy-direction scaling, and the other is with z-stacking. With the xy-direction
scaling, the radius of the channel hole at the top and bottom cells would be scaled down
together (see Figure 2b). However, because of a certain tapered angle, the radius of the
bottom cell in a string should become shorter than the radius of the top cell in the same
string (see Figure 2c). When considering together both xy-direction scaling and z-stacking,
it is likely for the channel hole to become a nanowire.

Figure 2. (a) Illustrated macaroni structure of 3D NAND. Schematic of showing how the shape of a
channel hole in 3D NAND is varied by (b) XY-scaling, (c) Z-stacking. Note that the cells at/near the
bottom would have a nanowire structure because of the tapered structure of the channel hole.

One of the main motivations of adopting a macaroni-shaped channel hole in 3D
NAND is associated with the trap density at the grain boundary of the poly-silicon channel
material [4]. A thin poly-silicon layer in the channel hole forms a fully depleted channel
region, and therefore, the subthreshold characteristics of 3D NAND bit cell becomes less
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sensitive to the trap density in the grain boundary. With the adoption of the macaroni-
shaped channel structure, there exist a few more merits from the perspective of device
operation, e.g., steeper sub-threshold swing, narrow distribution of the drain current, and
more robustness to the threshold voltage variation. Note that the macaroni-shaped channel
structure (vs. non-macaroni or nanowire channel structure) provides us with a much
thinner channel layer and, thereby, a lower number of grain boundaries in the channel [5].
This would be the main reasons for the merits above.

Because of the unavoidable tapered angle in the channel hole, the channel diameter
of top bit cell is different from that of bottom bit cell (Figure 2). This would induce a non-
uniform electric field intensity along the z-direction [6,7]. In detail, the electric field intensity
of the bottom bit cell with a shorter channel diameter becomes stronger, and thereby, its
threshold voltage is lower/higher than that of the top cell, depending on the tapered angle
of channel hole [7,8]. If the channel diameter of the bottom bit cell aggressively decreases
(e.g., below a certain critical value), the threshold voltage of the bottom bit cell would be
affected due to the variation of the internal potential profile [9,10].

Another potential challenge in 3D NAND structure would be primarily originated
from an interface trap. There exist various types of interface traps at the Si/SiO2 interface
between the filler oxide and channel as well as between the tunnel oxide and channel (see
Figure 2a). These traps would potentially affect the threshold voltage modulation of the bit
cells in a string [11]. It is straightforward that a shorter channel diameter of the bottom bit
cell brings less amount of interface traps at the filler oxide/channel interface area, because
the radius of the filler oxide physically decreases. Especially, if the channel structure of the
bottom bit cell becomes a nanowire or similar, the interface traps would be significantly
decreased. This structure-induced variation in the amount of interface traps in 3D NAND
should cause the threshold voltage variation of the bit cells for a given string.

Subthreshold slope (SS) of each bit cell would be affected by the variation of rf and rox
(see Figure 2a). SS can be physically modeled and be proportional to the ratio of depletion
layer capacitance (Cdm) to oxide capacitance (Cox), as in Equation (1) [12].

SS = 2.3
kT
q

(1 + Cdm/Cox ) (1)

As long as the channel structure looks like a macaroni and the channel thickness (tch)
is thin enough to become fully depleted [4,13], Cdm and Cox can be simply described by
the cylindrical capacitor model in Equation (2) [14].

Cdm =
2πεSiLg

ln(rch/rf)
(when rf > 0)

Cox =
2πεoxLg

ln(rox/rch)
(when rf > 0)

(2)

From Equations (1) and (2), the equation for SS can be re-written as shown in Equation (3).

SS = 2.3
kT
q

(
1 +

εSi

εox
× α

)
, α =

ln(rox/rch)

ln(rch/rf)
(3)

Note that, with rch, rox and rf can be expressed with tox and tch, respectively, as shown
in Equation (4).

rox = rch + tox
rf = rch − tch

(4)

From Equations (3) and (4), we can derive Equation (5).

α =
ln(1 + tox/rch)

ln(rch/(rch − tch))
(5)

Herein, tox and tch are set to 5 nm. Then, a plot of α (in Equation (3) for SS) vs. rch can
be obtained (see Figure 3). As shown in Figure 3, the channel radius of 15 nm or shorter
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would result in a significant modulation in the capacitance ratio between Cdm and Cox.
This should cause a significant variation of SS.

Figure 3. Plot of α (in Equation (3) for SS) vs. rch, when both tox and tch is 5 nm. Note that α is
significantly decreased if rch is 15 nm or shorter.

3. Details on Simulation Set-Up

Using the Synopsys Sentaurus technology computer-aided design (TCAD) tool, the
impact of xy-scaling and z-stacking on the electrical characteristics of 3D NAND cells in
a string are evaluated. Based on practical design rules for mass production in industry,
tapered angle (θ), gate length (Lg), space length (Ls), blocking oxide layer thickness (tb),
charge trap layer thickness (tct), and tunnel oxide layer thickness (tox) are set as 0.3◦,
29.0 nm, 22.0 nm, 8.5 nm, 5.0 nm, and 5.0 nm, respectively (Figure 4a,b). The channel
thickness (tch) is set/limited to 5.0 nm, if the diameter is long enough (Figure 4c). However,
once the radius of the bottom cell (rch, B) becomes smaller than 5.0 nm by xy-scaling and
by the tapered angle (θ), the channel structure becomes a nanowire (Figure 4d).

Figure 4. (a) Cross-sectional view of the 3D NAND structure along the z-direction. (b) 3D bird’s-eye
view of the 3D NAND structure. (c) Cross-sectional view of the non-aggressively-scaled-down
channel hole in the xy-plane at top/bottom WL. (d) Cross-sectional view of the very-aggressively-
scaled-down channel hole in the xy-plane at top/bottom WL. In the very-aggressively-scaled-down
channel hole of the 3D NAND structure, A and B decrease due to the tapered shape of the channel hole.
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In the simulation, two parameters, i.e., the channel radius and vertical channel height
were varied. The top channel radius (A) was varied from 56.5 nm to 9.0 nm, and the bottom
channel radius (B) was varied from 51.5 nm to 4.0 nm. The vertical channel height (H) was
nominally set to 1 µm. To see the impact of z-stacking, H was increased up to 3 µm by 1µm
(i.e., H = 2 µm, and H = 3 µm).

The voltage for the erase operation (Verase) was set as 20 V (which is currently used
in industry). For the read operation, the voltage applied to a bit line was set to 1 V. In
addition, the common source line (CSL) was grounded. The voltage for selected wordlines
was varied in-between 0 V and 1 V. Note that the other unselected wordlines were set to
Vpass, to turn them on.

4. Results and Discussion

Simulated Id vs. Vg for bit cells in a string is shown in Figure 5. Note that the radius of
the channel in each bit cell is not identical due to the tapered structure of the channel hole
(i.e., the top bit cell has the longest radius of the channel). For the given tapered angle (θ)
and vertical height (H) of the channel hole (i.e., θ = 0.3◦, H = 1 µm), the top channel radius
(A) and bottom channel radius (B) are varied (or scaled down in xy-directions, as shown in
Figure 5a–d). It turned out that the bottom bit cell has superior switching characteristic, i.e.,
a lower off-state leakage current (see Figure 6), higher on-state drive current (see Figure 5a),
and comparable threshold voltage (see Figure 6) (notice that, if the threshold voltage is
determined by the constant current method, the threshold voltage of the bottom cell is
slightly higher than that of the top cell). Moreover, as the physical dimension of the channel
hole is aggressively scaled down in xy-directions (see from Figure 5a–d), the wordline
voltage at which a comparable channel current is achieved in both top and bottom cells
becomes higher (see the cross-over point in Figure 5a–d).

Figure 5. (a–d) Simulated Id vs. Vg for the bit cells (from top to bottom), when those cells in a string
are scaled down together in XY-direction.

For a few combinations of A and B (determined by scaling in xy-directions), Figure 7
shows the simulated input transfer characteristics of the bottom cell and top cell. For all
the combinations, the subthreshold swing of bottom cells (Figure 7a) is better than that of
top cells (Figure 7b). As a result, for an identical scaling in xy-directions (of course, with
constant tapered angle in this work), the input transfer characteristics of the bottom cell is
more varied than that of the top cell (see the black-colored arrow in Figure 7).
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Figure 6. Simulated Id vs. Vg to explicitly show the subthreshold characteristics of top/bottom cells,
depending on the physical dimensions of the channel hole structure. Note that the subthreshold swing
was improved with the smallest physical structure of cells, and its drain current was exponentially
affected (increased/decreased).

1 
 

 

Figure 7. Simulated Id-vs.-Vg. with xy-scaling, the subthreshold swing (SS) improves in both (a) bottom cell and 
(b) top cell. When the form of the channel near or at the bottom cell looks like a nanowire structure (i.e., A = 10.0 
nm, B = 5.0 nm), SS becomes 77.5 mV/dec at 300 K. 

Figure 7. Simulated Id vs. Vg. with xy-scaling, the subthreshold swing (SS) improves in both
(a) bottom cell and (b) top cell. When the form of the channel near or at the bottom cell looks like a
nanowire structure (i.e., A = 10.0 nm, B = 5.0 nm), SS becomes 77.5 mV/dec at 300 K.

Depending on the physical dimension of the channel radius, the threshold voltage of
each bit cell in a string is different from that of the others (see Figure 8): (i) for the range
of (A, B) = (20.0 nm, 15.0 nm)~(56.5 nm, 51.5 nm), the bottom cell in the vertical string has
a lower threshold voltage than the top cell. (ii) For the range of (A, B) = (12.5 nm, 7.5 nm)
~(15.0 nm, 10.0 nm), the threshold voltage of top and bottom cell becomes comparable.
(iii) For the range of (A, B) = (9.0 nm, 4.0 nm)~(10.5 nm, 5.5 nm) (herein, the bottom cell has
a nanowire structure), the bottom cell has a higher threshold voltage than the top cell.

In Figure 9a, the estimated threshold voltage for various channel diameters is summa-
rized. Note that the bottom channel radius (B) of 3D NAND in mass production is in the
range of 40~50 nm [3]. By the xy-direction scaling, the threshold voltage of the top cell and
bottom cell slightly increases, if B is > 20 nm. However, if B is 10 nm or below, the threshold
voltage of the top cell becomes lower (notice that, if the threshold voltage is determined by
the constant current method, the threshold voltage of the top cell becomes relatively lower
than that of the bottom cell; see Figure 5). In Figure 9b, by the xy-scaling, the threshold
voltage difference (∆Vth) between the top cell and bottom cell is summarized. Moreover, in
order to figure out the impact of z-stacking on ∆Vth, ∆Vth for a higher H (i.e., 2 µm or 3 µm
instead of 1 µm) was included in Figure 9b. It turned out that the way how ∆Vth is varied
by xy-scaling was not significantly affected by the height of the stack (H).
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Figure 8. Estimated threshold voltage of bit cells from the bottom side (w0) to the top side (w14) for
a given string. Depending on the channel radius (A), the threshold voltage (Vth) of the bottom cell is
either higher or lower than Vth of the top cell (e.g., for A = 20.0~56.5 nm (for A = 9.0~10.5 nm), Vth of
the bottom cell is lower (higher) than Vth of the top cell). The non-monotonic decrease of Vth for all
bit-cells with A of 10.0 nm can be understood due to the peaked-out value of the eDensity for a few
bit-cells placed in the middle of the string.

Figure 9. (a) Estimated threshold voltage (Vth) for various channel diameters. Note that Vth for the
top cell is higher (lower) than that for the bottom cell, if the channel radius of bottom cell (B) is longer
(shorter) than ~10 nm. (b) Threshold voltage difference vs. channel radius, for a few given channel
heights, i.e., 1 µm, 2 µm, and 3 µm. ∆Vth is quite comparable, although the height becomes doubled
or tripled. Note that the tapered angle, θ, is set to 0.3◦.

5. Conclusions

To address technical challenges for next-generation 3D NAND products, a few scenar-
ios for xy-scaling and z-stacking were quantitatively evaluated. Because of the unavoidable
tapered angle in the channel hole, the shape of channel hole would evolve from a macaroni
into a nanowire. This should cause a few challenges, i.e., the variation of internal potential
profile, the amount of interface traps at the filler oxide/channel interface area, and the
undesirable ratio of depletion layer capacitance to oxide capacitance. Due to the physical
dimension of channel radius, the threshold voltage of each bit cell in a string is different
from that of the others. It turned out that the threshold voltage difference (∆Vth) between
top cell and bottom cell depends on the xy-scaling. In detail, for given θ = 0.3◦, H = 1 µm,
in the range of (A, B) = (20.0 nm, 15.0 nm)~(56.5 nm, 51.5 nm), the bottom cell in string
has a lower threshold voltage than the top cell. However, in the range of (A, B) = (9.0 nm,
4.0 nm)~(10.5 nm, 5.5 nm), the bottom cell has a higher threshold voltage than the top
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cell. On the other hand, the way how ∆Vth is varied by the height of the stack (H) is
not significant.
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