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Abstract: A method based on the photographic recording of the power distribution laterally diffused
by cationic-network (CN) hydrogel waveguides is first checked against the well-established cut-back
method and then used to determine the different contributions to optical power attenuation along the
hydrogel-based waveguide. Absorption and scattering loss coefficients are determined for 450 nm,
532 nm and 633 nm excitation. The excellent optical loss values obtained (0.32–1.95 dB/cm), similar
to others previously described, indicate their potential application as waveguides in different fields,
including soft robotic and light-based therapies.

Keywords: hydrogel waveguides; attenuation coefficients; photographic method

1. Introduction

Optogenetics and photonic technologies are changing the near future of medicine.
This new technology promotes the progress of early detection and diagnosis of diseases,
as well as the possibility of a better understanding of biological systems [1,2]. In order
to implement these light-based therapies, patient-friendly devices that can deliver light
inside the body while offering tunable properties and compatibility with soft tissues are
needed. The sensitivity and selectivity of the optical responses are strongly dependent on
the characteristics of elements of optical devices, such as an optical waveguide. In this
context, soft polymeric biomaterials have been used as alternatives to silica for fabricating
optical waveguides [3]. Among these materials, optical waveguides based on hydrogels
are arousing great interest, as they allow the distribution of light several centimeters deep
in human tissues, without causing damage to the patient [4,5]. Hydrogels show excellent
properties such as flexibility and biocompatibility. Furthermore, the ability of hydrogels to
capture and release water converts them into fascinating materials for possible applications
in soft robotics [6]. This behavior allows them to be employed as sensors [7], actuators [8]
and bioinspired robots [9].

In this context; the optical and mechanical properties of the hydrogels can be fine
controlled by adjusting the ratio between the monomers and the chain length of the
crosslinking agent [10]. Moreover, the refractive index and thus its waveguide behavior can
be modulated depending on the water content. Finally, variations in pore size, temperature,
pH, ion concentration, degree of crosslinking, ligand attachment and interaction with other
molecules give them interesting properties.

A key parameter to determine its capability to conduct light efficiently and its ap-
plicability is the attenuation experienced by optical power along the waveguide. The
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well-established cut-off method [11], in which the output power is measured for progres-
sively shorter waveguide lengths, has a number of drawbacks: it is destructive, it requires
a long-enough sample, high-quality waveguide edges and a certain time to prepare the
measurement after each and every cut. One of the aims of this work is to explore the
possibility of measuring the attenuation in hydrogel waveguides through a photographic
record of the power distribution laterally diffused by the inhomogeneities of the material.
With this method, referred to from now on as the photographic one, there is no need for
cutting and realigning the setup, thus eliminating a significant source of measurement
uncertainty and, also, employing a non-destructive procedure [12].

In the first part of the paper, the details of the photographic method are provided. The
sample features are then presented and a comparison between attenuation measurements
obtained by both methods is conducted, in order to check the reliability of the alternative
procedure. Finally, attenuation measurements at different wavelengths are shown which,
together with the CN–hydrogel absorbance spectrum, allows one to uncouple the different
contributions to the propagation losses.

2. The Photographic Method

When light propagates along a guiding structure, optical power can be attenuated due
to various phenomena (input/output coupling loss, propagation loss and bend radiation
loss) [13]. The characterization of optical power attenuation establishes the material’s
suitability for a given waveguiding functionality.

A simple method to directly measure propagation losses is the so-called cut-back
method, where the transmittances of waveguides having different lengths are compared.
Since it is not easy to guarantee equal quality in different-length samples, measurements
are usually performed by cutting a waveguide to change its length. This method has the
advantage of its simplicity, but it is a destructive technique and requires repetitive high-
quality waveguide edges so that equal input/output coupling efficiencies are achieved for
every measurement.

An alternative waveguide-loss characterization method (the photographic method)
that overcomes the main drawback of the cut-back method is the measurement of the
scattered-light intensity distribution along the waveguide. Provided the waveguide is
nearly uniform, this intensity is proportional to the guided-light intensity at each point.
The scattered light streak can be registered by a camera and the attenuation coefficients
are obtained through image processing. This way, propagation loss coefficients can be
determined for non-negligible-scattering waveguides with nondestructive and noncontact
measurements with a relatively simple configuration.

A scheme of the experimental set-up for the implementation of the photographic
method is shown in Figure 1a. At the moment of the measurement, each cylinder-shape
hydrogel sample is kept fixed and straight by placing it on the groove of a suitable piece (not
shown in the scheme). Light from a laser is then end-coupled and images of the illuminated
sample are taken by means of a computer-controlled Canon EOS 1000D camera, allowing
an independent detection in the R, G and B channels. For each sample, pictures are taken
seeking maximum contrast without reaching saturation. In order to achieve this, apart from
the camera parameters such as exposure time, ISO and aperture, the input laser power was
also modified, within the range of a few mW. Figure 1b shows an example of the pictures
obtained with λ = 450 nm excitation. In order to extract the longitudinal optical intensity
distribution from each picture, several operations have to be performed. First, an area of
the picture is selected, avoiding the section close to the laser power input, where coupling
effects may give rise to an undesired contribution to a lateral light and, in general, both
saturated and very dark regions are also discarded. In addition, it is convenient to avoid
brilliant points corresponding to damaged spots caused by sample manipulation. The
area selected determines a set of M × N pixels, with M and N being the number of pixels
selected in the X and Y directions, respectively (see Figure 1b). We pay attention to the
information they contain at the channel corresponding to the laser wavelength employed.
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This information is a number between 0 and 255 not proportional to but directly correlated
with the light energy received by the pixel. By application of a transform inverse to the one
shown in [14], we obtain a matrix of N × M values proportional to the relative exposure
received at each pixel of the selected region. Finally, in order to reduce noise caused by
surface imperfections, the N values corresponding to each matrix column are averaged so
that an array of M values is obtained. There was the option of directly selecting an M × 1
array of pixels, but we have checked that considering an M × N matrix and performing a
transversal average is worthwhile, as it provides a significant noise reduction.
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Figure 1. (a) Scheme of the experimental setup. Sizes and distances are not drawn to scale. (b) Picture
of a hydrogel sample fed at its left end with the laser centered at 450 nm. The coordinate system to be
employed later is specified.

The correlation between pixel position at the image and coordinate at the object can
be easily obtained by means of a picture of two points aligned with the X axis and whose
distance is accurately measurable.

3. Experimental Results and Analysis
3.1. The Samples

The hydrogels used were based on a cationic electroactive network (CN), shown
in Figure 2 and previously reported by some of the authors [15] (with applications in
the field of soft robotics [16] and with self-healing ability [17]). Further details of the
CN-hydrogel material and synthesis can be found in Appendix A. This kind of hydrogel
is able to retain a certain and constant amount of water in its 3D polymer structure at
ambient conditions (25 ◦C, 1 atm), reaching an “equilibrated” state and remaining stable. In
addition, this hydrogel shows high flexibility together with excellent mechanical properties
in the equilibrated state (E = 457 kPa) and potentially favorable optical properties, such
as a high degree of transparency, which is crucial for low optical loss [1]. Thus, the
measurements were performed in CN-hydrogels in the equilibrated state in order to have a
reproducible system.

The hydrogel samples used for the measurements were cylinder-shaped, with diame-
ters between 3 mm and 4 mm and lengths between 6 cm and 10 cm
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Figure 2. Chemical structure of the CN-hydrogel and digital image of the hydrogel cylinder used for
the measurements.

3.2. Comparison between Photographic and Cut-Back Methods

In this section, we compare the results obtained on a similar sample using the pho-
tographic and cut-back methods. Figure 3 shows an example of the relative exposure
obtained after processing an image obtained in the B channel of the scattered-light intensity
distribution for λ = 450 nm excitation. There, results are fitted to an exponential function,
P(x) = P0 exp(-αx), where P0 and α are the fitting parameters and, in particular, α represents
the attenuation coefficient. The value obtained for the data in Figure 3 is α = 0.45 cm−1.
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Figure 3. Relative exposure vs. longitudinal coordinate (photographic method). Feeding laser
λ = 450 nm. Dots: experimental values; Solid line: fit to exponential decay.

The cut-back method is now applied to a similar sample, with the signal measured at
the waveguide output end plotted in Figure 4 vs. the waveguide length after successive cuts.
The same λ = 450 nm feeding laser is used for the hydrogel-based waveguide excitation. A
value α = 0.47 cm−1 is obtained for this coefficient by means of the cut-off method. Figure 4
shows the results obtained and the fitting decay.
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Figure 4. Photodiode signal at the sample output end as a function of its length (x + 4 cm). Feeding
laser @ 450 nm. It is a similar sample as employed in the photographic method.

The excellent agreement in the values of the attenuation coefficients obtained by both
methods (less than a 4% disagreement) definitely supports the validity of the photographic
methods for attenuation measurements in this kind of sample.

3.3. Determination of the Attenuation Coefficients

The measurement procedure in the photographic method avoids any influence from
I/O coupling or bending losses; therefore, the attenuation coefficients are determined to ac-
count for the possible causes of propagation losses. In our experiments, propagation losses
can be considered to be caused by material absorption and by optical power scattering (due
to small-size material inhomogeneities and surface roughness) that can be also understood
as mode conversion from guided to radiation modes [12]. Hence, the experimental decay
equation can be factorized according to P(x) = P0 exp(-αax) exp(-αsx), where the coefficients
αa and αs account for absorption and scattering losses, respectively, and α = αa + αs.

Material absorbance was experimentally measured, with the absorbance spectrum of
the CN-hydrogel shown in Figure 5.
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From the measured absorbance values, the absorption loss coefficients can be calculated
as: αa(450 nm) = 0.6587 cm−1, αa(532 nm) = 0.4377 cm−1 and αa(633 nm) = 0.3108 cm−1,
although it seems reasonable to assume that a background value αa0 could be affecting
these coefficients.

Since the surface imperfections effect was minimized by the transversal average
conducted during image processing, the remaining scattering loss can be assumed to follow
the Rayleigh λ−4 law and, accordingly, the ratios between the scattering loss coefficients
are αs (450 nm)/αs (633 nm) = 3.9153 and αs (532 nm)/αs (633 nm) = 2.0043. In order
to determine the wavelength-dependent αs, we will take advantage of the independent
detection in the R, G and B channels performed by the camera. A sample was excited
using laser sources centered at 532 nm and 630 nm, with the relative exposure distributions
along the waveguide obtained shown in Figure 6. The corresponding fittings provide
α = 0.21 cm−1 (λ = 532 nm) and α = 0.07 cm−1 (λ = 633 nm).
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A set of Equations (1)–(3) can be established by considering the relationship between
attenuation, absorption and scattering loss coefficients for each wavelength:

(0.3108 − αa0) + αs(633 nm) = 0.07354 (1)

(0.4377 − αa0) + 2.0043αs(633 nm) = 0.20894 (2)

(0.6587 − αa0) + 3.9153αs(633 nm) = 0.45067 (3)

Then, using αa0 and αs(633 nm) as fitting parameters of a least squares procedure, the
absorption and scattering loss values (in dB/cm) in Table 1 have been obtained.
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Table 1. Contributions to attenuation at the three exciting wavelengths used for the measurements.

Wavelength (nm) Absorption Loss (dB/cm) Scattering Loss (dB/cm) Optical Loss (dB/cm) (a)

450 1.78 1.73 × 10−1 1.95

532 8.24 × 10−1 8.79 × 10−2 0.91

633 2.73 × 10−1 4.43 × 10−2 0.32

(a) Optical loss = Absorption loss + Scattering loss.

Although scattering losses are certainly significant, absorption losses are clearly the
largest contribution to propagation losses. Their strong wavelength dependence suggests a
careful selection of the operating wavelength is necessary, where possible. However, taking
into account the several-centimeters length of the hydrogel-based waveguides used for
light distribution in human tissues, the values obtained for the loss coefficients confirm
their suitability for this functionality.

The outcomes obtained indicate that this hydrogel presents excellent optical loss
values similar to others previously reported and collected in Table 2.

Table 2. Optical loss values of several hydrogels previously described in the literature.

Materials Wavelength (nm) Optical Loss (dB/cm) References

PEGDA Hydrogels 400–800 1.25–5.15 [18]

CDs-PEGDA Hydrogels 405 0.55–1.1 [18]

Silicone-based Hydrogels 632 7.5 [19]

PEG-Hydrogels 450–550 0.17–0.68 [4]

PEGDA-DDT 405–520 0.1–0.4 [2]

PEGDA 700–alginate hydrogel 492 0.32–0.42 [20]

PAM–alginate hydrogel 400–700 0.4 [21]

PAM hydrogel 532 1–11 [5]

PEGDA: Poly(ethylene glycol) diacrylate. PEG: Poly(ethylene glycol); PAM: Polyacrylamide.

The waveguide properties found for this CN-based hydrogel, as well as their use in
soft robotics [14] and self-repair [15] described by our group, increase their potential and
their use in the field of soft robotics and perhaps in light-based therapies. It should be
noted that the hydrogel also presents excellent transparency and high stability due to the
fact that it is in a stabilized state and, therefore, there is no loss of water, thus maintaining
its structure. In addition, the structure can be chemically modulated in order to modulate
the properties.

4. Conclusions

A method to determine the contributions to the attenuation of optical power along a
hydrogel-based waveguide has successfully been validated against the well-established
but experimentally more demanding cut-back method. This methodology allows the deter-
mination of this parameter without destroying the sample. Using this method, from the
hydrogel absorption spectrum and the lateral-scattering intensity longitudinal distributions
in the three camera R, G and B channels, the absorption and scattering losses coefficients of
the hydrogel-based waveguides can be readily determined. In particular, for the CN-based
hydrogel waveguides used for the measurements, the results confirm their good optical
loss values, similar to those previously described. These findings indicate their potential
application as a biomaterial in soft robotics and light-based therapies.
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Appendix A

Materials
[2-(Acryloyloxy)ethyl]trimethylammonium chloride solution (AETA) and N,N’-

methylenebis(acrylamide) (MBA) were purchased from Merck (Madrid, Spain). Ultrapure
water was obtained from an ICW-3000TM water purification system (Millipore). Sodium 2,4,6-
trimethylbenzoylphosphonate (NaTPO) was synthesized according to Benedikt et al. [22].
Synthesis of CN-hydrogel

The CN-hydrogel was prepared by dissolving AETA (80% wt in water) (6.4 g, 26.4 mmol,
44.82 wt%) and MBA (0.01 g, 0.06 mmol, 0.08 wt%) in 5 mL of Milli-Q water (5 g, 270 mmol).
After the homogenization of the mixture, the photoinitiator NaTPO (0.020 g, 0.06 mmol,
0.17 wt%) was added and the sample was stirred until the mixture was also totally ho-
mogenized. The photopolymerization process was performed just after the addition of the
initiator by exposing the sample to UV light (365 nm, 1.2 W) for 2 min in silicon cylinder
molds (4.5 mm diameter × 110 mm length). When the photopolymerization reaction is
completed, the hydrogel was dried under ambient conditions (25 ◦C, 1 atm) for 72 h to
obtain the equilibrate state.
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