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Abstract: Establishing an excellent recycling mechanism for containers is of great importance for 
environmental protection, so many technical approaches applied during the whole recycling stage 
have become popular research issues. Among them, classification is considered a key step, but this 
work is mostly achieved manually in practical applications. Due to the influence of human 
subjectivity, the classification accuracy often varies significantly. In order to overcome this 
shortcoming, this paper proposes an identification method based on a Recursive Feature 
Elimination-Light Gradient Boosting Machine (RFE-LightGBM) algorithm using electronic nose. 
Firstly, odor features were extracted, and feature datasets were then constructed based on the 
response data of the electronic nose to the detected gases. Afterwards, a principal component analysis 
(PCA) and the RFE-LightGBM algorithm were applied to reduce the dimensionality of the feature 
datasets, and the differences between these two methods were analyzed, respectively. Finally, the 
differences in the classification accuracies on the three datasets (the original feature dataset, PCA 
dimensionality reduction dataset, and RFE-LightGBM dimensionality reduction dataset) were 
discussed. The results showed that the highest classification accuracy of 95% could be obtained by using 
the RFE-LightGBM algorithm in the classification stage of recyclable containers, compared to the original 
feature dataset (88.38%) and PCA dimensionality reduction dataset (92.02%). 

Keywords: electronic nose; contaminant classification; recursive feature elimination; light gradient 
boosting machine 
 

1. Introduction 
The recycling of containers can not only effectively decrease the disposal pressure of 

waste and reduce environmental pollution, but can also provide a large number of job 
positions [1]. The recycling of containers involves a series of steps such as classification 
and identification, cleaning, drying, shredding, and regeneration. Of all these steps, 
classification is the most important [2,3], because recycling value will be effectively 
increased by classifying waste containers. However, many factors such as the container’s 
size [4], color [5], pose [6], shape [7], external damage [8], internal contamination [9], and 
material [10] make achieving highly accurate classification and identification very 
challenging. 

At present, the classification and identification of containers are mainly carried out 
manually, and have the limitations of high cost and low efficiency [11,12]. Additionally, 
some residual toxic and harmful gases may exist in those containers, which could hurt 
human health [13,14]. In addition, the subjectivity of the inspector can lead to inconsistent 
results [15,16]. To solve the above-mentioned problems, research into identification 
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methods based on intelligent devices has become a popular research domain in recent 
decades. For example, Wang et al. [17] classified plastic bottles with different position 
relationships and colors based on image recognition, but detection inside the containers 
was not considered, and the experimental platform required strict lighting conditions. 
Dimitris et al. [18] used an online cloud computing platform with a distributed 
architecture for solid waste classification; therefore, the response speed limited its 
application for fast detection. Zhang et al. [19] proposed a recyclable waste classification 
model based on the combination of image classification and deep learning, and confirmed 
that this model could improve classification results on the TrashNet dataset; however, this 
model required a very large amount of clear image data for training, and its reliability was 
unstable. Wang et al. [20] proposed an innovative design concept of a smart recycling 
system based on Extenics to solve conflicts in cosmetic container recycling, but different 
categories of cosmetic containers were not investigated in this study. 

Using an electronic nose system is a promising approach to solving the problems of 
classification and identification of contaminants. Actually, electronic noses have been 
proven to be effective for the classification and identification of contaminant gases. For 
instance, Wen et al. [21] detected the odors of rotten fruits with the help of an electronic 
nose, and achieved efficient identification of fruit freshness. Savirio et al. [22] applied an 
electronic nose to pre-adhesive recognition of relevant pollutants on the surface of 
composite fiber-reinforced polymers (CFRP). Herrero et al. [23] used an electronic nose to 
classify and quantify different pollutant gases in the air. Zhang et al. [24] identified six 
indoor air pollutants (formaldehyde, benzene, toluene, carbon monoxide, ammonia, and 
nitrogen dioxide) as air quality indicators, and classified the data collected using an 
electronic nose. Liu et al. [25] proposed a non-destructive method for detecting peach 
fungal contamination using an electronic nose, and showed that the electronic nose has 
high discrimination accuracy. Mesías et al. [26] also used an electronic nose as the 
predictive tool for detecting the chemical pollutants in roasted almonds. 

In this paper, a model based on the Recursive Feature Elimination-Light Gradient 
Boosting Machine (RFE-LightGBM) algorithm is proposed in the classification stage of 
contaminants for recyclable containers. Based on the experimental results of using the 
proposed model, the difference in the classification accuracies on three datasets (the 
original feature dataset, principal component analysis (PCA) dimensionality reduction 
dataset, and RFE-LightGBM dimensionality reduction dataset) was firstly investigated. 
Subsequently, the PCA method and RFE-LightGBM algorithm were applied to reduce the 
dimensionality of the feature dataset, and the differences between the two methods were 
analyzed, respectively. Finally, the classification accuracies on these three datasets were 
discussed as well. 

2. Algorithm Theory 
Figure 1 shows the flowchart of the contaminant classification model proposed in 

this paper, which mainly consists of three processes: the data collection process, data 
feature process, and classification and identification process. 
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Figure 1. Flowchart of the contaminant classification approach based on the RFE-LightGBM 
algorithm using electronic nose. 

2.1. Light Gradient Boosting Machine (LightGBM) 
The main idea of the optimal feature splitting point in the LightGBM algorithm 

[27,28] is as follows: 
Assuming a dataset containing M samples and N features is given, LightGBM is an 

integrated model composed of K basic models, where each basic model represents a tree 
(representing different categories). Therefore, the predicted output of the integrated 
model can be expressed as Formular (1): 

1

ˆ ( ) ( )
K

i i k i
K

y x f x
=

= φ =  (1)

where ix  is the characteristic value of the gas sample, kf  is the predicted value of the 

K-th tree, and ˆiy  represents the current predicted value. Equation (1) represents the sum 
of the predicted values of K regression trees (the weights of the leaf nodes divided 
according to the corresponding decision rules of the regression tree) given an input ix . 
By iterating on each prediction tree and fitting the current difference to obtain the optimal 
model, we define the objective function as Formular (2): 

m

1 1

ˆtarget= ( , ) ( )
K

i i k
i K
l y y f

= =

+ Ω   (2)

where ˆ( , )i il y y  is the loss function between the predicted value and the actual value. 

( )kfΩ  represents the penalty term for the complexity of the model to balance the 
complexity of the model, and can be determined using Formular (3): 

21( )
2kf T ωΩ = μ + λ  (3)

where μ and λ represent the penalty coefficient, T represents the number of leaf nodes for 
a given tree, and || ω||2 is the square of the number of nodes on each leaf (predicted to 
be of the same category). When training the K-th tree, the first two K-1 trees in the front 
are known, and the unknown is the K-th tree. That is, based on the known decision tree 
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constructed earlier, the K-th tree is constructed, and the predicted value of the K-th tree is 
represented by Formular (4): 

( ) ( 1)ˆ ˆ ( )k k
i i k iy y f x−= +  (4)

Taking Formular (4) into Formular (2), Formular (5) can represent the new objective 
function obtained: 

( 1)

1

ˆtarget ( ( ), ) ( )
m

k
i k i i k

i
l y f x y f C−

=

= + + Ω +  (5)

Then the second-order Taylor approximation formular can be used to expand the 
objective function, as shown in Formular (6): 

( 1) 2

1

1ˆ ˆtarget ( , ) ( ) ( ) ( )
2

m
k
i i i k i i k i k

i
l y y g f x h f x f C−

=

 = + + + Ω +  
  (6)

where ( 1) ( 1) 2 2 ( 1) ( 1) 2ˆ ˆ ˆ ˆ( ) , ( )k k k k
i i i ig y y y h y y y− − − −= ∂ − = ∂ −  in Formular (6) is the first 

derivative and the second derivative of the Loss function, respectively; the best 
classification characteristics are determined using Formular (7). 

j
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= =  The final objective function can be represented as follows: 
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Finally, the information gain of all features is determined according to Formular (9): 

( )22 21
2

L RL R

L R L R

G GG GGain
H H H H

μ
λ λ λ

 +
= + − − 

+ + + +  
 (9)

Among them, GL + GR = HL + HR is the left and right branch sample set, split based on 
the best feature. The larger the value of the gain, the more it can reduce the loss of the 
objective function after splitting. This method can sort features based on the ranking of 
information gain and select the feature with the highest gain as the optimal splitting point. 

2.2. Recursive Feature Elimination-Light Gradient Boosting Machine (RFE-LightGBM) Feature 
Selection Algorithm 

LightGBM was used as the base model for the feature recursive elimination 
algorithm to model the original dataset in this study. After the corresponding weight 
values were calculated, all features could be sorted according to their weight values. Then, 
the features with the lowest weight values were successively deleted from the feature 
dataset using recursive feature elimination (RFE) [29–32], and the features were iterated 
circularly (the iteration number is equal to the dimension of the original feature dataset). 
Finally, sorting tables related to the multiple feature weight values could be obtained. The 
feature selection algorithm based on RFE-LightGBM is shown in Figure 2. 
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Figure 2. Flowchart of the data feature process based on the RFE-LightGBM algorithm. 

2.3. Algorithm Evaluation Criteria 
In order to obtain the optimal feature subset, the classification accuracy 

(ACC=(TP+TN)/(TP+TN+FP+FN)) [33] was used to evaluate the score of each feature subset. 
The feature subset with the highest accuracy score was chosen as the best feature dataset to 
verify the classification results of the test data obtained based on the proposed model. 

3. Materials and Methods 
3.1. Electronic Nose System 

Figure 3 shows the schematic of the electronic nose system used in this work, which 
consists of three components: a gas sensing array (10 homemade MEMS metal oxide 
sensors; because different sensors have different sensitivities to different gases, it is better 
to choose sensors with high sensitivity for different practical applications) [34,35]; a gas 
collection module; and a data acquisition module. The sensor parameters of the gas 
sensing array are listed in Table 1. The gas collection module is made of a 2L PE box and 
equipped with three pumps (the flow rate is approximately 800 mL/min). During the 
whole process of the experiment, the equipment, including the pumps, is controlled by a 
computer. The data acquisition module collects the response signal of the electronic nose 
to the detected gas and transfers it to the computer. 
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Figure 3. Schematic of the electronic nose system used in the current work. 

Table 1. Characteristics of the employed sensors in the electronic nose system. 

Sensor Main Test Objects Detection Range 
(ppm) 

Response 
Time (s) 

S1 Ethanol, Acetone, Hydrogen Sulfide 0.1–500 <20 
S2 VOCs, Smog 1–500 <10 
S3 Ethanol, Hydrogen Sulfide, Acetone 1–500 <20 
S4 Hydrogen 0.1–300 <10 
S5 Hydrogen Sulfide 0.5–300 <20 
S6 Ammonia 10–300 <10 
S7 Ethanol 1–500 <20 
S8 VOCs 10–500 <20 
S9 Hydrogen Sulfide, Carbon Monoxide 1–500 <10 

S10 Acetone, Hydrogen Sulfide 0.1–500 <10 

3.2. Experimental Procedures 
In this work, barreled water buckets were used as recyclable containers. Under 

relatively fixed temperature and humidity conditions, the electronic nose system built in 
3.1 was used to classify and identify contaminant gases in the recyclable container.  

For 5 consecutive days, residual gases (cigarette butts, coffee, liquor, and vinegar) in 
3 concentration levels (10%, 30%, 50%), and uncontaminated barrels (100%) were classified 
into 13 categories. Each category of gas was detected 20 times each day (all the substances 
to be detected were poured out from the containers before measurement), so that a total of 
100 data were obtained for each category of gas sample. The contaminant (taking coffee as 
an example, representing the ratio of the coffee volume to the whole volume of a barreled 
water bucket) and the percentage concentration of the experimental sample (e.g., a 
concentration of 50% means the volume ratio of contaminant in the recyclable container 
before measurement, which is expressed as the gas concentration in the recyclable container) 
are listed in Table 2. Details of the experimental procedure are as follows: 
(1) The sensing array was preheated for 30 s to bring the baseline sensor resistance 

values to a steady state. 
(2) The aspirator pump was turned on at the 30 s mark, and sent the gas to the detection 

chamber. The response signal of the sensor to the gas during the pumping time was 
collected. 

(3) The aspirator pump was turned off at the 35 s mark, and the gas washing pump and 
air outlet pump were turned on (purging the gas detection chamber with ambient 
air) until all sensor resistance values returned to the original baseline values. 
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(4) Repeat the operations of steps 1–3 until data collection is completed for all target 
detectors. 

Table 2. The composition and concentration of experimental sample gases. 

Sample Label Contaminant Gas percentage Concentration 
G0 Water 100% 
G1 Cigarette 10% 
G2 Cigarette 30% 
G3 Cigarette 50% 
G4 Coffee 10% 
G5 Coffee 30% 
G6 Coffee 50% 
G7 Liquor 10% 
G8 Liquor 30% 
G9 Liquor 50% 
G10 Vinegar 10% 
G11 Vinegar 30% 
G12 Vinegar 50% 

4. Results 
4.1. Response Curve of the Electronic Nose System 

Affected by different sensitive materials, sensors will have different response 
sensitivities to the same target gas [36–38]. Moreover, environmental factors could also 
cause the baseline fluctuation of the sensors [39,40]. In order to eliminate these effects, we 
processed the collected signals according to the following formular: 

min( )
max( ) min( )
x xvalues
x x

−=
−

 (10)

where x, min (x), and max (x) represent all the original data of each sensor, the minimum, 
and the maximum value in the data, respectively. Figure 4 shows the result curve of the 
raw data processed according to Formular (10). The horizontal axis represents the 
detection time, and the vertical axis represents the value after the change in the original 
data. It can be observed that the sensor array reached a stable state during the preheating 
phase (0–30 s). When the gas enters the detection chamber (30 s: black dashed line), the 
resistance values of the sensor array will decrease with the increase in the concentration 
of the gas. After stopping the gas supply, the resistance values of the sensor array return 
to the initial steady state with time. 
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Figure 4. Curves of the original response data, processed according to Formular (10) for sample G0. 

4.2. Feature Datasets Constructed by Manual Methods 
In this study, we extracted four steady-state features and three transient features 

from the pre-processed signals of each sensor [41], with a total of 15 features (1 + 1 + 1 + 1 
+ 1 + 1 + 5 + 5 = 15). The features extracted from all sensors (10 in total) are represented by 
different colors, and all the features are connected in order to form a feature vector that 
includes 150 features (10 × 15 = 150). Additionally, all the sample feature vectors are 
stacked together to form a feature dataset, as shown in Figure 5. The data collected by 
each sensor during the pumping period were defined as xi, and their detailed description 
is shown in the formular in Table 3 (where max min,i ix x  represent the maximum value and 
minimum value). 

 
Figure 5. Schematic of the original feature dataset construction. 

Table 3. Gas features extracted using manual methods. 

Symbol Mark Number Feature Description Function 
D 1 Difference max min

i ix x−  

R 1 Relative difference max min
i ix x  

F 1 Fractional difference max min min( )i i ix x x−  

L 1 Logarithm difference ( )max minlog i ix x  

I 1 Integral 
5

0

( )ix t dt  

DE 5 Derivative ( )idx t dt  

SD 5 Second derivative 2 2( )id x t dt  

4.3. Dimensionality Reduction of Feature Datasets 
The feature dataset constructed using the above method has high dimensionality 

(with each feature vector containing 150-dimensional features). In order to speed up the 
model training, pre-processing of the feature dataset is necessary for eliminating the 
redundant features before training. 

In the field of gas identification, principal component analysis (PCA) is a widely used 
method [42]. Figure 6 shows the variance contribution of each principal component 
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calculated using the PCA method, and the cumulative variance contribution of the first 
two and three principal components is 93.93% and 96.71%, respectively. When 
considering the first 10 principal components, the cumulative variance contribution could 
reach up to 99.78%. 

 
Figure 6. Cumulative variance of the principal components of the original feature dataset through 
PCA analysis. 

Figure 7 shows the visualization results of the original feature dataset after 
dimensionality reduction using PCA. It can be observed that when only the first two 
principal components are focused, there is a large amount of overlap between different 
categories, indicating that PCA cannot classify well (Figure 7a). Figure 7b shows the 
sample visualization distribution when applying the first three principal components. 
Here, the displayed classification effect is more obvious. It can also be seen that the ability 
to distinguish different samples has improved, but there are still some overlapping 
samples. 

 
Figure 7. Visualization distribution of PCA analysis: (a) scatterplot of the first two principal 
components; (b) scatterplot of the first three principal components. 

Figure 8c shows the percentile weight values obtained using the RFE-LightGBM 
method for the features. The feature with the highest score is I-S6 (which is the integral 
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feature of the sixth sensor), which means this feature provides the greatest information 
gain in classification. In contrast, as shown in Figure 8b, all the fractional difference feature 
contribution values were zero. This means that this type of feature is completely unhelpful 
for the classification. In addition, it can be seen in Figure 8a that only 26 features have 
contribution values higher than 0.01. Therefore, in order to reduce the dimensionality of 
the feature dataset, features with relatively low contribution rates could be discarded. 

 
Figure 8. Information gain calculated according to the RFE-LightGBM method: (a) features with an 
information gain weight value higher than 0.01; (b) features with an information gain weight value 
of zero; (c) percentage of information gain weight value for all features. 

Table 4 shows 26 features with weight values greater than 0.01, with a total of 0.8442. 
Among them, integral features and derivative features made up a high proportion (17/26), 
which also indicates they make high contributions to gas identification. This shows that 
the integration features and derivative features can accurately express the information of 
the original data. Integral features can provide the best features, and derivative features 
can explain the rate and acceleration of the reaction. At the same time, the number of 
features formed by sensors S6, S7, and S8 correspond to 16/26. This shows that these 
features may have a significant impact on the classification and identification results. 
Therefore, the result confirms that the RFE-LightGBM method can utilize the original data 
information preserved in a small number of features in the model. 

Table 4. Weight value details of the first 26 obtained features higher than 0.01, obtained using RFE-
LightGBM analysis. 

Feature Name Importance 
I-S6 0.1571 
I-S2 0.1246 
L-S7 0.0607 

DE5-S9 0.0484 
SD4-S6 0.0458 

R-S6 0.0334 
L-S6 0.0327 
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I-S8 0.0301 
DE4-S5 0.0292 
DE4-S7 0.0287 

D-S3 0.0250 
DE5-S8 0.0247 
DE5-S7 0.0236 

D-S1 0.0194 
SD4-S7 0.0187 

R-S8 0.0183 
DE4-S10 0.0167 
SD4-S2 0.0161 

D-S6 0.0127 
L-S1 0.0121 

DE4-S8 0.0121 
R-S9 0.0116 

DE2-S7 0.0112 
DE3-S6 0.0110 
DE5-S3 0.0102 
DE3-S7 0.0101 
SUM 0.8442 

Figure 9 shows the importance score of each feature on different sensors. The larger 
values represent greater contributions to gas classification and identification. In addition, 
it can be seen that the feature weight of S4 is relatively low, which also indicates that S4 
has a relatively small impact on the identification result. Therefore, removing S4 may not 
only reduce the amount of data generated and shorten the time for feature preprocessing, 
but also further reduce the power consumption of the sensor. In summary, the application 
of RFE-LightGBM in the field of gas identification not only effectively optimizes the 
sensing array, but also reduces the dimensionality of the feature dataset, thereby utilizing 
a small number of features to retain a large amount of original information. 

 
Figure 9. Percentages of feature information gain weight values for each sensor. 

The visualized distribution of samples obtained using the RFE-LightGBM feature 
selection method was shown in Figure 10. The distribution of samples in different 
categories using the first two features is shown in Figure 10a. Although there are still 
overlapping phenomena between different categories, it is obviously lower than PCA. The 
visualization using the first three features also yielded the same conclusion (Figure 10b). 
After using the RFE-LightGBM method for feature selection, the distinction between 
different samples is more obvious. 
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Figure 10. Visual distribution of samples after feature selection using the RFE-LightGBM method: 
(a) scatterplot of the first two principal components; (b) scatterplot of the first three principal 
components. 

5. Discussion 
In this paper, a BPNN (back propagation neural network) model with one hidden 

layer [43] was constructed as a classifier. The number of input layers was equal to features, 
the number of output layers was equal to categories, and the categories were labeled with 
one-hot coding. The number of neurons in the hidden layer was defined as 10, and 
sigmoid was used as the activation function. To prevent the overfitting of the model, a 
five-fold cross-validation was used in the training process. 

In order to compare the influence of different feature processing methods on the final 
classification results, 80% of the data from three datasets (randomly divided among the 
original feature dataset, PCA dimensionality reduction dataset, and RFE-LightGBM 
dimensionality reduction dataset) were used for model training. The remaining data were 
used for model validation, and the results obtained are shown in Figure 11. The original 
feature dataset (1–150 dimensional features) obtained an average classification and 
identification accuracy of 88.38%. At the same time, one can also see that most PCA 
methods achieved lower accuracy than the RFE-LightGBM method. Compared with the 
PCA method, the RFE-LightGBM method can not only reduce the dimensions of the 
original feature dataset, but also obtain 94.84% classification accuracy using the first 18 
features. 

 
Figure 11. Classification accuracies of the different methods for randomly divided datasets. 
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When performing gas identification, odors can change over time, which in turn is 
reflected by differences in the collected data. For example, Mahdi et al. [44] classified a 
variety of cheeses with different storage periods, Huang et al. [45] used RBF-ANN to 
assess fish freshness, and Madiha et al. [46] applied an electronic nose system for 
determining milk storage dates. The above studies have proved that the gas data collected 
on different days will affect the identification results. Therefore, when the electronic nose 
system is used to detect recyclable containers, the storage time of the contaminants in the 
containers will interfere with the final classification accuracy. If time interference can be 
overcome, the misclassification rate can be effectively reduced, and thus the robustness of 
the classification model can be significantly improved. Consequently, to explore the effect 
of gas data collected on different days on the classification and identification results, we 
divided the data into five schemes. We used different days of data as the training dataset 
and unknown days of data as the testing dataset, as shown in Table 5. 

Table 5. The datasets constructed according to the time of acquisition. 

Datasets 
Number of Days of Training 

Data Collection 
Number of Days of Testing 

Data Collection 
Scheme 1 2-3-4-5 1 
Scheme 2 1-3-4-5 2 
Scheme 3 1-2-4-5 3 
Scheme 4 1-2-3-5 4 
Scheme 5 1-2-3-4 5 

The training and testing datasets were divided into five datasets (see Table 5) to 
compare the effect of different feature preprocessing methods on the final classification 
results of each scheme. Figure 12 shows the recognition accuracy of the scheme 1 dataset. 
We used the original feature dataset of 1–150 dimensions to train the model, and obtained 
an average accuracy of 81.15%. Meanwhile, we observed that most PCA methods had 
lower recognition accuracy than that of the average of the original feature dataset. PCA is 
an efficient dimensionality reduction method, and can reduce the computational 
complexity of the model. However, the traditional PCA method in the field of gas 
identification is not a good way to classify the samples. The RFE-LightGBM method can 
not only reduce the dimension of the feature dataset, but can also significantly improve 
the final classification effect. When the first 20 features were used for model training, the 
highest verification accuracy reached 94.23%. In addition, it can be observed in Figure 11 
and Figure 12 that the average classification accuracy of the 1-150-dimensional original 
feature dataset decreased. The classification accuracy obtained using the PCA method is 
significantly reduced, indicating that the gas data collected on different days have 
different principal components. Moreover, the RFE-LightGBM method still shows good 
classification accuracy. Therefore, the application of the RFE-LightGBM method for 
feature selection can overcome the impact of odor changes over time. 
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Figure 12. The classification accuracy of the scheme 1 dataset based on different methods. 

Table 6 shows the classification accuracy of various data-partitioning schemes under 
different methods. It can be observed that the dimensionality of the feature dataset can be 
reduced via the PCA method, but the classification accuracy of the validation dataset also 
decreases significantly. In contrast, the application of the RFE-LightGBM method can not 
only reduce the dimensionality of the feature dataset, but also improve the classification 
accuracy. Even if the validated gas data come from different days, our built model 
achieves the best performance and also shows good classification and identification 
ability, where the highest validation accuracy result reaches 95.00%. 

Table 6. Comparison of the final classification results of different data-processing methods. 

Dataset Random Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
Average accuracy of raw feature 

data 88.38% 81.15% 85.38% 84.23% 83.85% 83.46% 

Maximum accuracy of PCA 92.02% 71.54% 70.38% 75.77% 74.62% 62.31% 
RFE-LightGBM highest accuracy 94.84% 94.23% 93.08% 95.00% 93.46% 94.23% 

6. Conclusions 
In this paper, an electronic nose system using the RFE-LightGBM algorithm was 

employed to classify and identify the contaminants in recyclable containers. The main 
results are as follows: 

i. The use of electronic nose systems in the classification and identification of recyclable 
containers can compensate for the shortcomings of manual and other intelligent 
devices. 

ii. Compared with PCA, RFE-LightGBM is an effective feature extraction method. It can 
not only reduce the dimensionality of the feature dataset, but also improve the 
classification accuracy. 

iii. Using the RFE-LightGBM method in gas classification can overcome the influence of 
odor change over time. The highest classification accuracy reaches 95%. 
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