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Abstract: Metallic glass (MG) is a promising coating material developed to enhance the surface hardness
of metallic substrates, with laser cladding having become popular to develop such coatings. MGs prop-
erties are affected by the laser cladding variables (laser power, scanning speed, spot size). Meanwhile,
the substrate surface roughness significantly affects the geometry and hardness of the laser-cladded MG.
In this research, Fe-based MG was laser-cladded on substrates with different surface roughness. For
this purpose, the surfaces of the substrate were prepared for cladding using two methods: sandpaper
polishing (SP) and sandblasting (SB), with two levels of grit size used for each method (SP150, SP240,
SB40, SB100). The experiment showed that substrate surface roughness affected the geometry and hard-
ness of laser-cladded Fe-based MG. To predict and optimize the geometry and hardness of laser-cladded
Fe-based MG single tracks at different substrate surface roughness, a fuzzy logic control system (FLCS)
was developed. The FLCS results indicate that it is an efficient tool to select the proper preparation
technique of the substrate surface for higher clad hardness and maximum geometry to minimize the
number of cladding tracks for full surface cladding.

Keywords: laser cladding; geometry of track; surface hardness; fuzzy logic control system

1. Introduction

Laser cladding is a promising coating method that uses laser power to melt the
injected or preplaced coating material powder onto a substrate [1,2]. This technique
is employed to enhance the surface properties of the substrate such as hardness, wear
resistance, corrosion resistance, etc. [3–5]. Laser cladding leads to high adhesion strength
due to the metallurgical bond developed between the coating layer and the substrate [2,6].
Additionally, laser cladding is a flexible process and can be easily controlled. Recently,
extensive research has focused on developing metallic glass (MG) coating layers on metallic
substrates because of their superior surface properties such as hardness, wear resistance,
and corrosion resistance [7–9]. The commonly used coating technique is laser cladding
due to its abovementioned features [10–12]. However, the amorphous structure of MGs is
very sensitive to the laser cladding parameters such as laser power, scanning speed, laser
beam spot size, injected powder flow rate, etc.; thus, selecting these parameters is a vital
issue [13]. These parameters affect the properties as well as the quality and geometry of the
cladded layer [14–16]. However, the substrate surface roughness has a significant effect on
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the geometry and hardness of the MG coating layer applied by laser cladding as reported
previously [17]. To achieve higher MG coating hardness and better geometry, a reliable
systematic optimization technique is thus required.

Soft computing and computational intelligence techniques are useful when exact math-
ematical information is not available, with these differing from conventional computing
owing to their tolerance of imprecision, uncertainty, partial truth, approximation, and their
metaheuristic nature. Many researchers have attempted to control the process parameters
to optimize or predict the quality and geometry of the cladded layer either experimen-
tally [18,19] or numerically [20,21]. A fuzzy logic system is one part of computational
intelligence that depends on numerical data supplied by manufacturers. In some cases, the
information and data about the process are limited due to process cost or complexity. A
fuzzy logic system uses knowledge tidbits, so the fuzzy inference engine of a fuzzy logic
system crafted by experts can be used as a prediction and optimization tool due to the en-
gine tuning with computational intelligence [22,23]. Many research works have succeeded
in employing fuzzy logic control systems (FLCS) in different industrial applications. FLCS
is used in controlling processes that induce difficult mathematical modeling with high
accuracy [24].

Kavka et al. structured and designed fuzzy logic controller for evaluating a simulated
temperature control environment, showing that it is responsive to changes in the controlled
process [25]. A FLCS was used to predict the surface hardness of the coating layer from
titanium nitride—developed by physical vapor deposition—on aluminum alloy AL7075-T6
with respect to changes in DC power and nitrogen flow rate. The results of the fuzzy
model demonstrated settlement between the fuzzy system and experimental work [26].
Another fuzzy logic model was designed to forecast the surface roughness of the same
coated surface of the alloy, and the results showed an agreement between the fuzzy system
and experimental results with 95.349% accuracy [27].

Several research works focused on using different fuzzy logic systems to control,
predict, or optimize laser cladding parameters [28–30]. However, to the knowledge of
the authors, no previous research focused on developing a FLCS to study the effect of
the substrate surface roughness on the geometry and hardness of laser-cladded MG. Also,
several studies have been conducted to examine the link between hardness and surface
roughness. Grieve et al. [31], Wang and Feng [32], and Fischer and Elrod [33] explored sur-
face roughness and its relationship with hardness. In addition, Sundarain and Lanibeil [34],
Hasegawa et al. [35], and Miller et al. [36] investigated the relationship and discovered that
hardness is inversely related to roughness.

In the present work, a fuzzy model was designed and implemented to predict and
optimize the geometry and hardness of laser-cladded Fe-based MG single track on stainless
steel substrate prepared at different surface roughness. The motivation behind proposing
this model is that FLCS are inexpensive to design, cover a broad variety of operating
conditions, and are easily adaptable in terms of natural language terminology. Such
characteristics make the whole process time- and cost-effective. However, FLC has two
significant shortcomings: it is unable to handle ambiguous data and comprehend human
thought. Both of these issues are interconnected. If the data in the system is ambiguous, a
person cannot deduce knowledge or relationships. In this study, authors inserted precise
data into the proposed model to avoid ambiguity in data input, handling, and processing.
This research work can help select the appropriate preparation technique for the substrate
surface for maximum clad geometry that will lead to minimization of the number of
cladding tracks in case of full surface cladding.

2. Laser Cladding of Fe-Based MG

F2229 SS was used as a substrate material. The chemical constituents of the substrate
material are presented in Table 1. Four samples of substrate material were cut to a size of
30 × 30 × 3 mm thickness each. The surfaces of these four substrate samples were prepared
following two different methods, namely by using SiC sandpaper (SP) (150-grit and 240-grit)
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and Al2O3 sandblasting (SB) (40-grit and 100-grit), to investigate effects of different surface
roughness on the geometry and hardness of laser-cladded Fe-based metallic glass single
track layer. The coating material used is Fe-based amorphous powder, placed as a 300 µm-
thick layer on the prepared substrate samples with different surface roughness (Figure 1a).
Next, the preplaced layer was laser-cladded under a continuous flow of Argon, to protect
the molten pool from further oxidation, using a high-power diode laser machine (4.4 kW,
wavelength 978–1025 ± 10 nm), Figure 1b. The laser power, scanning speed, and spot size
were set to 2000 W, 45 mm/s, and 4 × 4 mm2, respectively, as described previously in our
work [17].

Table 1. Chemical constituents of the substrate material.

Material S P C Ni Cu Si N Mn Cr Mo Fe

F2229 SS 0.01 0.03 0.08 0.1 0.3 0.7 >0.90 1.5 19 21 Balance
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Figure 1. (a) Setup used to preplace the Fe-based amorphous powder, (b) laser cladding setup used.

Figure 2a shows a schematic for the cross-section of laser-cladded single track illustrating
the relevant dimensions, the height of the track (L1), and the track width (L2). Figure 2b shows
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the laser-cladded samples, each original sample presenting different surface roughness. As it
can be seen in Figure 2, the surface roughness of the substrate obtained by SP or SB processes
has affected the geometry and the hardness of the single-cladded tracks of Fe-based MG. The
results are presented in Table 2 and illustrated graphically in Figure 3.
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Sample L1, mm L2, mm Hardness, HV0.1 
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Figure 2. (a) Schematic of the cross-section of the laser-cladded single track with track height and
width, (b) laser-cladded samples, with each sample presenting different surface roughness.

Table 2. Experimental results.

Sample L1, mm L2, mm Hardness, HV0.1

SP-150 (Sand Paper with 150 grit) 1.946 ± 0.110 0.338 ± 0.016 1278

SP-240 (Sand Paper with 200 grit) 2.562 ± 0.122 0.514 ± 0.015 1188

SB-40 (Sand Blasting with 40 grit) 1.822 ± 0.127 0.212 ± 0.008 1176

SB-100 (Sand Blasting with 100 grit) 1.780 ± 0.089 0.330 ± 0.018 1196
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Figure 3. Experimental results of (a) L1 and L2, (b) hardness of laser-cladded single track.

Due to the superior cohesion force over the adhesion force between the molten coating
material and the substrate, the surface roughness of the substrate was found to decrease.
This led to an increment in the width and height of the cladded track. Conversely, the
amorphous content percentage increased with increasing substrate surface roughness.
Hardness measurements showed that the polished substrate exhibited higher hardness
values than the sandblasted samples, which were affected by the amorphous content and
the phases found within the coating layer. In conclusion, the polished substrate yielded
optimum results in terms of geometry and hardness [37–39].

3. Fuzzy Logic Controller (FLC)

A fuzzy logic control system (FLCS) was used to predict which substrate surface
preparation technique would optimize the geometry and hardness of the developed Fe-
based MG single tracks. The flow chart of the FLCS used is shown in Figure 4.

The fuzzy logic control system analyzes analog input values in terms of discrete values
of either 1 (true) or 0 (false). Fuzzy sets classify objects smoothly depending on membership,
making them useful for approximation models [8]. A fuzzy logic system depends on the
principle of assigning output based on the probability of the state of the input. Hereafter,
If-Then rules are used, as they are the most appropriate to be utilized in the design of
FLC [40].

3.1. Architecture of Fuzzy Logic Controller

Fuzzifier, knowledge base, fuzzy rule base, and defuzzifier are the main components
in the structure of a fuzzy controller for any controlled system, as shown in Figure 5.

The role of a fuzzifier in the fuzzy controller is to convert crisp input values into fuzzy
values. Fuzzy knowledge base stores the knowledge about the input and output fuzzy
relationships in the form of a membership function for each of them [41]. The fuzzy rule
base uses the If-Then rule for joining membership functions of inputs and outputs. The
inference engine is the core of any FLCS, as it performs approximate reasoning [42]. The
defuzzification step represents the final stage in the fuzzy controller and is performed
through the defuzzifier to convert the fuzzy values received from the fuzzy inference
engine into new values [13]. The fuzzy logic toolbox of MATLAB is used to design and
implement FLCS.
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3.2. Inputs and Output Fuzzy System Variables

According to the results obtained from the experimental work, a four-input–three-output
fuzzy logic control system was designed and applied to optimal values of geometry and
hardness of laser-cladded Fe-based MG layer on a nickel-free high-nitrogen stainless-steel
sample. The structure of the fuzzy system is shown in Figure 6.
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Figure 6. Geometry-hardness of laser cladded layer Fuzzy Logic Control System.

Grit-size of the sandblast and sandpaper were used as inputs to the fuzzy system to
optimize the geometry and hardness (outputs) of laser-cladded Fe-based MG layer.

3.3. Inputs and Outputs Membership Function

Fuzzy logic is used to characterize fuzziness. The membership function represents the
best way to describe this fuzziness, as it expresses the degree of truth. For a fuzzy set (A),
(X) can be expressed as µA:X→ [0, 1], meaning the values of (X) are constrained within
0 and 1. The universe of discourse and degree of membership appear in the (x) axis and
(y), respectively. The letters a and b represent the lower and upper limits of the triangular
membership function, as shown in Figure 7 [43].
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Fuzzification in fuzzy is performed by converting a new quantity of inputs into a
fuzzy quantity by identifying the deterministic quantities as completely nondeterministic.
The triangular membership function used to fuzzify each input to the designed fuzzy
system into three fuzzy values (low, medium, and high) are shown in Figure 8. Triangular
membership functions for the fuzzy system inputs (SB40, SB100, SP150, SP240) are shown
in Figure 9a–d, respectively. Table 3 explains the range of fuzzy system inputs (sandblast
and sandpaper) with three levels: low, medium, and high.
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Table 3. Membership Functions of Fuzzy System Inputs.

Fuzzy System Inputs Variables Membership Function Used
Range of Inputs

Low Medium High

Sandblast (SB 40) Triangular MF 0–20 20–60 60–80
Sandblast (SB 100) Triangular MF 0–45 45–150 150–200
Sandpaper (SP 150) Triangular MF 0–75 75–225 225–300

Sandpaper (SP 240) Triangular MF 0–125 125–375 375–475

Defuzzification—required in FLCS—maps a fuzzy set to a new one through a num-
ber of rules that transform several variables into a fuzzy result for given fuzzy sets and
corresponding membership degrees, as shown in Figure 10.
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Figure 10. Defuzzification process in fuzzy system.

The triangular membership function is used in the defuzzification process for the
fuzzy outputs with low, medium, and high levels to get geometry L1 and L2 (Figure 11a,b,
respectively) and hardness (Figure 11c) of Fe-based MG, corresponding to the substrate
surface preparation method (sandblast and sandpaper polishing). Levels of fuzzy system
output are presented in Table 4.
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Table 4. Membership functions of fuzzy system outputs.

Fuzzy System Outputs Variables Membership Function Used
Range of Outputs

SB 40 SB 100 SP 150 SP 240

L1, mm Triangular MF 1.700–1.835 1.845–2.000 2.010–2.385 2.386–2.680
L2, mm Triangular MF 0.000–0.289 0.290–0.350 0.351–0.440 0.450–0.610

Hardness, HV0.1 Triangular MF 0.000–1182.0 1182.1–1192.0 1192.2–1238.0 1238.3–1300.0

3.4. FLC Base Rules

A fuzzy system uses rules based on the If-Then rule for assigning relationships between
fuzzy system inputs and outputs. The rules that are used in the geometry-hardness cladded
layer fuzzy logic control system are shown in Figure 12.
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geometry-hardness fuzzy system (Table 6) to verify the effectiveness of the designed FLCS 
in predicting the geometry and hardness of laser-cladded Fe-based MG single tracks. The 
values of the fuzzy logic control system are located between the experimental data values. 
The fuzzy logic control system yielded the best results for SP 240 (sandpaper grit size 240), 
thus agreeing with experimental data. 

Table 6. Values of geometry and hardness from the fuzzy system and experimental data. 

Parameters 
L1, mm L2, mm Hardness, HV0.1 

Experimental Data 
Fuzzy 
Result Experimental Data 

Fuzzy 
Result Experimental Data 

Fuzzy 
Result 

SB 40 1.822 ± 0.127 1.73 0.212 ± 0.008 0.240 1176 1180 
SB 100 1.780 ± 0.089 1.92 0.330 ± 0.018 0.328 1196 1190 
SP 150 1.946 ± 0.110 2.05 0.338 ± 0.016 0.383 1278 1210 

Figure 12. If-Then rules of geometry-hardness cladded layer fuzzy logic control system.

The results of the If-Then rules for the geometry-hardness fuzzy system yielded the
maximum and minimum values of cladded layer geometry and hardness related to the
sandblasting and sandpaper grit size used to prepare the substrate surface. The predicted
values of geometry and hardness, constituting the main target of the fuzzy logic control
system, are listed in Table 5.

Table 5. Output results of fuzzy system.

Values

Inputs Outputs

SB 40 SB100 SP 150 SP 240 L1, mm L2, mm Hardness, HV0.1

40 0 0 0 1.73 0.240 1180

0 100 0 0 1.92 0.328 1190
0 0 150 0 2.05 0.383 1210
0 0 0 240 2.11 0.501 1260

A comparison was performed between experimental data [17] and the results of the
geometry-hardness fuzzy system (Table 6) to verify the effectiveness of the designed FLCS
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in predicting the geometry and hardness of laser-cladded Fe-based MG single tracks. The
values of the fuzzy logic control system are located between the experimental data values.
The fuzzy logic control system yielded the best results for SP 240 (sandpaper grit size 240),
thus agreeing with experimental data.

Table 6. Values of geometry and hardness from the fuzzy system and experimental data.

Parameters
L1, mm L2, mm Hardness, HV0.1

Experimental Data Fuzzy
Result Experimental Data Fuzzy

Result Experimental Data Fuzzy
Result

SB 40 1.822 ± 0.127 1.73 0.212 ± 0.008 0.240 1176 1180
SB 100 1.780 ± 0.089 1.92 0.330 ± 0.018 0.328 1196 1190
SP 150 1.946 ± 0.110 2.05 0.338 ± 0.016 0.383 1278 1210
SP 240 2.562 ± 0.122 2.11 0.514 ± 0.015 0.501 1188 1260

4. Conclusions

In this research, Fe-based MG was laser-cladded. The substrate was prepared using
SiC sandpaper polishing (SP150 and SP240) and sandblast (SB40 and SB100) with fixed
laser power, scanning speed, and spot size. Experimental results showed that the substrate
surface roughness affected both geometry and hardness of the laser-cladded Fe-based MG
single track. The geometry and hardness of the laser-cladded Fe-based MG single track
were successively optimized according to the substrate surface roughness using a fuzzy
logic control system (FLCS).

The substrate surface roughness was set as the input to the FLCS, and the geometry
and hardness of laser-cladded Fe-based MG single tracks were set as the outputs and
optimized. The results of built FLCS were compared with the experimental results. Fuzzy
logic control system results exhibited agreement with experimental results and showed
that the best results were afforded by SP240,—this was also demonstrated experimentally.

The results obtained from FLCS, which is considered a type of artificial intelligence,
demonstrated that a fuzzy logic control system is an easy and inexpensive technology that
can be used in prediction and optimization of laser cladding of MGs. The obtained results
illustrate the efficacy and adequacy of the FLCS proposed.

The work may be further extended to examine the strength and degree of thermal
insulation in the cladded parts for structural applications.
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