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Abstract: The areal density of hard disk drives increases every year. Increasing the areal density has
limitations. Therefore, heat-assisted magnetic recording (HAMR) technology has been the candidate
for increasing the areal density. At ultrahigh areal density, the main problem of the magnetic recording
process is noise. Transition jitter is noise that affects the read-back signal. Hence, the performance of
the magnetic recording process depends on the transition jitter. In this paper, the transition jitter of
L10-FePt-based HAMR technology was simulated at the ultrahigh areal density. The micromagnetic
simulation was used in the magnetic recording process. The average grain size was 5.1 nm, and the
standard deviation was 0.08 nm. The recording simulation format was five tracks in a medium. It
was found that a bit length of 9 nm with a track width of 16.5 nm at the areal density of 4.1 Tb/in2

had the lowest transition jitter average of 1.547 nm. In addition, the transition jitter average decreased
when increasing the areal density from 4.1 to 8.9 Tb/in2. It was found that the lowest transition jitter
average was 1.270 nm at an 8 nm track width and a 9 nm bit length, which achieved an ultrahigh
areal density of 8.9 Tb/in2.

Keywords: transition jitter; heat-assisted magnetic recording; magnetic footprints

1. Introduction

The trend of the areal density (AD) in magnetic recording technology increases every
year [1]. It can increase with increased bit density, increased track density, and reduced
grain size [2,3]. However, the effects of reducing grain size decrease the thermal stability,
which causes superparamagnetic effects. The thermal stability can increase by increasing
the magnetocrystalline anisotropy constant, Ku. Magnetic materials are modified to accom-
modate increasing the areal density for the magnetic recording technology. The L10-FePt
medium is currently selected as a candidate because of the suitability of the magnetic
properties [4–8]. The high Ku, the high saturation magnetization, Ms, and the low curie
temperature, Tc, are the magnetic properties of L10-FePt that have been optimized for the
new technology of hard disks, such as MAMR [9] and HAMR [4,10–15].

Heat-assisted magnetic recording (HAMR) technology is chosen to assist magnetic
recording at high AD [8,16,17] due to the high Ku of the magnetic materials. In addition,
one of the main problems that occurs in the magnetic recording process is the noise that
decreases the signal-to-noise ratio (SNR) or increases the error of the read-back signal.
The noise mainly consists of DC noise and jitter noise; consequently, they cause irregular
amplitude and make the read-back signal transition less sharp, respectively. The correlation
of the noise and the transition jitter, σjitter, is strong [18–20]. Therefore, the performance
of the magnetic recording process is indicated by the σjitter. The main causes of the σjitter
are the grain size, grain size distribution, grain shape, read width, heat spot geometry, and
thermal gradient [10–12,19,21,22].

Many publications have simulated magnetic recording to achieve high areal density
and high performance. The transition jitter has been used to indicate the performance of
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the magnetic recording process [12–15,22]. Valcu and Yeh [22] have improved Voronoi-
pattern media for very close to the microtrack model prediction. The transition jitter is
used to indicate the efficiency of Voronoi-pattern media and that the detection positions
are the zero crossings. It was found that the read width is inversely proportional to
the jitter. Niranjan and Victora [12] have shown that these analytical calculations work
well for estimating the jitter when comparisons are made with simulation results under
different recording conditions and media variations. One of the simulations showed
that the grain pitch has a greater effect on the transition jitter than on the read width.
Pituso et al. [13,14] have simulated the magnetic recording process in a two-dimensional
(2-D) format. The simulation demonstrates magnetic footprints of HAMR technology
where heating is based on the relationship of magnetic properties with temperature. The
behavior of magnetic properties with temperature is used to identify the hotspot for the
simulation. Hernandez et al. [15] proposed parameters that can achieve the high areal
density in HAMR technology.

From many studies [10–12,19,21,22], the transition jitter can be obtained by the stan-
dard deviation from a read-back signal at the zero-crossing position. In this paper, the
transition jitter was shown in another form of the transition jitter by indicating the position
of the transition bits in a 2-D format. Since the magnetic footprint simulation was analyzed
for the transition jitter simulation in a 2-D format, this simulation was analyzed to resemble
the magnetic footprint experimental analysis imaging shown in the 2-D format of spin-stand
microscopy. The spin-stand is a machine that can characterize of the magnetic footprints
for analysis, such as transition curvature analysis [23–25]. Therefore, this paper aimed to
maintain a reasonable level of performance from increasing both the linear density and the
track density. We also proposed that the magnetic footprint simulation was simulated for
the transition jitter simulation in a 2-D format. The L10-FePt magnetic material’s properties
depend on the temperature used to identify the hotspot area for the heating simulation in
the Voronoi medium. The micromagnetic modeling is based on the Landau–Lifshitz–Gilbert
(LLG) equation. The lowest transition jitter average simulation was investigated at the
areal density of 4.1 Tb/in2. In addition, the lowest transition jitter average was investigated
at ultrahigh areal densities from 4.1 to 8.9 Tb/in2 in HAMR technology.

2. Materials and Methods

In this work, the micromagnetic simulation was based on the LLG equation, as shown
in Equation (1) [13,26,27]:

d
⇀
M
dt

= −γ
⇀
M ×

⇀
He f f −

γα

Ms

⇀
M ×

(
⇀
M ×

⇀
Heff

)
(1)

where
⇀
M is the magnetization vector, γ is the gyromagnetic ratio, α is the damping constant,

and Ms is the saturation magnetization. The effective field,
⇀
Heff, includes the exchange,

demagnetizing, anisotropy, and Zeeman fields. The simulation was implemented by the
object-oriented micromagnetic framework (OOMMF) software [28].

The magnetic recording simulation process of HAMR technology used the correlation
between the temperature and the properties of the magnetic materials to create the hotspot
area. Therefore, the hotspot area model used the Brillouin function equation, as shown in
Equations (2)–(4) [13,14]:
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where
β = 3(1 − T

TC
) (4)

where J is the total angular momentum quantum number, n is a medium film series factor,
T is the temperature, TC is the Curie temperature, Hk is the anisotropy field, and Ku is the
magnetocrystalline anisotropy constant.

The shape of the hotspot area was a squircle, the shape of the applied field was
rectangular, and they were the same width. The writing model was five tracks in a
medium of each bit length, and a single-tone sequence was written on a track of 31 bits
and 30 boundaries. The Voronoi grain medium had dimensions of 1000 nm × 1500 nm
and a thickness of 6 nm. The medium model had a resolution of 0.25 pixels per 1 nm
in the x–y plane. The average grain size was 5.1 nm [15] with the standard deviation
of 0.08 nm, and the grain boundary width was about 1–2 nm. The mesh cell size of the
micromagnetic simulation in the x–y plane was 1 nm × 1 nm, and in the Z-axis it was 3 nm.
The magnetic properties at room temperature of the L10-FePt medium were as follows:
Ms (300 K) = 1.100 MA/m and Ku (300 K) = 7 MJ/m3. The T for heating in the HAMR
process was 700 K, and the TC was 710 K. The write head field was 10 kOe along the z-
direction, and J was 0.85 at a medium film series factor, n, of 2.15 for the L10-FePt magnetic
material [14,15]. The intragrain exchange stiffness constant was 12 pJ/m, and the intergrain
exchange stiffness was 0 J/m [13]. MATLAB [29] was used for the Voronoi medium
modeling and the σjitter that could be obtained from the zig-zag boundary procedure flow
chart for the transition jitter simulation, as shown in Figure 1.
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The σjitter was the standard deviation of each zero-crossing position, as shown in
Equation (5) [10–12,19,21,22]:

σjitter =

√
1

N − 1 ∑N
i=1(xi − xm)

2 (5)

where xi is zero-crossing position, xm is an average position, and N is a total number
of transitions.

The transition jitter average, σjitter, was calculated by the summation of σjitter of each
track in a medium divided by the total number of tracks, Nt, as shown in Equation (6).

σjitter =
1

Nt
∑Nt

i=1 σjitteri (6)

2.1. Minimum Transition Jitter at the Areal Density of 4.1 Tb/in2

The simulation parameters were determined under the scope of the AD at 4.1 Tb/in2

for finding the lowest σjitter, as shown in Table 1.

Table 1. Bit length, track width, and hotspot size use in the simulation at the areal density of
4.1 Tb/in2.

Areal Density (Tb/in2) Bit Length (nm) Track Width (nm) Hotspot Size (nm)

4.1 [15]

7 [15] 22.5 [15] 28
7.5 21 26.5

8 [15] 19.5 [15] 25 [15]
8.5 18 23.5
9 16.5 22

9.5 15 20.5
10 13.5 19

2.2. Transition Jitter at Ultrahigh Areal Density of 4.1–8.9 Tb/in2

In Table 2, the bit length of 9 nm was selected to investigate the σjitter at ultrahigh areal
densities from 4.1 to 8.9 Tb/in2 by decreasing the track width.

Table 2. Track width and hotspot size at ultrahigh areal density from 4.1 to 8.9 Tb/in2.

Bit Length (nm) Track Width (nm) Hotspot Size (nm) Areal Density (Tb/in2)

9

16.5 22 4.1
14 19.5 5.1
12 17.5 6.1
10 15.5 7.1
8 13.5 8.9

3. Results and Discussions

3.1. Minimum Transition Jitter at the Areal Density of 4.1 Tb/in2

Figure 2 shows the magnetic footprint simulation result of 31 bits per track (between
the yellow lines) at the areal density of 4.1 Tb/in2 (9 nm bit length and 16.5 nm track width).
The magnetic footprints of each track were analyzed to show the transition boundaries in a
2-D format, as shown in Figure 3.
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Figure 3. The magnetic footprints (upper) at a bit length of 9 nm with a track width of 16.5 nm and
the boundary between bits (lower) of the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th tracks.

Figure 4 shows the results of the σjitter at the areal density of 4.1 Tb/in2. It was found
that the σjitter values of bit lengths of 7, 7.5, 8, 8.5, 9, 9.5, and 10 nm were 1.703, 1.635,
1.661, 1.649, 1.547, 1.629, and 1.655 nm, respectively. The lowest σjitter was 1.547 nm at a
bit length of 9 nm and a track width of 16.5 nm. The results in Figure 4 also show that the
fluctuations in the σjitter at bit lengths of 7 to 10 nm are probably from the grain shape or
the grain size distribution. The σjitter of the 7 nm bit length increased when the reducing
bit length approached the grain size because the bit length of 6 nm cannot be simulated.
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The results of the micromagnetic simulations also found that some of the bits did not have
the magnetization switching in the grain because some parts of the grain were not in the
hotspot area. Therefore, the broad zig-zag boundary was the effect of reducing bit length
approaches to the grain size.
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The results in Section 3.1 show that the bit length of 9 nm had the lowest σjitter. In
this section, the track width of the 9 nm bit length was selected to investigate the σjitter

at ultrahigh areal densities from 4.1 to 8.9 Tb/in2, and Figure 7 shows the σjitter for track
width and areal density variation. It was found that the σjitter values of each track width at
9 nm bit lengths of 8, 10, 12, 14, and 16.5 nm were 1.270, 1.490, 1.493, 1.60, and 1.547 nm,
respectively. The lowest σjitter was 1.270 nm at an 8 nm track width. The trend of σjitter

reduced with increases in the areal density from 4.1 to 8.9 Tb/in2 (or decreasing track width
from 16.5 to 8 nm.). The trend of σjitter reduced with decreasing track width. It was likely
due to the zero-crossing position being outside the track area, and this trend is consistent
with those in the literature [12,30].
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4. Conclusions

In this paper, we present the transition jitter simulation in the 2-D format of HAMR
technology at ultrahigh areal densities from 4.1 to 8.9 Tb/in2. The L10-FePt magnetic
material was used as the magnetic medium for future magnetic recording. The OOMMF
was used for recording process simulation, and the MATLAB program was used to simulate
the transition jitter in a 2-D format. The areal density of 4.1 Tb/in2 has the lowest σjitter
of 1.547 nm (9 nm bit length and 16.5 nm track width). The areal densities from 4.1 to
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8.9 Tb/in2 had the lowest σjitter of 1.270 nm (9 nm bit length and 8 nm track width). These
results can be the guidelines for future magnetic recording technology development.
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