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Abstract: With the continuous development of wireless communication technology, the frequency
band of 6G communication systems is moving towards higher frequencies such as millimeter waves
and terahertz. In such high-frequency situations, wireless transmission requires antenna modules to
be provided with characteristics of miniaturization, high integration, and high gain, which presents
new challenges to the development of antenna technology. In this article, a 4 × 4 antenna array using
multilayered low-temperature co-fired ceramic is proposed, operating in W-band, with a feeding
network based on substrate-integrated waveguide, and an antenna element formed through the
combination of a substrate-integrated cavity and surface parasitic patches, which guaranteed the
array to possess the advantages of high integration and high gain. Combined with the substrate-
integrated waveguide to a rectangular waveguide transition structure designed in the early stage, a
physical array with a standard metal rectangular waveguide interface was fabricated and tested. The
test results show that the gain of the antenna array is higher than 18 dBi from 88 to 98 GHz, with a
maximum of 20.4 dBi.

Keywords: LTCC; antenna array; substrate-integrated waveguide; millimeter wave

1. Introduction

With the advancement of modern wireless communication and radar systems, the
research focus has shifted towards antenna systems operating in the millimeter wave
and terahertz frequency bands. The W-band, ranging from 75 to 110 GHz with a central
frequency of 94 GHz, falls within the atmospheric window with excellent atmospheric
penetration capabilities, making it ideal for high-frequency communication systems [1].
The wavelength in this band is approximately 3 mm, and due to its wide spectrum, low
atmospheric absorption, and high spatial resolution, the W-band wireless communication
transmission technology holds significant research value for applications such as high-
resolution passive imaging systems, high-precision radars, high-speed communications,
and gigabyte point-to-point data transmissions [2]. The performance and gain of antennas
play a crucial role in enabling these functionalities.

Various types of antennas, including parabolic reflector antennas, horn antennas,
metal waveguide slot antennas, and microstrip patch antennas, have been extensively in-
vestigated in microwave and millimeter-wave wireless systems [3–8]. However, traditional
reflector antennas, horn antennas, and metal waveguide slot antennas face challenges such
as a high cost, complex three-dimensional structures, large volumes, and low integration
capabilities, limiting their practical use in cost-sensitive commercial applications [3–5].
Although antennas based on microstrip lines, like microstrip patch antennas, offer advan-
tages such as low cost, small size, and easy integration, conventional feed networks based
on microstrip lines suffer serious losses at discontinuities and curves in the millimeter
wave band, leading to low radiation efficiency and high sidelobe levels [6–8]. To address
these issues, the use of substrate-integrated waveguide (SIW) has gained popularity due
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to its low loss characteristics similar to metal waveguides and ease of integration similar
to microstrip lines [9,10]. SIW is particularly well-suited for antenna feeding networks in
high-frequency millimeter wave bands, and has been widely applied to various antennas in
research papers in recent years. For example, circularly polarized and dual-polarized slot
antennae can be achieved [11,12], and a multi-band design is also optional [12,13]; Ref. [14]
realized a compact SIW slot filtering antenna, and Refs. [15–17] explored the design of SIW
horn antennas.

Moreover, the substrate-integrated cavity (SIC), derived from SIW, can serve as the
radiation unit structure in millimeter-wave antenna arrays. While SIC-based radiation
units may exhibit low gain and poor radiation efficiency, the incorporation of high-order
mode technology can enhance the antenna array’s performance [18–21]. In comparison to
recent methods involving antenna arrays on Printed Circuit Board (PCB) substrates and
ridge waveguide feeding networks fabricated through metal processing [22,23], utilizing
low-temperature co-fired ceramics (LTCCs) as the ideal multi-layer ceramic substrate pro-
cessing technique makes it possible to achieve the integration of SIW-based feed networks
and SIC-based antenna unit structures, resulting in a more compact structure. Although
3D-printed or meta-material can provide a convenient design and remarkable radiation
performance [24,25], LTCC offers lower costs and increased reliability, and is well-suited
for mass production with miniaturization capabilities. Additionally, it eases restrictions
on the integration of antenna systems and other processing components. Thus, this paper
concentrates on the design of an antenna array utilizing substrate-integrated waveguide
(SIW) and substrate-integrated cavity (SIC) technologies, fabricated through the LTCC
process to create a W-band antenna array measuring 12 mm × 12 mm × 0.9 mm in size.
The topology of the antenna array is depicted in Figure 1.
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2. Materials and Methods
2.1. Design of Substrate-Integrated Waveguide Feeding Network

To achieve high-gain characteristics of an antenna array, a low-loss feeding network is
crucial. However, traditional feeding networks based on microstrip lines represent draw-
backs such as high loss and discontinuity in the millimeter-wave and terahertz frequency
bands. Considering the multi-layer processing capabilities of low-temperature co-fired ce-
ramics, this design selected substrate-integrated waveguide as the foundation to construct
the feeding network due to its ease of manufacture and relatively low high-frequency loss.

The basic structure of the SIW feeding network is a T-junction power divider structure,
as shown in Figure 2 (the picture is the ideal model, the actual model needs to replace the
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side wall with arranged metal vias, and the upper and lower surfaces are coated with metal
layers). Additionally, a metal column is included at the T-junction position. By adjusting
the position of the metal column, it can effectively regulate the power distribution ratio
and the matching characteristics of the two output ports.
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Through the multi-stage cascade of T-junctions, power distribution networks of 1–4
and 1–8 can be constructed based on the 1–2 T-junction network. The position of the metal
columns and the length of the arms at each stage are adjustable parameters that impact
the final power distribution characteristics. The final 4 × 4 array feeding network, as
shown in Figure 1, was optimized by utilizing metal vias of various radii to achieve better
transmission performance. The different colored cylinders in the figure represent different
via sizes.

In addition to the SIW power distribution network, consideration must also be given
to the feeding structure of the antenna unit. Inspired from the commonly used gap feeding
structure in metal waveguides, a slot can be created along the direction of electromagnetic
wave transmission at the top of the SIW. Furthermore, a ground metal column can be
inserted at the midpoint of the gap on the symmetrical side to enhance the transmission
efficiency of the slot, as depicted in Figure 3. This structure, commonly found at the end of
SIW feeding networks, has been discussed in existing studies [26–29].

Micromachines 2024, 15, x 3 of 17 
 

 

construct the feeding network due to its ease of manufacture and relatively low high-fre-
quency loss. 

The basic structure of the SIW feeding network is a T-junction power divider struc-
ture, as shown in Figure 2 (the picture is the ideal model, the actual model needs to replace 
the side wall with arranged metal vias, and the upper and lower surfaces are coated with 
metal layers). Additionally, a metal column is included at the T-junction position. By ad-
justing the position of the metal column, it can effectively regulate the power distribution 
ratio and the matching characteristics of the two output ports. 

 
Figure 2. T-junction power divider structure. 

Through the multi-stage cascade of T-junctions, power distribution networks of 1–4 
and 1–8 can be constructed based on the 1–2 T-junction network. The position of the metal 
columns and the length of the arms at each stage are adjustable parameters that impact 
the final power distribution characteristics. The final 4 × 4 array feeding network, as shown 
in Figure 1, was optimized by utilizing metal vias of various radii to achieve better trans-
mission performance. The different colored cylinders in the figure represent different via 
sizes. 

In addition to the SIW power distribution network, consideration must also be given 
to the feeding structure of the antenna unit. Inspired from the commonly used gap feeding 
structure in metal waveguides, a slot can be created along the direction of electromagnetic 
wave transmission at the top of the SIW. Furthermore, a ground metal column can be 
inserted at the midpoint of the gap on the symmetrical side to enhance the transmission 
efficiency of the slot, as depicted in Figure 3. This structure, commonly found at the end 
of SIW feeding networks, has been discussed in existing studies [26–29]. 

 
Figure 3. SIW slot feeding structure. 

Considering that this slot feeding structure contains the direction change in the elec-
tromagnetic wave transmission, along with the feature of the LTCC multi-layer stacking 
process, this study introduces a novel stepped structure to enhance the original feeding 

Figure 3. SIW slot feeding structure.

Considering that this slot feeding structure contains the direction change in the elec-
tromagnetic wave transmission, along with the feature of the LTCC multi-layer stacking
process, this study introduces a novel stepped structure to enhance the original feeding
structure design. This advancement demonstrated improved transmission characteristics
for the slit feed, as illustrated in Figures 4 and 5.
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2.2. Antenna Array Design
2.2.1. Antenna Unit Design

The antenna unit structure based on substrate-integrated cavity is depicted in Figure 6.
It was fabricated using four layers of LTCC substrate, each with a thickness of 0.094 mm.
The bottom surface served as a metal layer, with the feeding located at the center slot.
Surrounding the slot, there was a ring of metal vias that were strategically arranged.
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The basic radiation performance of the SIC antenna unit was influenced by various
key parameters, which included the size of the feeding slot, and the shape and dimensions
of the cavity. Furthermore, enhancements can be made to the radiation unit, while two
primary improvement ideas were proposed. The first suggestion involved adding parasitic
microstrip patches atop the cavity to manipulate the radiation mode of the electromagnetic
wave, making the radiation power more concentrated to the designed frequency band. The
second idea involved excavating a portion of the dielectric material within the cavity to
reduce dielectric loss, and in extreme cases, all the dielectric material can be removed to
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create the substrate-integrated horn antenna. Upon considering the minimum spacing
between the excavated cavity boundary and metal via in the LTCC manufacture rules, it was
determined through simulation analysis that the second optimization method mentioned
above may not have yielded satisfactory results. Nevertheless, during attempts to construct
a substrate-integrated horn antenna, expanding the cavity aperture layer by layer was
discovered to enhance radiation performance. Consequently, the structure of expanding
the aperture layer by layer was adopted in subsequent antenna unit designs.

When incorporating parasitic patches to optimize the antenna unit transmission perfor-
mance, various parameters such as the number, shape, and positioning of the patches could
be adjusted to achieve different optimization effects. The model shown in Figure 6 was
the most simplified model with only two patches. The patch size measured Wp = 0.55 mm
and Lp = 0.7 mm, with a patch spacing of 0.2 mm, while the length of the feeding slot
Ls = 0.9 mm, and the width of the slot Ws = 0.2 mm. In addition, the space between the
metal vias was 0.17 mm, which was the minimum value allowed by the LTCC process, and
was adopted to achieve optimal performance.

Under such settings of parasitic patches, the simulated electric field distribution within
the cavity is illustrated in Figure 7. This distribution represents the TM211 radiation mode,
enabling higher radiation gain. The antenna pattern diagram of the antenna unit under
this circumstance is shown in Figure 8.
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The high-order mode patch antenna naturally had a larger electrical size, which was
conducive to achieving high gain radiation. However, the high-order mode patch antenna
also had defects such as a high sidelobe level and narrow bandwidth [29]. Therefore,
this work utilized LTCC substrates with a high dielectric constant (the ceramic green
tape material was Ferro A6M, the reference dielectric constant εr = 6.21 at 95 GHz), alone
with symmetric patch design for parasitic radiation cancellation, in order to suppress the
sidelobe. Regarding the shape of the parasitic patch, various innovative designs were
developed, with two other patch forms shown in Figure 9 for example. These patch forms
were based on the same SIC structure, resulting in a relatively similar basic performance.
However, due to different intracavity radiation modes resulting from distinct patch designs,
there were slight variations in direction pattern and gain stability. These differences will
not be extensively compared here, with the subsequent discussion in this paper focusing on
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the design depicted in Figure 6 as the standard. The reason for this is that the patch form of
Figure 6 is the simplest, and with overly complex patch forms it is difficult to ensure the
stability of actual testing due to unavoidable LTCC process errors and a limited surface
microstrip fabrication accuracy.
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2.2.2. Array Simulation and Optimization

Once the antenna unit design have been completed, the next step was to integrate the
antenna unit structure with the SIW feeding network for array simulation and optimization.
This process involved combining the end structure of the SIW feeding network with the
antenna unit. The input port of the simulation model should be adjusted from the slot at
the bottom of the SIC to the SIW cross-section, as illustrated in Figure 10. By adjusting the
relative position of the slot with the SIW, as well as the length and width of the slot and
other parameters, a more optimal transmission effect could be achieved.
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On this basis, the 2 × 2 array simulation could be conducted, combining the antenna
unit structure with the 1–4 SIW feeding network shown in Figure 3. The main optimization
parameters included the spacing between units, the size and position of the feeding slot,
etc. Through the previous antenna unit optimization process, a small range of param-
eter adjustments could be determined. It should be noted that different combinations
of translation symmetry and mirror symmetry between antenna elements may result in
significant performance differences. Of course, the specific symmetry method can be de-
signed to match the power distribution structure of the feeding network. However, this
often requires more vertical space occupation. Therefore, in order to reduce volume and
improve integration, the antenna array design in this paper adopted a relatively simplified
design in both the feeding network and antenna unit structures, without adding complex
matching structures.

After completing the 2 × 2 array simulation, the entire 2 × 2 array can be used as
a new unit structure and expanded into a 4 × 4 array through the same method. The
intermediate parameter adjustment and optimization process was omitted, and the final
4 × 4 antenna array obtained is shown in Figure 11.
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2.2.3. Interface Transition Structure Design

Subsequently, the interface issues in the actual manufacturing and antenna test re-
quire further consideration. Prior to this research, the transition structure from substrate-
integrated waveguide to Rectangular Waveguide (RWG) was developed [30], in which
the SIW-RWG stepped transition structure and the one-to-two transition structure were
identified as suitable test interfaces for the antenna array. The design process of these
two interface structures is briefly introduced here. As is well known, the WR-10 metallic
waveguide is required as testing instrument interfaces in the W-band, which involves the
transition structure from the SIW feeding network to rectangular waveguide of WR-10. In
the LTCC fabrication process, multiple layers of ceramic green tape are vertically stacked
together, then cut and sintered. However, this makes it difficult to guarantee the flatness
of the cross-section after sintering. If the feeding interface is designed on the side of the
LTCC substrate, the stability of the feeding interface cannot be ensured; therefore, the
interface can only be placed on the bottom surface of the antenna array. As a result, a
transition structure is needed between the vertically transmitted rectangular waveguide
and the horizontally transmitted substrate-integrated waveguide. Specifically, one end of
the rectangular waveguide was connected to the bottom surface of the substrate-integrated
waveguide, while the SIW bottom metal layer was windowed at the connection point to
allow the electromagnetic waves transmitted in the rectangular waveguide to enter the SIW.
The size and shape of the window on the contact surface between the SIW and the RWG
will affect the transmission characteristics of this type of transition structure. In order to
reduce the impact caused by the change in the propagation direction, a stepped structure
could be constructed inside the SIW to form a gradual transition, thereby achieving better
transmission performance. The thickness of each layer of ceramic green tape in the LTCC
process used in this design was fixed, so the overall thickness of the SIW structure could
only be an integer multiple of the thickness of a single ceramic layer. Considering the tran-
sition of electromagnetic waves from a vertical propagation in the rectangular waveguide
to a horizontal propagation in the LTCC substrate, the connection part of the SIW could be
equivalent to a section of a dielectric filled waveguide. Therefore, the vertical thickness of
the equivalent dielectric filled waveguide should be as close as possible to 1/4λg in order
to achieve better transmission efficiency. After calculation and combining with modeling
simulation results, it was appropriate to use five layers of Ferro A6m ceramic green tape
with a sintered thickness of 0.094 mm for the SIW transition structure in the W-band, which
was the reason for using five layers of LTCC ceramic green tape in the previous SIW feeding
network design.

The designed SIW-RWG stepped transition structure is shown in Figure 12. Consider-
ing that the connection part of the substrate-integrated waveguide could be equivalent to
dielectric-filled waveguide, and due to the presence of filled dielectric, the dimensions of
the dielectric-filled waveguide were smaller than those of a standard rectangular waveg-
uide. This determined the direction of the gradient for the stepped structure, and the
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highest order of the step should have been less than the number of ceramic layers used.
Other design variables, such as the width and length of each step, as well as the size of the
window opened on the contact surface between SIW and RWG, needed to be optimized
through simulation to determine appropriate values. The final optimized simulation results
are shown in Figure 13. The lengths of the four levels of the step structure were 0.02 mm,
0.09 mm, 0.3 mm, and 0.3 mm, respectively, achieving a return loss below −20 dB within a
frequency range of 87.8–98.7 GHz. This simulation result exhibited good practicality of the
SIW-RWG stepped transition structure in the W-band.
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On the basis of the SIW-RWG stepped transition structure, a one-to-two transition
structure was further designed to combine the first-stage power distribution structure of the
feeding network with the transition structure. The advantage of this one-to-two transition
structure is that it can shorten the transmission path and reduce transmission loss. At
the same time, since the transition structure was designed on the bottom surface of the
substrate-integrated waveguide, it was convenient to add some special structures afforded
by the LTCC process to obtain better power distribution and transmission performance. By
directly applying symmetrical processing to the SIW-RWG stepped transition structure in
Figure 12, a structure similar to a T-junction could be achieved. However, the transmission
performance of this primitive structure was not satisfying, and the main problem was the
strong reflection of the electromagnetic wave transmission on the contact surface, resulting
in a narrow usable bandwidth outside the center frequency point. Referring to the power
divider structure of the T-junction in microwave circuits, a special structure could be added
on the contact surface to improve the transmission performance. Combined with the special
structures supported by the LTCC process, it was decided to set an empty cavity in the SIW
substrates connected to the contact surface with the RWG. After simulation analysis and
optimization, the shape of the cavity was set to rectangular.

The completed design of the one-to-two transition structure is shown in Figure 14. A
cavity with a depth of three ceramic layers was excavated on the contact surface between
the LTCC substrate and the rectangular waveguide. According to simulation analysis result,
the width of the cavity should be set to approximately half of the length in order to achieve
better lateral transmission performance. This narrow and elongated shape of the cavity can
improve the directionality of electromagnetic wave propagation after entering the LTCC
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substrate to a certain extent. The specific value of the width can be determined through
simulation optimization.
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At the same time, a stepped structure was also fabricated on the unexcavated ceramic
layers to improve the transmission performance. In addition, the introduction of the air
medium in the cavity can bring about resonance frequency changes, which can greatly
enhance transmission performance of the one-to-two transition structure. Ideally, the cavity
size of each layer of the LTCC substrate should vary gradually, which can achieve a layer-
by-layer variation in the equivalent dielectric constant, reducing the reflection to optimize
the bandwidth improvement effect of the cavity on the one-to-two transition structure.
However, limited by the actual processing difficulty, the cavity size of each layer of the
LTCC substrate was consistent in this design.

The simulation results of the one-to-two transition structure are shown in Figure 15,
where the corresponding parameters were set as follows: cavity size of 0.668 mm × 0.335 mm,
length of the first step as 0.0425 mm, and length of the second step as 0.1675 mm. It was
possible to achieve a return loss of −20 dB or below in the frequency band of 84.3–98.4 GHz.
The specific upper and lower frequency limits could be adjusted to achieve slight variations
in the frequency band through parameter adjustments.
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Figure 15. Simulation results of one-to-two transition structure.

Figures 16 and 17 show the corresponding models of the SIW-RWG stepped tran-
sition structure and the one-to-two transition structure serving as the interfaces for the
antenna array.

Upon simulation and comparison, it was determined that the model utilizing the
one-to-two transition structure exhibited superior performance. As a result, the subsequent
manufacturing and test conducted in this paper were based on this particular model.
The layout of the LTCC manufacture process can be seen in Figure 18, while the metal
waveguide adapter specifically designed for this study is illustrated in Figure 19. The
dimensions of the adapter measured 20 mm × 20 mm × 10 mm, with the central waveguide
interface conforming to the standard WR-10, while the flange that pairs with the waveguide
port was UG-387.
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3. Results and Discussion

The finished LTCC antenna array is shown in Figure 20; the external dimensions were
20 mm × 20 mm × 0.9 mm, the actual antenna area was 12 mm × 12 mm, and the surface
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metal plate area was extended to 20 mm × 20 mm in order to match the external dimension
of the waveguide adapter.
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Solder paste was utilized for bonding the waveguide adapter to the antenna array.
Specifically, a suitable quantity of solder paste was applied to the designated region (in-
dicated in gray) on the rear of the antenna array substrate. The solder paste was then
carefully aligned with the waveguide adapter before being placed onto a heated table for
bonding under pressure. Subsequently, the solder paste underwent a cooling process to
complete the welding procedure.

The darkroom test conditions and scenarios are shown in Figures 21–23.
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The S-parameter test results of the antenna array are depicted in Figure 24. The
measured S11 curve was close to the simulated curve, and was less than −10 dB in the
target frequency band (88 GHz–98 GHz).
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The gain test results of the LTCC antenna array are depicted in Figure 25. Due to
constraints on simulation resources and test conditions, only the peak gain at integer
frequency points was simulated and tested. The results indicate that within the target
frequency band of 88 GHz−98 GHz, the gain of the antenna array exceeded 18 dBi, reaching
as high as 20.4 dBi, with pretty good stability.
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Figures 26–31 show the test results of the antenna pattern of the LTCC antenna array
at 92 GHz, 94 GHz and 96 GHz. Basically, the test results were in good agreement with
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the simulation results. There exists sidelobe deterioration as expected, but its amplitude is
within an acceptable range.
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It is worth noting that the test results were slightly better than the simulation results at
certain frequencies. After discussion and analysis, we believe that this can be explained. In
simulation settings, material parameters provided in the process file, such as the loss angle
tangent, were used, and the worst values were selected to ensure the final performance of
the actual antenna array. In addition, in terms of the interface structure, we only conducted
physical tests on the D-band before, and there were some defects in the substrate flatness
at that time. Therefore, it is highly likely that the performance of the W-band interface
structure this time was higher than expected. The most important factor is that in the
simulation design of the antenna model, all the side walls composed of SIW were vertically
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arranged metal columns, and the horizontal metal layer thickness was 0, which is a common
setting, because if the metal layer thickness between the dielectric layers were considered,
the simulation model would be too complex and consume a lot of simulation resources.
In actual LTCC substrates, the thickness of the metal layer between the dielectric layers is
about 8 µm, which leads to the actual SIW sidewall being a metal mesh composed of metal
columns and thin metal layers, which is closer to the ideal electromagnetic wall and greatly
reduces the loss of the entire SIW feeding network. In summary, the difference between the
measured results and the simulation results was acceptable.
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Table 1 summarizes the performances of several previously published antenna arrays
in similar millimeter-wave frequency band, and compares the main parameters with the
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LTCC antenna array designed in this paper. It can be seen that the LTCC antenna array
designed in this paper had the characteristics of a compact structure and high gain.

Table 1. Comparison with previously published antenna arrays.

The Literature Array Element
Number Array Size (mm) Operating Band (−10 dB) Maximum Gain

(dBi)

[31] 4 × 4 18.6 × 18.6 × 2 57.3–64.0 GHz 18.2
[32] 8 × 8 21.6 × 21.6 × 1.248 87–101 GHz 22.9
[33] 8 × 8 22.8 × 22 × 0.127 94–100 GHz 21.4
[34] 4 × 4 23 × 20 × 0.76 130–152 GHz 16.3
[28] 8 × 8 32 × 20 × 0.818 130.3–145 GHz 20.5
[35] 8 × 16 32 × 18 × 1.413 91.2–96.7 GHz 24.5

This paper 4 × 4 12 × 12 × 0.9 88–98 GHz 20.4

4. Conclusions

In this paper, a W-band high-gain antenna array based on low-temperature co-fired
ceramic technology was presented. The feeding network and antenna radiation unit were
constructed using a substrate-integrated waveguide and a substrate-integrated cavity. A
simplified design approach was implemented to achieve high gain performance, enhance
structural compactness, and reduce overall volume. In summary, the presented antenna
array exhibited high practicality and a relatively superior performance in the W-band
frequency range.

During the antenna design and test, the proposed array was closely integrated with
the previously studied and published substrate-integrated waveguide to the rectangular
waveguide transition structure. This integration effectively validated the feasibility of the
one-to-two transition structure and demonstrated its low-loss characteristics and compact
structure, making it particularly suitable for high-gain antenna designs.

In addition, this work demonstrated the practicality of the LTCC technology in the
high-frequency band, the impact of processing errors, and that the high-frequency perfor-
mance degradation of dielectric materials is within an acceptable range.
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