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Abstract: In this study, a simple growth of permalloy NiFe (Py) thin films on a semiconductive
Si substrate using the electrochemical deposition method is presented. The electrodeposition was
performed by applying a direct current of 2 mA/cm2 during different times of 120 and 150 s and
thin films with different thicknesses of 56 and 70 nm were obtained, respectively. The effect of Py
thickness on the magnetic properties of thin films was investigated. Field emission scanning electron
microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM),
ferromagnetic resonance (FMR), anisotropic magnetoresistance (AMR), and magneto-optic Kerr effect
(MOKE) analyses were performed to characterize the Py thin films. It was observed that the coercivity
of the Py thin film increases by increasing the thickness of the layer. Microscopic images of the layers
indicated granular growth of the Py thin films with different roughness values leading to different
magnetic properties. The magnetic resonance of the Py thin films was measured to fully describe the
magnetic properties of the layers. The magnetoresistance ratios of deposited Py thin films at times of
120 and 150 s were obtained as 0.226% and 0.235%, respectively. Additionally, the damping constant
for the deposited sample for 120 s was estimated as 1.36 × 10−2, which is comparable to expensive
sputtered layers’ characteristics.

Keywords: electrodeposition; permalloy; magnetoresistance; MOKE; AMR; FMR

1. Introduction

Py thin films have played a very important role in the field of magnetism and spin-
tronics due to their low magnetic anisotropy [1–7]. They have been used extensively in
magneto-resistive devices with high efficiency [8–10]. Additionally, due to their very low
damping parameter, they have been widely used for high-frequency spintronic devices
which have a function based on the ferromagnetic resonance effect [11,12]. As electronic
devices are still very dependent on semiconductor-based technology, coating Py on the
surface of Si is of vital importance for magnetic device developments.

Today, physical methods such as molecular beam epitaxy [13], the ion-beam method [14],
the vacuum evaporation technique [15], and sputtering [16] are commonly used for the
fabrication of thin films. The advantages of these methods are obtaining pure materials,
sharp interfaces, and high control of film growth but they require high vacuum so these
techniques are complicated and expensive. However, electrodeposition is a fabrication
technique that does not require a vacuum and is a relatively simple and inexpensive
method [17,18]. To obtain high-quality deposits, the electrodeposition technique is a
proper method to control the thickness, composition, and stoichiometry of alloys [19–21].
However, the deposition of thin films by electrodeposition requires special care. For
example, contamination and fluctuations of the composition have an undesirable effect on
the magnetic properties of the manufactured film [22].

There are many previous studies that have reported electrodeposited Py films onto
metal substrates [23–27]. However, reports on the electrodeposition of Py on Si are not
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reported often, especially regarding magnetic characteristic investigations [28–30]. Silicon
is an appropriate case as a substrate because it conducts properly well to allow electrode-
position without the need for a seed layer, leading to the fabricating of thin magnetic
films matched with silicon technology [31]. It is significant to optimize the electrochemical
conditions for Py electrodeposition onto semiconductor substrates to get the desired mi-
crostructure. In order to obtain the optimal thickness of Py for better adhesion between
Py and substrate, Py thin films of submicrometer thickness were electrodeposited onto
Si (111) surfaces by Gao et al. [32]. They reported that Py films were able to have proper
adhesion to the Si substrate when the thickness of the initial deposited Py was more than
20 nm. They also determined the coercivity of samples with 150 nm thickness to be about
6.8 Oe. The skewed shape of the hysteresis of the magnetization curve for a thin film of
FexNi1-x electrodeposited on Si (100) was presented by Spada et al. [33]. Additionally, it is
found that using surfactants in the electrodeposition electrolyte can enhance the quality
and adhesion. For example, strong adhesion of Py on Si substrate by electrodeposition
from a solution containing saccharin was observed by Sam et al. [34].

In the present research, Py was electrodeposited directly onto a Si substrate without a
seed layer. Despite not using organic additives such as saccharin in the electrodeposition
solution, it was found that electroplating thin films represented reasonably strong adhesion
to the Si substrates. The properly prepared Py thin films on the Si have the capacity to be
used in technological elements. In particular, in this work, the static and dynamic magnetic
properties of the electrodeposited Py thin films on the Si substrate were investigated. The
main purpose of investigating the magnetic properties of the electrodeposited Py layers
was to observe the anisotropic magnetoresistance (AMR) effect. The AMR signal was
successfully detected. For the first time, a relatively comprehensive study of the magnetic
properties of such a magnetic thin film via magneto transport, magneto-optic, and magneto
resonance measurements were presented.

2. Experimental
2.1. Materials and Instrumentation

N-type silicon wafers (D.M.S Co., Hwaseong, South Korea), nickel (II) sulfate (NiSO4.6H2O,
Merck, Darmstadt, Germany), iron (II) sulfate (FeSO4.7H2O, Merck, Germany), and boric
acid (H3BO3, Merck, Germany) were used as primary materials to make the solution for
electrodeposition.

Atomic force microscopy (AFM, NT-MDT TS150 ENTEGRA) was used to investigate
the surface topography of the samples. The magneto-optic characteristic of prepared
samples was examined by the magneto-optic Kerr effect (MOKE) based on differential
intensity using a He-Ne laser. The light passed through a polarizer, then reflected by the
sample and passed through an analyzer, and was monitored by a detector. Optical lenses
were used to focus and regulate the laser beam before and after reflection, respectively.
The magnetic field was applied parallel to the plane of incident laser light. Ferromagnetic
resonance (FMR) was analyzed using a subminiature version A (SMA) connector. For this
purpose, a radiofrequency (RF) field with a fixed output power of 16 dBm was applied to
a 50 Ω micro-stripe line (200 µm width). The microwave frequency range of the external
DC magnetic field was up to 20 GHz (step of 1 GHz). Anisotropic magnetoresistance
(AMR) measurement was performed using a four-point probe setup (Keithley 2450). The
morphology of the samples was studied by field emission scanning electron microscopy
(FESEM, MIRA3TESCAN-XMU). Additionally, energy-dispersive spectroscopy (EDS) was
used to determine the film composition.

2.2. Sample Preparation
2.2.1. Solution

NiSO4.6H2O (0.4 M) was added to deionized water under stirring. After nickel sulfate
was dissolved in deionized water at room temperature, FeSO4.7H2O (0.004 M) was added
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and stirred until dissolved. Then, H3BO3 (0.4 M) was added to the solution and the solution
remained under stirring until it was homogenized.

It should be noted that before each use of the solution, it was placed in an ultrasound
for 10 min to ensure its homogeneity.

2.2.2. Electrochemical Deposition

The silicon wafer was cut out into 1.5 cm × 1.5 cm slices. In order to remove surface
contamination such as surface oxide, the Si substrate was immersed in hydrofluoric acid
(HF, 10% v/v) solution for 30 s, then washed with ethanol, acetone, and distilled water, re-
spectively. After washing, the Si samples were instantly transferred to the electrodeposition
cell to prevent oxidation of the silicon surface. A two-electrode cell system was utilized
for the deposition of the Py layers with platinum as anode and Si substrate as a cathode.
Two samples were electrodeposited at room temperature: the samples (S1 and S2) were
electrodeposited by applying a direct current of 2 mA/cm2 for 120 s and 150 s, respectively.

3. Result and Discussion

Figure 1 shows the FESEM images and element distribution (EDS) map analysis of
sample S1. As can be seen in Figure 1, the surface of the sample shows the island growth of
Py grains. Additionally, according to Figure 1, the distribution of Ni and Fe in the layer
is uniform, which indicates the homogeneity of the layer and confirms the success of the
coating using the electrochemical method. It should be noted that it is very difficult to
obtain a homogeneous layer in the process of electrochemical deposition because different
parameters such as deposition time, applied voltage, current, and substrate can affect the
process and each of them can cause non-uniformity in the deposited layer. In this study,
the appropriate parameters for the deposition were determined after much trial and error
to obtain a uniform layer.
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Figure 2 shows the EDS analysis of sample S1. According to the EDS measurements,
the Ni and Fe content of the layers were calculated and this shows that the ratio of the Ni
to Fe is about 4:1, close to the composition of Ni80Fe20.
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Figure 2. EDS analysis of sample S1.

The cross-sectional FESEM image of sample S1 is shown in Figure 3. According to
Figure 3, the Py layer has an average thickness of about 56 nm, and it appears compact
and fine in the structure. To estimate the thickness of the Py layer in sample S2, Faraday’s
law can be used [35]. According to Faraday’s law, the thickness of coated layer with the
electrochemical method can be determined by the following equation:

T =
α i M t

10−7 F S n ρ
(1)

where T is the thickness of the layer, t is time, i is the operating electric current, M is the
molar mass of the substance, F is Faraday’s constant, S is the area of electrodeposition, n is
the number of electrons involved in an electrode reaction, ρ is the density of the substance,
and α is the return coefficient which is equal to 1.516 here. The thickness of the S2 layer is
estimated to be 70 nm by using Equation (1).
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AFM images analysis to investigate the surface morphologies (2D and 3D) of samples
S1 and S2 are shown in Figure 4. AFM is a powerful technique to study the surface
morphology at the nano- to micro-scale [36–39]. Topographical images from both samples
were recorded over 5 µm × 5 µm scan areas. According to Figure 4, the grain size of
both samples is in the nanometer range. It also shows that a rough surface was obtained
by the electrodeposition method. According to the AFM results, a higher mean surface
roughness (30 nm) is obtained for sample S2 deposited on Si in comparison with the mean
surface roughness of sample S1 (22 nm). The AFM image of sample S1 shows regions
with a typical rough shape and almost uniform grains. There are many sharp vertically
aligned regions appearing in the topographical images of both samples S1 and S2. This
vertical alignment can be the result of granular growth during the electroplating of the
thin film. Electrodeposited samples in general give granular structure because the growth
mode for electrochemical deposition of a metal (M) onto a substrate (S) follows the overall
reaction [40]:

M+
solution + e− Substrate−−−−−→Mlattice (2)
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Determinant parameters in this reaction are the interaction energy between the metal
adatoms and the substrate (EM−S), and the interaction energy or binding energy between
the metal adatoms and the native substrate (EM−N). In electrodeposition, EM−S < EM−N
and there is a driving force for the depositing material to segregate on the surface and
deposition occurs according to the Volmer–Weber island growth mechanism [41,42].

The magnetic properties of the prepared samples are measured through MOKE, magne-
toresistance (MR), and FMR measurements. According to the MOKE analysis, by increasing
the Py thickness, coercivity is increased from 1.3 Oe for S1 to 3.9 Oe for S2. This could be
due to alteration of thickness and also surface roughness. Some reports have discussed
the increase of coercivity by increasing the thickness and attributed it to the existence of
the out-of-plane anisotropy component at the thicker samples [43–46]. MOKE analysis
showed that with an increase in Kerr intensity the saturation magnetization (Ms) is changed.
Additionally, an increase in the thickness results in an increase in the interaction of light
with the matter [47,48], hence both Ms and light–matter interaction are important.
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The MR property was measured with two probe modes at room temperature by
measuring the resistance of the samples as a function of the external magnetic field (H).
The MR ratio was defined as [49]:

MR(H) =
∆ρ

ρ0
=

∆R(H)

R0
=

R− R0

R0
(3)

where ∆ρ is the change in the sample resistivity, ∆R(H) is the change of the sample resistance
due to the magnetic applied field, ρ0 is the zero-field resistivity, R0 is the resistance of the
sample, and R is the resistance in an external magnetic field H. Figure 5a shows the
dependence of magnetoresistance and the angle between the electric field and the magnetic
field. According to Figure 5a, for sample S1 the magnetoresistance increases by changing
the angle between the electric field and magnetic field from 0 to 90. It can be due to the
change in the angle between the magnetic easy-axis direction and the magnetic field [50].
According to Figure 5b, the MR ratios at the angle of 90 degrees are 0.226% and 0.235%
for samples S1 and S2, respectively. According to previous studies [51,52], the magnitude
of MR increases with the increase in thickness. AFM and FESEM studies showed that the
thickness and roughness are larger in the case of sample S2 as compared to S1. A greater
MR value in S2 compared to S1 could be due to the rough surface of S2. However, the
effect of roughness and thickness has led to a negligible difference in the MR ratio. In
comparison to other MR measurements of sputtered Py thin films, the MR ratios in this
study are lower [53,54].
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Figure 5. (a) AMR measurements for the S1 sample at different angles 0, 45, and 90o between H and
current; (b) AMR measurements for S1 and S2 samples at the angle 90o.

FMR is a very powerful experimental technique in the study of ferromagnetic thin
films. In the process of resonance, the energy is absorbed from the transverse magnetic
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field, which occurred when the frequency matched the Larmor frequency. The Larmor
frequency depends on the orientation of the material and the strength of the magnetic field.
The dependence of FMR frequency on the external magnetic field for thin films can be
described by the Kittel formula [55]:

fr =
µ0γ

2π

√
(H + Hk + Ms)(H + Hk) (4)

where µ0 is the permeability of the free space, γ is the gyromagnetic ratio, H is the external
magnetic field, Ms is the saturation magnetization, and Hk is the uniaxial anisotropy field,
which is negligible for Py films with a thickness of 56 nm. FMR analysis was performed
on sample S1 (with a thickness of 56 nm). The response of the sample to the FMR test is
shown in Figure 6.
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Figure 7 shows the full width at half maximum (FWHM) of the resonance field peaks
(∆H) at each frequency. The damping constant can be derived from the FWHM [56].
According to Figure 7, the damping parameter was estimated as 1.36 × 10−2. Several
studies reported the value of the damping constant to be about 0.6 × 10−2 using the
sputtering method for the deposition of thin films [57–59]. Additionally, some studies
reported different damping constants for the deposition of permalloy onto a metal substrate
such as Cu, Ag, and Ta [60]. One of the reasons for the increased damping constant in
this study can be due to spin injection to Si substrate [61], which causes an increase in the
damping constant.
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4. Conclusions

In this research, the AMR effect was achieved with Py thin films prepared by a simple
and inexpensive method. These layers were applied on inexpensive Si substrates which
gives the layers great potential for use in Si-based electronics. The electrodeposited Py thin
films represented good adhesion and uniformity on the Si surface. AFM and FESEM results
showed that the thickness and morphology of the layers grown by electrodeposition can be
tuned and, in turn, the MOKE, AMR, and FMR response of the layers can be controlled.
The effect of electrodeposition time (120 s and 150 s) on the thickness of Py thin films was
investigated and different thicknesses of 56 and 70 nm were obtained, respectively. The
results showed that the increase in the thickness results in higher roughness, coercivity,
MOKE signal, and AMR. The damping constant for Py thin film with 56 nm thickness
was calculated as 1.36 × 10−2, which is in the order of values achieved by sputtering. The
proper magnetic characteristics along with the low-cost method and materials indicate
that the growth method may be used for making industrial devices at a large scale with
high functionality.
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