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Abstract: Polymer dielectric materials have recently attracted attention for their versatile applica-
tions in emerging electronic devices such as memory, field-effect transistors (FETs), and triboelectric
nanogenerators (TENGs). This review highlights the advances in polymer dielectric materials and
their integration into these devices, emphasizing their unique electrical, mechanical, and thermal
properties that enable high performance and flexibility. By exploring their roles in self-sustaining tech-
nologies (e.g., artificial intelligence (AI) and Internet of Everything (IoE)), this review emphasizes the
importance of polymer dielectric materials in enabling low-power, flexible, and sustainable electronic
devices. The discussion covers design strategies to improve the dielectric constant, charge trapping,
and overall device stability. Specific challenges, such as optimizing electrical properties, ensuring
process scalability, and enhancing environmental stability, are also addressed. In addition, the review
explores the synergistic integration of memory devices, FETs, and TENGs, focusing on their potential
in flexible and wearable electronics, self-powered systems, and sustainable technologies. This review
provides a comprehensive overview of the current state and prospects of polymer dielectric-based de-
vices in advanced electronic applications by examining recent research breakthroughs and identifying
future opportunities.

Keywords: polymer dielectric; memory devices; field-effect transistors; triboelectric nanogenerators;
flexible electronics; self-powered systems

1. Introduction

Polymer dielectric materials have become increasingly important in electronic devices
because of their unique electrical, mechanical, and thermal properties [1–4]. Unlike tradi-
tional inorganic dielectrics, polymers offer flexibility, lightweight characteristics, and ease of
processing, making them ideal for various applications. The ability to modify the chemical
structure of polymers allows for the adjustment of their dielectric properties, enabling
the design of materials with high dielectric constants, low dielectric loss, and excellent
insulating performance [5–8]. These attributes are critical for developing high-performance
electronic devices that meet the demands of modern technology.

The versatility of polymer dielectric materials has led to their application in vari-
ous emerging electronic devices, including memory devices [9–11], field-effect transistors
(FETs) [12–15], and triboelectric nanogenerators (TENGs) [16–18]. In memory devices,
polymer dielectrics can improve crystallinity through molecular structure design, thereby
providing stable switching characteristics in memristors [19]. Additionally, polymer di-
electrics have the ability to trap electrostatic charges, resulting in a quasi-permanent electric
field, making them useful as charge-trapping layers [20]. By controlling the composition of
the material, the characteristics of the device can be adjusted [21,22]. For FETs, polymer
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dielectrics induce the field-effect when voltage is applied to a gate electrode to accumulate
charge carriers while blocking leakage current. Also, polymer dielectric layers provide
the interface with semiconducting layers, significantly affecting charge carrier movement
in the channel. Thus, polymers in FETs determine the power consumption, operational
stability, and reliability of the devices [23–25]. TENGs, which convert mechanical energy
into electrical energy, benefit from the high charge-trapping and transfer capabilities of
polymer dielectrics [26,27], leading to improved energy-harvesting efficiency. Polymer
dielectrics in TENGs improve electrical output by increasing the charge generation and
storage capacity, primarily due to their high dielectric constant and effective surface prop-
erties. This leads to higher surface charge density, which directly relates to improved
performance [26]. Additionally, their mechanical flexibility and durability allow TENGs to
maintain consistent performance over cycles, making them ideal for applications that re-
quire repeated mechanical stress. The integration of these devices into flexible and wearable
electronics highlights the importance of polymer dielectrics in advancing next-generation
technologies [28,29].

Polymer dielectrics have superior electrical and mechanical properties to other di-
electric materials, making them a material of choice for numerous applications [30–33].
Their high dielectric strength and processability allow for the fabrication of devices with
complex geometries and large surface areas. Through appropriate molecular design, poly-
mer dielectric materials are able to exhibit intrinsic flexibility and stretchability, making
them key components in flexible and stretchable devices [34–40]. Their high dielectric
strength, combined with excellent flexibility and processability, allows for the fabrication
of devices with complex geometries and large surface areas. In addition, polymers can be
processed using various methods, including solution casting [41–43], spin coating [44–47],
and printing [47–49], facilitating large-scale manufacturing. These properties enhance the
performance and reliability of electronic devices and open new possibilities for innovative
applications in flexible, stretchable, and wearable electronics.

This paper reviews the recent advances in polymer dielectric materials and discusses
their applications in memory devices, FETs, and TENGs. The focus is on the unique
properties that make these materials suitable for these applications, the challenges faced in
their implementation, and the potential future developments that can further enhance their
performance. The paper provides a comprehensive overview of their role in advancing
modern electronic technologies by examining the synergies and integration possibilities of
these polymer-based devices.

2. Polymer Dielectric-Based Electronics
2.1. Memory Devices

Memory is an electronic device that stores information through changes in the program-
ming and erasing states. They can provide different output currents up to several orders
of magnitude depending on the programming (Vprog) and erasing voltages (Veras) [44,50].
Therefore, the performance of a memory device is determined by the difference in the
current–voltage characteristics between the programming and erasing states, known as
the memory window, and the number of states that can be produced within this range.
In addition, a fast memory speed is generally desirable for high-speed computing, which
is determined by the extent of the memory window that can be achieved based on the
duration for which Vprog and Veras are applied. Memory devices can be categorized as
volatile or non-volatile based on the charge retention capability of the stored data. Another
important characteristic for evaluating memory devices is endurance [51]. This metric as-
sesses whether the memory can be operated reliably in response to repeated programming
and erasing operations.

Memory devices based on polymer dielectrics have been developed where the key per-
formance indicators for memory devices have been investigated, including low operating
voltage, long retention time, and stable cycle-to-cycle endurance, even after multiple cy-
cles [52,53]. These characteristics can vary according to the specific memory structures and
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material combinations. In particular, using polymer insulators allows for inherent mechani-
cal flexibility, enabling the development of flexible or stretchable memory devices [54,55].
This paper revisits the latest results on memory devices using polymer dielectric mate-
rials as active layers. The representative memory performance and their structures and
combinations are examined.

2.2. Field-Effect Transistors (FETs)

A FET is an essential component in modern electronics, acting as a switch or amplifier
by differentiating the on- and off-states. Hence, increasing the on-current while maintaining
the reduced off-current is crucial to maximizing their functions. The gate dielectric layer
plays a vital role in FET operation, which blocks unwanted leakage current between the
gate and source/drain electrodes in the off-state, accumulating charge carriers at the
interface between the gate dielectric layer and the semiconductor in the on-state. In the
FET operation, the drain current (ID) can be expressed using the following equations:

ID,lin =

(
W
L

)
µlinCi

(
VG − VT − VD

2

)
VD (1)

ID,sat =

(
W
2L

)
µsatCi(VG − VT)

2 (2)

where ID,lin and ID,sat are the drain currents in the linear and saturation regime, respectively,
and W and L are channel width and length, respectively. µlin and µsat are the linear and
saturation mobility, respectively, and Ci is the capacitance per unit area of the dielectric layer.
VG, VT, and VD are the gate voltage, threshold voltage, and drain voltage, respectively. The
current output of FETs is proportional to the Ci value of the gate dielectric layer, which is
determined using the following equation:

Ci = ε0
k
d

(3)

where ε0, k, and d are the vacuum permittivity, dielectric constant, and thickness of the gate
dielectric layer, respectively. Therefore, it is highly desirable to increase the dielectric con-
stant and decrease the thickness of the dielectric layer to maximize ID under low operating
voltages. An appropriate dielectric strength and low leakage current should be secured for
the reliable operation of FETs. Exploiting advantages, such as cost-effectiveness, mechanical
deformability, and tunability in their chemistry, polymer dielectric materials have been
used widely to achieve reliable operation and optimize the electrical characteristics of
emerging FET devices [56–59].

2.3. Triboelectric Nanogenerators (TENGs)

Since the research on TENGs was first reported in 2012 [16], the research field of
TENGs has been highlighted as one of the promising energy-harvesting technologies. Tribo-
electricity is generated by contact charging and electrostatic induction between triboelectric
materials with different dielectric properties. The dielectric constant is the central param-
eter that describes how efficiently the active material is polarized when subjected to an
electric field and is calculated using Equation (4) [60]:

k =
C × d
ε0 × A

(4)
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where k, C, d, and A are the dielectric constant, capacitance, thickness of the active layer,
and area of the active layer, respectively. In the metal−insulator system, the surface charge
transfer between the two layers can be induced as follows:

σ =
(W−E0)

e

1/
(

k
t +

1
z

)
ε0 + 1/Ns(E)e2

(5)

where σ, W, E0, t, z, e, and Ns(E) represent the surface charge density on the dielectric ma-
terial, the metal’s work function, the effective work function, the thickness of the insulator,
the gap between the metal and the insulator layer, the elementary charge, and the average
surface density of states in the dielectric layer, respectively [61]. Equation (5) suggests that
a thinner dielectric layer combined with a larger ε/t ratio can lead to an increased surface
charge density. Consequently, the permittivity of the bulk insulator may play the most
crucial role in influencing contact electrification among the various factors affecting surface
charge density. The permittivity of the bulk insulator can be adjusted by incorporating a
high-k material layer or by embedding high-k particles. Additionally, high-k materials can
act as charge-trapping layers, enhancing surface charge retention. This section explores
strategies to enhance contact electrification by modifying the insulator’s permittivity.

3. Recent Advances in Electronic Devices
3.1. Memory Devices
3.1.1. Polymer Dielectric-Based Memory Devices

Memory devices based on polymer dielectrics are being developed. The use of polymer
insulators provides inherent mechanical flexibility, enabling the formation of flexible or
stretchable memory devices [54,55]. The most frequently attempted memory devices
based on polymer insulators are two-terminal memristor structures with a sandwich
configuration [62,63], where the polymer insulator is placed in the middle. A memristor
operates on the memory principle where the polymer insulator typically contributes by
preventing a leakage current between the two electrodes, resulting in a high resistance
state (HRS). On the other hand, when metal filaments form, the current increases sharply,
leading to a low resistance state (LRS). The charge trap device is another structure for
memory devices based on polymer dielectric materials [20,64]. An appropriate design of
polymer dielectric can enhance the charge trap memory devices, where the charge trapping
in a floating gate is facilitated within low Vprog and Veras. Moreover, trapping charges
within the insulator to adjust the VT of the transistor or using a polymer dielectric that
induces surface charge traps as a storage layer enables charge trap-based memory operation
without the need for a floating gate. This section divides the discussion into memristor-
based and charge trap-based polymer memory devices. The focus is on highlighting recent
developments and exploring the polymer materials, the device structures incorporating
them, and the resulting memory device characteristics.

3.1.2. Application of Polymer Dielectric Materials for Conductive Filament Memristors

Polymer insulator-based memristors have attracted attention because of the low cost,
simple processing, and flexibility of polymers [65–68]. As environmental concerns are
increasing, biodegradable materials are also in demand [69,70]. For example, Oh et al. used
poly(vinyl alcohol) (PVA) to develop an eco-friendly and flexible memristor (Figure 1a) [71].
As the molecular weight of PVA decreases, the memristor performance is improved because
it allows for the increased free volume necessary for ion migration and metallization [72].
The optimized PVA-based memristor device remained stable for 104 s without current
degradation (Figure 1b). A device was fabricated on an ITO-coated polyethylene naphtha-
late (PEN) substrate using the excellent mechanical flexibility of PVA. The device showed
stable operation under tensile and compressive stresses with a bending radius of 5 mm
(Figure 1c). The high solubility of PVA in water enables the development of biodegradable
electronic devices, as shown in Figure 1d [73,74]. The memristor device dissolves rapidly
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in distilled water at room temperature (within 30 s). These results suggest the potential
of facilitating flexible electronic device production and addressing the issue of electronic
waste [75].

Many reported memristors based on polymer materials often show poor thermal
tolerance, which can degrade the device’s performance [76]. Poly(triphenylamine) (PTPA)
and PVA have been reported to form robust polymer-based memristors because of their
thermal stability [77,78]. Li et al. implemented a memristor using poly[2-methoxy-5-
(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), showing robust perfor-
mance in both extremely low- and high-temperature environments [79]. The MDMO-PPV
thin film was deposited on an ITO-patterned glass substrate using the spin-coating tech-
nique (Figure 1e), achieving more than 95% yield with consistent performance across an
8 × 8 array. The MDMO-PPV-based memristor devices demonstrated real-time measure-
ments across an ultra-wide temperature range (173–473 K), exhibiting reliable operation
from 77 to 573 K in cryogenic and high-temperature environments (Figure 1f). The memris-
tor characteristics remained stable even at temperatures as low as 77 K for 72 h.

One notable issue in solution-processed polymer memristors is performance degrada-
tion due to impurities or residues [80]. This can be resolved using a solvent-free initiated
chemical vapor deposition (iCVD) technique. Kim et al. reported memristor devices based
on poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (pV3D3) using iCVD, showing excel-
lent stability [51]. pV3D3 exhibits high thermal and chemical stability because of its high
crosslinking density resulting from three crosslinking sites [80,81]. These characteristics
can enhance the durability of the device. Indeed, the memristor devices based on pV3D3
maintained robust electrical properties after 105 s and 105 endurance cycles (Figure 1g).
They also exhibited reliable retention characteristics, even at 85 ◦C. Crossbar-array memris-
tor devices fabricated in a 32 × 32 matrix were manufactured using the solvent-free iCVD
technique (Figure 1h). This method ensures that all electronic devices operate properly
without impurities or residues from solution processes.

Studies have attempted to improve the performance of polymer-based memristor
devices by exploring the introduction of interfacial load layers containing active metal
clusters and constructing active layers with oriented molecular chain arrangements to
direct filament growth [67,82]. Zhang et al. enhanced the performance of memristors by
adding the metal salt AlClO4 to polyethylenimine (PEI) [83]. Compared to pure PEI-based
memristors, devices containing AgClO4 allowed for a large number of silver (Ag) ions
in the PEI layer to move more quickly to the platinum (Pt) electrode, contributing to the
formation of Ag filaments. This phenomenon reduced the operating voltage of the device
and enhanced its energy consumption efficiency (Figure 1i). Furthermore, adding AgClO4
improved the non-volatile performance of the memristor (Figure 1j), and its switching
characteristics remained unchanged, even after exposure to air for 30 days (Figure 1k).

In this chapter, we revisited the deposition methods according to the polymer dielectric-
based material classification. Table 1 represents a detailed summary of the polymer
dielectric-based memristor devices in terms of polymer dielectric materials, deposition
methods, device performance, environmental stability, and biodegradability parameters.
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copy image of a 32 × 32 array of memristors [51]. Copyright © 2024, John Wiley and Sons. (i) Varia-
tion in the SET voltage with the presence of metal salt (AgClO4) in PEI-based memristors. (j) The 
memory retention characteristics of PEI-AgClO4-based memristor. (k) The resistance switching 
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Figure 1. (a) Schematic diagram and photograph of PVA-based memristors. The memory retention
characteristics of memristors investigated for (b) rigid substrate-based and (c) flexible substrate-based
devices. (d) The photograph of the biodegradation process of a PVA-based memristor device at
300 K [71]. Copyright © 2023, John Wiley and Sons. (e) The schematic diagram of a memristor device
based on MDMO-PPV, and (f) its memory retention characteristics at temperatures ranging from
77 to 573 K [79]. Copyright © 2023, John Wiley and Sons. (g) The memory retention characteristics
of a pV3D3-based memristor device over time and endurance cycles, and (h) optical microscopy
image of a 32 × 32 array of memristors [51]. Copyright © 2024, John Wiley and Sons. (i) Variation in
the SET voltage with the presence of metal salt (AgClO4) in PEI-based memristors. (j) The memory
retention characteristics of PEI-AgClO4-based memristor. (k) The resistance switching curve of
PEI-AgClO4-based memristor after 30 days of exposure to air [83]. Copyright © 2022, American
Chemical Society.

Table 1. Comparison of polymer dielectric-based memristor devices.

Active Materials
(Method)

Resistance
on/off
Ratio

Switching
Cycles

Retention
Time

(s)

Working
Temperature

(◦C)

Air
Stability
(Days)

Biodegradable [Ref.]

PVA
(Spin-coating) N/A 5 × 103 104 From 20 to 80 N/A # [71]

PPT−NMI+Br− 1

(Spin-coating)
N/A 102 104 Room

temperature N/A # [10]
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Table 1. Cont.

Active Materials
(Method)

Resistance
on/off
Ratio

Switching
Cycles

Retention
Time

(s)

Working
Temperature

(◦C)

Air
Stability
(Days)

Biodegradable [Ref.]

MDMO-PPV
(Spin-coating) N/A 104 104 From −196 to

300 N/A
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N/A 2 × 102 2 × 104 Room

temperature 90
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1 reactant of poly[thiophene-alt-4,4-bis(6-bromohexyl)-4H-cyclopenta(1,2-b:5,4-b′)dithiophene] (PTT-Br) with
N-methylimidazole (NMI). 2 poly(ethylene glycol dimethacrylate) (pEDGMA). 3 blend of black phosphorus
quantum dots (BPQDs) with polyvinylpyrrolidone-grafted polydopamine (PDA-PVP).

3.1.3. Application of Polymer Dielectric Materials for Charge Trap Memory Transistors

Appropriate dielectric materials and thin thicknesses are required for floating gate-
based transistor devices with a low operating voltage and stable endurance. The insulating
layer preventing a leakage current at the control gate should be thin with a high dielectric
constant to ensure low operating voltage. In contrast, the tunneling dielectric layer between
the floating gate and the channel should use materials with a low dielectric constant to
maintain charge trapping. Yang et al. developed MoS2-based low-voltage non-volatile
memory devices using a high-k poly(2-cyanoethyl acrylate-co-diethylene glycol divinyl
ether) [p(CEA-co-DEGDVE)] copolymer (pC1D1, k~6.2) that was synthesized from 2-
cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE), and a low
dielectric constant pV3D3 polymer (k~2.2) [50]. The high energy barrier between MoS2 and
pV3D3 enabled programming and erasing through tunneling, while gold nanoparticles (Au
NPs) captured the charges from the deep quantum well (Figure 2a). The shallow lowest
unoccupied molecular orbital (LUMO) level of pC1D1 prevented charges from moving to
the control gate. In this energy configuration, the thin thickness and high dielectric constant
of pC1D1 resulted in a low operating voltage (±13 V) and robust memory operation
(Figure 2b). The low dielectric constant of pV3D3 helps prevent the de-trapping of the
charges captured by the Au NPs, maintaining good performance (<105 s).

A polymer electret is a dielectric material that can be used as a charge-trapping layer
without a floating gate [87]. Chen et al. examined the characteristics of non-volatile memory
transistors using poly(9,9-dioctylfluorene) (PFO) as the charge-trapping layer [88]. Using
PFO as a charge-trapping layer in memory transistors resulted in semiconductor holes
being trapped in the PFO layer during the electrical erasing process, shifting the VT of
the memory transistor in the direction of negative gate voltage (erasing). When PFO was
exposed to light that is capable of activating it, PFO generated photo-generated electron–
hole pairs. During this process, the photo-generated electrons recombine with the holes
trapped in the PFO, neutralizing them, while the photo-generated holes transport to the
organic semiconductor layer, maintaining the initial state (Figure 2c,d).
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Additional materials are often added to polymer dielectrics [89,90] or block poly-
mers [91,92], where two or more polymers are regularly linked within a single polymer
chain to enhance the performance of memory transistors. This approach exhibits an op-
erational mechanism similar to floating gate-based memory transistors. For example,
Hsu et al. introduced a block copolymer of poly(9,9-di-n-hexyl-2,7-fluorene) and poly(δ-
decanolactone) (PF-b-PDL) as the charge-trapping layer in memory transistors [21]. The PF
chain served to trap holes, while the PDL chain acted as an insulating polymer serving as
the dielectric layer and maintained the trapped charges in PF (Figure 2e). In the PF-b-PDL
structure, as the PDL arm increased, the memory window increased from 63 V to 102 V
(Figure 1f), and the memory retention characteristics were improved, maintaining a mem-
ory ratio of 3.5 × 104. These attributes stem from the increased branching of PDL stabilizing
the charges stored in PF. Zhang et al. developed memory transistors using phenyl-C61-
butyric acid methyl ester (PCBM) and poly(2-vinyl naphthalene) (PVN), with the ability to
detect and store light selectively based on the PCBM blending content (Figure 2g) [22]. The
roles of PVN and PCBM in the device varied according to the blending content of PCBM. In
a pure PVN device (Device A), the electrons generated by exposure to ultraviolet light were
trapped in the PVN, enabling memory operation. In the device with 2.5% PCBM (Device
B), when exposed to blue light, the electrons photoexcited in the PCBM were transported
to and trapped in the PVN, with PCBM playing a supporting role. In the device with 30%
PCBM (Device C), the electrons generated by red light were trapped in the PCBM, which
functioned as a charge-trapping layer, while the PVN prevented electron detrapping from
the PCBM. Each device demonstrated a correlation between the light exposure energy and
the surface density of the trapping layer through variations in VT with the exposure time.
All the devices showed an increase in the surface density of the trapping layer as the light
exposure energy increased, as shown in Figure 2h. The calculated sensitivity values were
2.3 × 1011 (Device A), 0.3 × 1011 (Device B), and 0.6 × 1011 mJ−1 (Device C).
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gate pulses [50]. Copyright © 2019, John Wiley and Sons. (c) The schematic diagram of the photo-
induced writing mechanism in pre-erased charge-trap polymer layer-based memory devices. (d) The
writing/erasing characteristics of PFO charge-trap layer-based memory devices under various wave-
lengths [88]. Copyright © 2021, American Chemical Society. (e) The operating mechanism of
PF-b-PDL-based memory for programming and erasing operations, and (f) the writing/erasing
characteristics of memory devices based on the number of PDL arms in the PF-b-PDL structure [21].
Copyright © 2021, American Chemical Society. (g) The schematic diagram of the structure of
PCBM/PVN blend-based memory devices and the selective photoresponse of the device according
to the PCBM blending ratio. (h) The surface density of trapped charge versus light exposure energy
per unit area curves of PCBM/PVN blend-based memory devices with different PCBM blending
ratios [22]. Copyright © 2019, American Chemical Society.

To clearly present the characteristics of charge trap-based memory devices according
to the types of polymer dielectrics and device types, we provided a detailed summary
focusing on the structure and type of charge traps, as well as the device performance
parameters (Table 2).

Table 2. Comparison of polymer dielectric-based charge trap devices.

Charge Trap Structure Device Type Current on/off
Ratio

Memory
Window

(Operating
Voltage)

Switching
Cycles

Retention Time
(s) [Ref.]

pV3D3/AuNP/pC1D1 Floating gate ~106 ~5.7 V (±13 V) 1.5 × 103 104 [50]

pV3D3/Al/pEDGMA Floating gate 106 5.5 V (±10 V) 103 3.2 × 108 [55]

PMMA@F8BT/P(VDF-
TrFE-CFE) 2 Floating gate 6.5 × 103 9.3 V (±40 V) 102 >104 [93]

PFO Polymer
electrets ~107 76 V

(Light/−100 V) N/A ~4 × 103 [88]

PαMS 1 Polymer
electrets 105 23 V (±20 V) 5 × 103 104 [94]

pV3D3 Polymer
electrets >105 5.3 V (±14 V) 50 >105 [95]

PF-b-PDL Polymer
electrets 105 102 V (±140 V) N/A 104 [21]

PF-b-Piso 3 Polymer
electrets 106 33 V

(Light/−40 V) 10 104 [91]

PVN
PVN@2.5% PCBM
PVN@30% PCBM

Polymer
electrets

>104

>104

>104

~12 V (±20 V)
~14 V (±20 V)
~15 V (±20 V)

N/A
N/A
N/A

103

103

103
[22]

N2200@ PVN 4 Polymer
electrets 105 30 V (+30

V/−18 V) 103 104 [90]

1 poly(α-methylstyrene) (PαMS). 2 poly(9,9-dioctylflfluorene-co-benzothiadiazole) (F8BT) and poly(vinylidene
flfluoride-triflfluoroethy-lene-chloroflfluoroethylene) (P(VDF-TrFE-CFE)). 3 poly [2,7-(9,9-dihexylfluorene)]-b-
poly(pendent isoindigo) (PF-b-Piso). 4 blend of poly [96] (N2200) with poly(2-vinyl naphthalene) (PVN).

3.2. Field-Effect Transistors (FETs)
3.2.1. Overview of Polymer Dielectric Materials for FET Devices

Various polymer gate dielectric materials have been studied extensively to accommo-
date the important requirements in FETs, including high carrier mobility (µ), low operating
voltage, and device stability. High-k polymer dielectric materials have been designed to
improve Ci by enhancing the polarization of the polymer materials [36,97]. Polyvinyli-
dene fluoride (PVDF)-based ferroelectric polymers are one of the representative high-k
polymer dielectric materials, which can also exhibit unique electrical properties, including
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negative capacitance (NC) behavior [98,99]. Reducing the thickness of the gate dielectric
layer is another efficient way to increase the Ci value, and crosslinking has been explored
to maintain the proper dielectric strength while decreasing the thickness of the dielectric
layer [100]. Crosslinking is also important in improving mechanical deformability, which
allows for designing stretchable polymer dielectric materials [101,102]. In addition to the
gate dielectric layer, polymer dielectric materials have been introduced as doping and
barrier layers to improve the charge transport characteristics and environmental stability,
respectively [103,104].

Polymer dielectric materials have also been used to develop organic–inorganic hy-
brid dielectric layers, allowing for the synergistic effects of both organic and inorganic
materials [105]. In layered hybrid dielectrics, the polymer dielectric layer can effectively
passivate the surface trap sites of the inorganic dielectric layers and improve the mechan-
ical flexibility of FET devices [106,107]. Furthermore, hybrid dielectric materials based
on organic–inorganic mixtures have been developed, where inorganic nanoparticles or
inorganic segments are incorporated in polymer matrices [108,109]. The following sec-
tion highlights the recent research achievements in polymer-based dielectric materials for
FET applications.

3.2.2. Polymer-Based Dielectric Materials for FET Devices

Polymer dielectric materials containing polar functionalities, such as cyano (−C≡N), hydroxyl
(−OH), and epoxy groups, have been used to improve the dielectric constants [23,97,110–113].
For example, Yoo et al. developed high-k polyurea gate dielectric materials where the
polar urea bonds were responsible for a high dielectric constant [94]. Polyurea dielectric
materials were synthesized from different diisocyanate and diamine monomers. The effects
of hydrogen bonding on dielectric properties were investigated systematically by analyzing
the dielectric properties of polyurea with different chemical structures. Without the alkyl
substituent chains in the polymer backbone, a high dielectric constant (k~5.8) was obtained
by strengthening the hydrogen bonding interactions (Figure 3a). In addition, the leakage
current density (J) was decreased because of the reduced free volume, resulting in low J even
with 60 nm thickness (Figure 3b). Dinaphtho[2,3-b:2′,3′-f ]thieno[3,2-b]thiophene (DNTT)-
based organic FETs were fabricated using the polyurea dielectric layer, which showed low
operating voltages (<3 V). The charge carrier µ was improved from 0.069 cm2·V−1·s−1

(untreated) to 1.390 cm2·V−1·s−1 (with the surface treatment layer) with the metal oxide-
assisted surface treatment layer. Table 3 summarizes the key parameters of the FET devices
based on polymer dielectric materials that are the focus of this paper.

Crosslinking is a powerful strategy to improve the dielectric strength of polymer
dielectric materials by densifying the polymer matrices [2,5,80,114–126]. A previous study
reported a reduced leakage current after a crosslinking structure was introduced in polymer
dielectric layers [127,128]. Furthermore, Choi et al. investigated the effect of the chain
length in the crosslinkers [5]. A monomer containing polar cyano group, CEA, was copoly-
merized with DEGDVE and 1,4-butanediol divinyl ether (BDDVE). These crosslinkers have
similar chemical structures but different chain lengths. High-purity polymer films and ho-
mogenous mixing between CEA and crosslinker were achieved using the iCVD process to
fabricate polymer dielectric layers. The decrease in dielectric constant according to the addi-
tion of a crosslinker was alleviated in poly(2-cyanoethyl acrylate-co-1,4-butanediol divinyl
ether) [p(CEA-co-BDDVE)] compared with p(CEA-co-DEGDVE) (Figure 3c). Hence, with a
similar crosslinker mole fraction, the copolymer dielectric with a short-chain crosslinker
can exhibit a higher dielectric constant. 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene
(C8-BTBT)-based FETs were fabricated using p(CEA-co-BDDVE) with the optimal chemical
composition, which showed a low operating voltage of less than 5 V and a high carrier level
µ (>3.0 cm2·V−1·s−1). Moreover, the organic FETs were fabricated on a plastic substrate,
maintaining their electrical characteristics even under the applied tensile strain up to ~2.4%.

Recently, intrinsically stretchable FET devices with highly deformable electronics,
such as stretchable displays and electronic skins, have emerged [34,126–130]. For the re-
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liable operation of stretchable FETs, intrinsically stretchable polymer dielectric materials
have been widely researched, and crosslinking also plays a significant role in designing
such materials [35,101,102,131–139]. Kang et al. developed a stretchable polymer dielec-
tric composed of dicarboxy-terminated poly(acrylonitrile-co-butadiene) (CTBN) as a soft
matrix and 1,6-bis(trichlorosilyl)hexane (C6) as a hard segment (Figure 3d) [101]. The
leakage current was decreased as a portion of the C6 crosslinking agent increased. In
particular, a metal–insulator–metal (MIM) device with CTBN:7wt.%-C6 maintained J of
~10−8 A·cm−2 even under an applied strain of 30%. Poly(3-hexylthiophene) nanowires
(P3HT NWs)/polydimethylsiloxane (PDMS) blend organic semiconductor-based stretch-
able FETs were fabricated using a CTBN:7wt.%-C6 dielectric layer (Figure 3e). Although µ
decreased with the applied strain, the stretchable FETs retained a gate leakage current of
~10−9 A, enabling FET devices with distinguishable on- and off-states.

In addition to the gate dielectric layer, polymer dielectric materials have been used
as an additional layer on top of FETs to enhance the charge transport characteristics and
the environmental stability of FET devices [104,140–148]. An electron-rich polyethylen-
imine (PEI) is a widely used n-doping polymer in metal oxide and 2-dimensional (2D)
semiconductor FETs [149–153]. Hong et al. introduced truncated-branched PEI on top of
2D molybdenum disulfide (MoS2) semiconductor FET devices (Figure 3f) [150]. Compared
to pristine 2D MoS2 FETs (~3.7 V), the PEI-doped device showed VT = ~0.72 V, and this
negative shift of VT supported the strong n-doping effect of PEI (Figure 3g). Moreover,
the on-current was increased from ~3.3 µA to ~4.8 µA, which could be explained by the
reduced Schottky barrier and facilitated electron injection from the source to the channel
layer with the PEI doping layer. In addition, 2D MoS2 FET with a PEI doping layer was
used as a photodetector, which exhibited enhanced photo-responsivity compared to the
pristine device. When light is irradiated, some of the holes in the photo-generated electron–
hole pairs are trapped in a new energy level formed by PEI, leading to band-bending in the
energy band and enhancing the photoresponsivity.

One of the noticeable issues in FETs with emerging semiconductor materials, such
as organic and 2D semiconductors, is their susceptibility to ambient air, and hydrophobic
polymers can be used as barrier layers [104,140,141,143,146,148]. Park et al. introduced
a barrier polymer on top of nanostructured 2D MoS2 FETs [104]. The nanostructured 2D
materials can exhibit unique electrical and optical properties by periodically removing
the layer. On the other hand, they showed some disadvantages related to the lack of
electrical stability resulting from the edge exposures. These issues were addressed by
depositing poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (pPFDMA) on nanoporous 2D
MoS2 FETs by the iCVD process, which only exhibited a marginal change in the electrical
characteristics of the FET devices owing to the solvent-free nature of the iCVD process. The
hydrophobic pPFDMA effectively passivated nanoporous 2D MoS2 FETs and prevented
moisture penetration. As a result, the ambient stability was improved remarkably in the
pPFDMA-passivated nanoporous 2D MoS2 FETs compared to the pristine, non-passivated
ones (Figure 3h). As extensively described above, the charge accumulation capability
and dielectric reliability were significantly improved by enhancing the dielectric constant
and/or introducing a crosslinking network. In addition to the gate dielectric layer, poly-
mer materials can be used as functional adlayers to optimize the electrical characteristics
and elevate the ambient stability of FET devices. Another effective strategy is utilizing
polyelectrolytes and their composites to boost the charge transport performance and lower
the power consumption of FETs, which also paves the way to develop FET-based sensors
and neuromorphic devices [154–159]. Additionally, introducing ferroelectric polymers and
incorporating inorganic components allow for further enhancing the performance of FETs
or imparting unique behaviors, as described in the following sections.
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Table 3. Summary of polymer gate dielectric-based FETs.

Dielectric
Material Semiconductor

Operating
Voltage

(V)

Current
on/off Ratio

Mobility
(cm2·V−1·s−1)

Subthreshold
Swing

(mV·dec−1.)

Applied
Strain

(%)
[Ref.]

Polyurea DNTT 3 >105 1.39 370 2 [97]

P(CEA-co-
BDDVE) C8-BTBT 5 >106 3.39 87.4 2.5 [5]

CTBN-C6
P3HT NWs/PDMS 50 >104 0.0031 N/A 34

[101]
pentacene 50 >106 0.12 N/A N/A

PVDF-TrFE
(vertically poled) TIPS-pentacene 4 >104 0.08 200 N/A

[160]
PVDF-TrFE

(textured poled) TIPS-pentacene 4 >105 1 350 N/A
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Table 3. Cont.

Dielectric
Material Semiconductor

Operating
Voltage

(V)

Current
on/off Ratio

Mobility
(cm2·V−1·s−1)

Subthreshold
Swing

(mV·dec−1.)

Applied
Strain

(%)
[Ref.]

4FCOC 1
C10-DNTT 30 >107 1.30 N/A N/A

[161]
PTCDI-C13 2 30 >106 0.13 N/A N/A

PVDF-TrFE 2D MoS2 40 >105 N/A 24.2 N/A [162]

HfO2/PVDF-TrFE 2D MoS2 2.5 >105 N/A 42.5 N/A [163]

PMMA/Al2O3 2D InSe 8 >107 1055 300 N/A [107]

P(CEA-co-
DEGDVE)/Al2O3

C8-BTBT 3 >106 2.48 68.4 1.2 [164]

CYTOP/HfO2-
Al2O3

TIPS-
pentacene/PTAA 10 >105 0.8 700 N/A

[165]
diF-TES-ADT 3

/PTAA
10 >105 1.4 320 N/A

PSAND-4

pentacene 3 >103 0.40 N/A N/A

[106]
F16CuPC 4 2 >101 0.020 N/A N/A

DPP-DTT 3 >103 0.17 N/A 1.2

PDIF-CN2
5 2 >102 0.18 N/A N/A

BaTiO3/PDMS Carbon nanotube 30 >102 4 N/A 50 [166]
1 cyclo-olefin copolymer (COC) with fluorophenyl azide (FPA) crosslinker (4FCOC). 2 N,N’-Ditridecyl-3,4,9,10-
perylenetetracarboxylic diimide (PTCDI-C13). 3 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene
(diF-TES-ADT). 4 1,2,3,4,8,9,10,11,15,16,17,18,22,23,-24,25-hexadecafluoro-29H,31H-phthalocyanine (F16CuPc).
5 N,N′-1H,1Hperfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2).

3.2.3. Ferroelectric Polymers for FET Devices

PVDF-based ferroelectric polymers, such as poly(vinylidene fluoride trifluorethylene)
(PVDF-TrFE) and poly(vinylidene fluoride-trifluoroethylenechlorofloroethylene) (PVDF-
TrFE-CFE), have been investigated widely in FETs because of their high dielectric constant
at room temperature [160,167–179]. Laudari et al. investigated the effect of poling in
ferroelectric polymers using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)
organic FETs to achieve reliable operation of FET devices based on ferroelectric polymer
dielectrics [160]. The poling of the PVDF-TrFE was controlled by applying an external
electric field during film crystallization, which enabled the fabrication of uniform, vertical
poling, and textured poling (Figure 4a). Compared to the vertically poled PVDF-TrFE-based
devices, TIPS-pentacene FETs with textured poled PVDF-TrFE exhibited an enhanced on-
current and slightly decreased off-current (Figure 4b,c). Quantitatively, the textured poled
PVDF-TrFE FET device showed the µ of ~1 cm2·V−1·s−1, current on–off ratio (Ion/Ioff) of
105, whereas vertically poled PVDF-TrFE FET showed µ of ~0.08 cm2·V−1·s−1 and 104. The
device performance was improved by an order of magnitude in textured poled PVDF-TrFE
FETs while maintaining the low operating voltage of less than 4 V.

Blending and layer-by-layer structures have been proposed to improve the electrical
and thermal properties of the ferroelectric polymer dielectrics [180–187]. Crosslinking
is an efficient way to improve the electrical characteristics of the ferroelectric polymers
and the resulting FET devices [161,188–190]. For example, Kwon et al. introduced fluo-
rophenyl azide (FPA) to induce the crosslinking network in poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-HFP) (Figure 4d) [161]. A series of FPA was synthesized with
a different number of fluorobenzene rings (2, 3, and 4), which can react with C−H bonds in
conventional polymers under ultraviolet (UV) irradiation. Hysteresis in the transfer curves
of 2,9-di-decyl-dinaphtho-[2,3-b:2′,3′-f ]-thieno-[3,2-b]-thiophene (C10-DNTT) organic FETs
disappeared through FPA crosslinking (UV-treated FPVDF-HFP) (Figure 4e). In the PVDF-
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based ferroelectric polymer dielectric, carbon (C)−fluorine (F) dipoles were rearranged
under a high electric field, enabling ferroelectric behavior. This rearrangement of C−F
dipoles remained even after the applied electric field was removed, causing the clock-
wise hysteresis in the current−voltage (I−V) characteristics of FET devices. On the other
hand, with the addition of the FPA crosslinker, the grain size of the VDF crystals and the
number of ferroelectric domains were decreased, reducing the hysteresis behavior of the
FET devices.

NC behavior, which achieves a lower subthreshold swing (SS) than the theoretical
limit at room temperature (~60 mV·dec−1.), is another attractive property of ferroelectric
polymer dielectric materials [162,163,191–194]. Wang et al. developed NC-FETs based on
2D MoS2 and ferroelectric P(VDF-TrFE) (Figure 4f) [162]. The thickness of P(VDF-TrFE) in
2D MoS2 NC-FETs was varied from 50 to 300 nm and all the devices exhibited SS values
lower than 60 mV·dec−1. (Figure 4g). In particular, the SS values decreased gradually as
the thickness of P(VDF-TrFE) increased because there was a certain layer at the interface
between P(VDF-TrFE) and the top Al electrode that barely contributed to the NC behavior.
This was confirmed by linear fitting, where a fixed capacitance of 5.5 nF was observed even
when the thickness of P(VDF-TrFE) was projected to be zero. Nevertheless, the ultralow SS
value of ~24.2 mV·dec−1. was obtained with a thick P(VDF-TrFE) dielectric layer (~300 nm).
Liu et al. also developed NC-FETs using 2D MoS2 and P(VDF-TrFE), and 4 nm-thick HfO2
was inserted between 2D MoS2 and P(VDF-TrFE) to achieve the reliable NC behavior and
robust operation of FETs [163]. Furthermore, silver nanowires (AgNWs) were used as gate
electrodes to reduce the channel length and maximize the output current of the NC-FETs.
An SS value lower than 60 mV·dec−1. and high transconductance (gm) were maintained
with channel lengths greater than 60 nm (Figure 4h). With further decreases in channel
length, SS increased, and gm decreased because of the short channel effects. Nevertheless,
this study showed the great potential of 2D channel material and ferroelectric polymers in
high-performance nano-scale electronics.
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dielectric layer [160]. Copyright © 2019, John Wiley and Sons. (d) The schematic diagram of PVDF-
HFP and FDA-crosslinked PVDF-HFP (FPVDF-HFP). (e) The transfer curves of C10-DNTT organic
FETs based on pristine PVDF-HFP and crosslinked FPVDF-HFP [161]. The arrows represent forward
and backward sweep of VG. Copyright © 2020, American Chemical Society. (f) The schematic
diagram of the device structure of the 2D MoS2 NC-FETs and (g) their transfer curves with different
P(VDF-TrFE) thicknesses [162]. Copyright © 2017, Springer Nature. (h) The change in SS and gm

according to the channel length of 2D MoS2 NC-FETs based on HfO2/P(VDF-TrFE) gate dielectric
layer [163]. Copyright © 2018, John Wiley and Sons.

3.2.4. Polymer–Inorganic Hybrid Dielectric Materials for FET Devices

Organic–inorganic hybrid dielectric materials have been developed to accommodate
the advantages of organic and inorganic materials, and polymers have been incorporated
as organic components in hybrid dielectrics [100,195,196]. For example, polymer dielectric
layers have been inserted between inorganic dielectric layers and semiconductors to passi-
vate interface traps of the inorganic layers [107,164,197–202]. Feng et al. used poly(methyl
methacrylate) (PMMA)/Al2O3 bilayer dielectrics for 2D indium selenide (InSe) FET devices
(Figure 5a) [107]. The PMMA layer passivated the hydroxyl (−OH) groups of Al2O3 and
suppressed charge carrier scattering, which was supported by analyzing the performance
of FET. The µ value of the 2D InSe FET with the Al2O3 dielectric layer was ~64 cm2·V−1·s−1,
which was enhanced drastically to ~1055 cm2·V−1·s−1 with the PMMA layer. In addition,
the SS value was improved from 600 to 300 mV·dec−1. by inserting PMMA. This enhance-
ment in the FET performance was consistent when SiO2 replaced Al2O3 as the inorganic
dielectric layer, and the increase in the µ value was commonly obtained with different
thicknesses of 2D InSe (10–50 nm). These results suggested that the Coulomb impurities or
surface polar phonon scattering can be suppressed by the polymer dielectric layer. Similarly,
Choi et al. developed polymer–inorganic hybrid dielectrics consisting of plasma-grown
Al2O3 and high-k p(CEA-co-DEGDVE) [164]. The polymeric layer thickness was adjusted
precisely on the nanometer scale by tuning the deposition time in the iCVD process. µ was
increased, and the interface trap density (NSS) was decreased in C8-BTBT organic FETs by
introducing the polymer dielectric layer (Figure 5b). The thickness of the polymer dielectric
was optimized to 10 nm to achieve high-performance FET devices and reliable dielectric
properties, and the total thickness of the layered hybrid dielectric was 15 nm (5 nm-thick
Al2O3 and 10 nm-thick high-k polymer). Based on this high dielectric constant and ultralow
thickness, low-voltage (<3 V), flexible C8-BTBT organic FETs were demonstrated, which
exhibited 100% yield and a high areal uniformity in the FET characteristics.

FET devices with high operational stability were achieved by exploiting the reduced
trap densities of layered hybrid dielectrics [165,200,203–207]. Jia et al. fabricated TIPS-
pentacene/poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) organic FETs and
35 nm-thick CYTOP and 33 nm-thick HfO2-Al2O3 nanolaminate were used as a gate
dielectric layer [165]. Extremely high operational stability was achieved in the organic
FETs where the change in ID was less than 4% of the initial ID even after 40 h of the
continuous bias stress, which was well-matched with modeling results using double-
stretched exponential (DSE) function (Figure 5c). This long-term bias stress stability could
be explained by two competing processes, where ID decreased by charge trapping at the
interface between the semiconductor and polymer dielectric layer, being compensated by
remnant dipole polarization in the inorganic layer [164,208]. In addition, the FETs were
fabricated in top-gate geometry, allowing for an improved environmental stability.

Incorporating polymer dielectric materials into hybrid dielectrics can improve mechan-
ical flexibility by mitigating the brittleness of inorganic dielectric materials [4,106,209–211].
For example, Chen et al. developed polymeric self-assembled nanodielectric (PSAND)
by the solution-processed layer-by-layer assembly of a P-PAE polymer chromophore and
zirconia (ZrOx) [106]. The thickness of the hybrid insulating layer was adjusted precisely
according to the assembly frequency (PSAND-x), and the fabricated hybrid insulating layer
exhibited high capacitance (558, 472, 406, and 339 nF·cm−2 for PSAND-1, 2, 3, and 4, respec-
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tively). In particular, the Ci value varied linearly with the PSAND thickness, indicating a
well-defined multilayer structure. Diketopyrrolopyrrole-dithienyl-thieno[3,2-b] thiophene
(DPP-DTT) organic FETs were fabricated on polyimide (PI) substrates using the PSAND-4
as a dielectric layer (Figure 5d), with an operating voltage less than 3 V enabled by high Ci
of PSAND-4. The fabricated flexible organic FETs only exhibited a marginal change in their
µ and VT with the bending radius from ∞ to 1 mm, showing good mechanical flexibility of
the self-assembled hybrid dielectrics.
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Figure 5. (a) Schematic diagram of the 2D InSe FET with a PMMA/Al2O3 gate dielectric layer [107].
Copyright © 2014, John Wiley and Sons. (b) Change in the µ and NSS of C8-BTBT FETs according
to the thickness of the polymeric layer in p(CEA-co-DEGDVE)/Al2O3 hybrid dielectric [164]. Black
and blue lines represent mobility and trap density, respectively. Copyright © 2022, John Wiley
and Sons. (c) ID change with respect to the bias stress time of TIPS-pentacene/PTAA FETs with
the CYTOP/HfO2-Al2O3 dielectric layer [165]. Copyright © 2018, American Association for the
Advancement of Science. (d) The schematic diagram of flexible DPP-DTT FETs based on PSAND-4
dielectrics and (e) their mobility and VT change according to the bending radius [106]. Copyright ©
2020, John Wiley and Sons. (f) The schematic diagram of the fabrication process of SWCNT FETs with
the BaTiO3/PDMS composite dielectric layer and (g) the optical microscopy image of the fabricated
device. (h) The change in µ and Ion/Ioff with respect to the applied strain and strain cycles of SWCNT
FETs [166]. Red and blue dots represent mobility and Ion/Ioff in the upper graph, respectively, and
green and yellow dots represent mobility and Ion/Ioff in the lower graph, respectively. Copyright ©
2016, American Chemical Society.

A nanocomposite is another type of polymer–inorganic hybrid dielectric material,
where inorganic nanoparticles are dispersed within a polymer matrix [166,212–216]. Cai
et al. developed fully printable, semiconducting single-walled carbon nanotube (SWCNT)
FETs using the nanocomposite hybrid dielectrics consisting of barium titanate (BaTiO3)
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nanoparticles and PDMS (Figure 5f,g) [166]. Unsorted carbon nanotubes (CNTs) were
used as gate and source/drain electrodes, of which the resistance decreased significantly
as the number of printing cycles increased. The dielectric constant of the BaTiO3/PDMS
composite increased with the BaTiO3 volume content increased, and it reached ~9 at a
BaTiO3 volume content of ~26%. A Ci value of ~2.8 nF·cm−2 was obtained, even with a
thickness of ~2 µm owing to the high dielectric constant. The composite dielectric layer
exhibited robust insulating properties with J < 10−8 A·cm−2 under a voltage as high as
±200 V. Moreover, the Ci values of the BaTiO3/PDMS composite showed only a marginal
change under the repeated stretching with the applied strain of 50% for 2000 cycles. This
excellent mechanical property made it possible to fabricate stretchable SWCNT FETs on a
PDMS substrate, which retained its FET operation under an applied strain of 50% and under
the 1400 cycles of repeated stretching with 50% strain. The µ value tended to decrease,
and Ion/Ioff increased according to the applied strain and strain cycle, possibly due to
the structural changes in the SWCNT network and the stronger gating effect, respectively
(Figure 5h). Furthermore, stretchable logic circuits, including NOR and NAND gates, were
demonstrated by integrating FET devices.

In addition to the hybrid dielectrics described above, homogeneous polymer–inorganic
hybrid dielectric materials were developed using solution-phase fabrication [108,217–219]
and vacuum deposition [109,220,221] to improve the electrical and mechanical properties
of the dielectric layers.

3.3. Triboelectric Nanogenerators (TENGs)
3.3.1. Overview of Polymer Dielectric Materials for TENGs

Various types of dielectric materials have been introduced to accommodate the impor-
tant requirements of TENGs, including high output performance, low operating voltage,
and device stability. Directly injecting electric charge into the surface of a dielectric layer
significantly improves the surface charge density and enhances the output performance
of TENGs, adding a gradient charge-confinement layer containing mesoporous carbon
spheres, further boosting these parameters [222,223]. Similarly, using the self-assembled
monolayer (SAM) method for the atomic-level chemical functionalization of polymer sur-
faces significantly alters the dielectric properties and enhances the triboelectric performance
of TENGs [224,225]. In addition, incorporating metal oxide nanoparticles into the triboelec-
tric layer increases the dielectric constant and surface charge density, further improving the
output performance of TENGs [226,227]. Dissolving P(VDF-TrFE) in high dipole moment
solvents enhances the polymer chain length, crystallinity, and dipole alignment, leading to
superior triboelectric properties and improved TENG output performance [228,229].

Moreover, the application of electrical polarization to ferroelectric composite layers
by controlling the electric field, temperature, and process time improves the ferroelec-
tric properties and allows the precise modulation of charge transfer and output voltage
in TENGs [230,231]. Furthermore, multilayered PVDF-TrFE/BaTiO3 films with aligned
BaTiO3 nanoparticles significantly enhance the dielectric constant, local field, and polariza-
tion, resulting in a higher output current density and improved TENG performance [27].
The subsequent section will review the latest research breakthroughs in enhancing polymer-
based dielectric materials specifically for TENGs. Table 4 provides a summary of the
parameters for the TENG devices that utilize polymer dielectric materials, which are the
focus of this paper.

3.3.2. Polymer-Based Dielectric Materials and Strategies for Enhancing TENG Devices

Directly injecting electric charge into the surface of a dielectric layer is a straightfor-
ward yet highly effective method for greatly increasing surface charge density. Wang et al.
demonstrated that the output performance of TENGs could be enhanced by using ionized
air to inject charges into a fluorinated ethylene propylene (FEP) film with an air ionization
gun (Figure 6a) [232]. The electret film created through ion implantation maintained a
surface charge density (∆σ) of approximately 200 µC·m−2 for 160 days, with a minimal
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loss rate of 16.6%. The TENG with an ionized FEP film exhibited a five-fold increase in the
short-circuit current density compared to the untreated FEP film (Figure 6b,c).

In another study, Cha et al. introduced a charge injection process to a gradient charge-
confinement layer composed of electrospun nanofibers to enhance the surface charge
density of the dielectric layer [233–235]. Each successive nanofibrous layer, from the
innermost to the outermost, contained increasingly larger amounts of mesoporous carbon
spheres (mCS), as illustrated in Figure 6d. These mCSs facilitated the transport of charges
from the outer surface, influenced by the charge injection, to the deeper regions of the
nanofibrous layer while also minimizing charge loss through confinement. This gradient
arrangement of mCSs resulted in a high space charge density within the charge-injected
composite layer (Figure 6e). When the charge injection was carried out under a strong
external field of 7 kV, the surface charge density in the gradient charge-confinement layer
was approximately 7.5 times greater than in the absence of mCSs. As a result, the output
voltage surged dramatically to 600 V after the high-voltage charge injection compared to
just 15.2 V before the injection (Figure 6f). In summary, the combination of the charge
injection with the strategic structural design of the dielectric layer presents an effective
approach for creating high-performance TENGs.

The SAM method [225,236,237], which relies on the spontaneous organization of
chemisorbed surfactant molecules on solid surfaces, serves as another effective method for
chemical surface modification. Shin et al. introduced a straightforward SAM approach to
achieve atomic-scale chemical functionalization aimed at modifying the dielectric properties
of polymer surfaces (Figure 6g). In their study, SAMs were methodically formed on a
polyethylene terephthalate (PET) substrate through the sequential application of various
halogens and amines. The process began with the functionalization of the PET surface
using hydroxyl groups (−OH) via oxygen plasma treatment, creating an intermediate
layer that promotes chemical bonding with desired functional molecules. Subsequently,
this hydroxyl-coated layer was treated with halogen-terminated (Br, F, and Cl) phenyl
derivatives, acting as tribo-negative materials, and different amine compounds, serving as
tribo-positive materials, to impart negative or positive triboelectric characteristics to the
PET substrate accordingly. The resulting aminated PET substrates demonstrated strong
tribo-positive behavior, while the halogenated PET substrates exhibited pronounced tribo-
negative properties. Constructing TENGs by pairing samples with opposing triboelectric
polarities, such as PEI(b)-PET and Cl-PET, yielded high voltage outputs of 300 V and
200 V for each layer, respectively. Overall, this atomic-level chemical functionalization
technique provides a simple and efficient strategy to enhance the design versatility of
polymer substrates in the development of high-performance TENGs.

Another effective strategy for achieving high-performance TENGs is to directly adjust
the intrinsic dielectric constant of the active triboelectric layer, which maximizes dielectric
polarization across the triboelectric layers. This can be accomplished by creating a triboelec-
tric layer in the form of a nanocomposite that incorporates high-k metal oxide nanoparticles
(such as BaTiO3, BiFeO3, and CCTO) [238–241] dispersed within a ferroelectric polymer
matrix, thereby effectively increasing the dielectric constant. These high-k nanoparticles
boost the surface charge density of the triboelectric layer, which in turn enhances the output
performance of TENGs.

Kim et al. developed a composite triboelectric layer composed of butylated melamine
formaldehyde (BMF) and high-dielectric CaCuTi4O12 (CCTO) nanoparticles designed
to produce a high-output TENG with consistent performance (Figure 6j–l). The CCTO
nanoparticles, with a high dielectric constant of 7500, induced substantial dielectric polar-
ization in the composite triboelectric layer, leading to more efficient charge induction at the
counter electrode and boosting the TENG’s output performance. The dielectric constant
of the BMF-CCTO composite layer (at 1 wt.%) was measured to be 21.74, which was ap-
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proximately three times higher than that of pristine BMF, BMF-Al2O3, and BMF-TiO2. The
relationship between permittivity and electrical polarization can be expressed as

→
P = ε0(εr − 1)

→
E (6)

where
→
P , εr, and

→
E are the electrical polarization within a material, relative permittivity,

and applied electric field, respectively [242]. According to Equation (6), a higher dielectric
constant leads to stronger internal polarization when subjected to an electric field. Incor-
porating 1 wt.% CCTO into BMF generated a voltage of 268 V and a current density of
25.8 mA/m2 [60]. In addition, ferroelectric materials were used to alter dipole alignment,
which further boosted the performance of TENGs. The described advancements in en-
hancing the performance of TENGs highlight the significance of combining innovative
charge injection techniques with material engineering. The use of ionized air, gradient
charge-confinement layers, and high-dielectric materials demonstrates the potential for
significantly increasing surface charge density and output efficiency. These approaches
not only push the boundaries of TENG technology but also open up new possibilities for
designing high-performance energy-harvesting devices. It could also be broadly applicable
to other dielectric-based devices, such as capacitors or sensors, where maximizing charge
storage and dielectric polarization is essential.
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from [243], Copyright 2014, Wiley-VCH. (d) The schematic diagram of charge transport and confinement
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mechanisms in different charge confinement layers. (e) The comparison of the output voltages
based on the gradient arrangement of mCSs. (f) The comparison of the surface charge densities
based on the gradient arrangement of mCSs. Reprinted with permission from [223], Copyright 2022,
Wiley-VCH. (g) The schematic diagram of surface-functionalized negative and positive PETs with
adopted molecules. (h,i) The surface charge density for various functional groups. Reprinted with
permission from [244], Copyright 2017, American Chemical Society. (j) The P–E curves of pure BMF
and BMF–CCTO 1 wt.% composite material (inset: chemical structure of CCTO and the relationship
between relative permittivity and polarization under an electric field). (k) The relative permittivity
of pure BMF, BMF–Al2O3, BMF–TiO2, and BMF–CCTO composite materials (1 wt.%). (l) The VRMS

and JRMS of pure BMF, BMF–Al2O3, BMF–TiO2, and BMF–CCTO (1 wt.%) composite materials in
rotation-type freestanding mode TENGs. Reprinted with permission from [60], Copyright 2020,
Wiley-VCH.

3.3.3. Ferroelectric Polymers for TENG Devices

Figure 7a shows P(VDF-TrFE) dissolved in a solvent with a high dipole moment,
leading to longer polymer chain lengths, improved chain orientation, and increased crys-
tallinity. The enhanced crystallinity of P(VDF-TrFE) in these solvents is mainly attributed
to the extended end-to-end chain length of the polymer [245,246]. Kim et al. determined
the Mw values using gel permeation chromatography (GPC) because the relative chain
length of P(VDF-TrFE) can be expressed in terms of the weight average molecular weight
(Mw). The GPC of P(VDF-TrFE) dissolved in tetrahydrofuran (THF), methyl ethyl ketone
(MEK), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) revealed 2.37 × 105,
2.44 × 105, 2.75 × 105, and 2.76 × 105 g·mol−1, respectively (Figure 7b). These results
confirm that P(VDF-TrFE) dissolved in higher dipole moment solvents (e.g., DMSO) has
a higher Mw and a longer chain length. The alignment of dipoles plays a crucial role in
the performance of ferroelectric polymer-based TENGs, as greater dipole alignment in the
polymer can lead to increased output. To evaluate improvements in energy harvesting,
the triboelectric properties of P(VDF-TrFE) dissolved in four different solvents were ana-
lyzed. Figure 7c illustrates the contact potential differences (CPDs) of P(VDF-TrFE) in these
solvents, measured using Kelvin probe force microscopy (KPFM). The CPDs between the
P(VDF-TrFE) and the Pt tip were −0.87, −1.10, −1.63, and −2.37 V for THF, MEK, DMF,
and DMSO, respectively. Based on these CPD measurements, the corresponding work
functions of P(VDF-TrFE) dissolved in THF, MEK, DMF, and DMSO were calculated to be
5.91, 6.14, 6.67, and 7.41 eV, respectively. Consequently, P(VDF-TrFE) dissolved in a solvent
with a higher dipole moment exhibits a more negative CPD and a larger work function,
suggesting a greater capacity to attract electrons during triboelectrification and enhanced
triboelectric properties [247].

Beyond controlling chain length, ferroelectric composite layers can enhance the fer-
roelectric properties of friction layers by triggering dipole rearrangement through the
application of external electric fields [230,248]. Achieving the effective polarization of
each composite requires optimizing factors such as the electric field, temperature, and
processing time, which are influenced by the material’s coercive field, insulation resistance,
and Curie temperature [249]. Additionally, the polarization direction must be carefully
selected to strengthen the polarity of the friction surface (Figure 7d). The output voltages
of positively poled P(VDF-TrFE)-based TENGs were opposite in sign to those of negatively
poled P(VDF-TrFE)-based TENGs, suggesting that the polarization direction influences the
sign of charge transfer during the triboelectric phenomenon.

Moreover, although the bare P(VDF-TrFE) device showed an output voltage of approx-
imately 15 V, positively and negatively poled P(VDF-TrFE)-based TENGs under a vertical
compressive force of 2 kg exhibited output voltages of up to 400 V and 100 V, respectively.
These values are significantly higher than those of the bare P(VDF-TrFE)-based TENGs.
This can be explained by the incomplete switching of the bare P(VDF-TrFE) in one direction.
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The varying output voltages also confirmed that the amount of charge transfer can be
controlled by adjusting the polarization states. Figure 7d,e show that the sign and amount
of charge transfer can be controlled by the polarization states.

Park et al. evaluated the triboelectric performance of three different film types to
assess the impact of BaTiO3 (BTO) nanoparticle (NP) interlayers on triboelectric properties:
a single PVDF-TrFE film, a single PVDF-TrFE/BTO nanocomposite, and multilayered
PVDF-TrFE/BTO films (Figure 7f). The distribution of the electric field indicated that the
multilayer structure, with BTO NPs arranged on the coplanar layer, offers more efficiently
connected interfacial charges at closer distances than composites with randomly dispersed
BTO NPs. This arrangement leads to a significantly enhanced local electric field and a
greater ferroelectric polarization of the polymer [250].

Simulations using COMSOL Multiphysics revealed that the interfacial polarization in the
multilayer structure (8.4 mC·m−2) was greater than in the single composite (8.06 mC·m−2).
This increased polarization contributes to a higher dielectric constant in the multilayered
film. Figure 7g illustrates how the dielectric constant varies with frequency across different
films. While the PVDF-TrFE/BTO films exhibited a higher dielectric constant (15.9 at
10 kHz) compared to the PVDF-TrFE films (13.9 at 10 kHz) due to the presence of high-k
BTO nanoparticles, the multilayered PVDF-TrFE/BTO film achieved the highest dielectric
constant (17.06 at 10 kHz), attributed to the alignment and closer spacing of BTO nanopar-
ticles in the coplanar layer. The polymer interlayers between the inorganic nanoparticle
layers in these multilayered films also enhanced breakdown strength by reducing leakage
current in the insulating polymer layers [251], resulting in superior dielectric properties
compared to single composites. Figure 7h displays the average output current density
for PVDF-TrFE and PVDF-TrFE/BTO films in both the single composite and multilayer
configurations. The multilayered PVDF-TrFE/BTO films demonstrated an output cur-
rent density of 1.77 µA·cm−2, which is 1.5 times higher than that of the composite film
without a multilayer structure (1.2 µA·cm−2). The enhanced output performance of the
multilayered PVDF-TrFE/BTO films, in comparison to single composite films, is due to
the alternating PVDF-TrFE/BTO layer structure, which increases stress-induced polariza-
tion. Furthermore, the stronger local field generated by effective interfacial polarization
within the multilayered PVDF-TrFE/BTO film also played a significant role in boosting the
output performance.

Overall, electrically polarizing ferroelectric composite materials allows for the adjust-
ment of the dielectric properties and the triboelectric friction surface, thereby enhancing
TENG performance. Moreover, the polarized dipoles within the composite layer influ-
ence charge carrier movement, leading to an additional increase in the triboelectric out-
put [252–254]. The findings highlight the importance of solvent dipole moments and
controlled polarization in optimizing the dielectric properties and output performance of
ferroelectric polymers in TENGs. By carefully selecting solvents and employing strategic
polarization techniques, the molecular structure and dipole alignment of materials like
P(VDF-TrFE) can be precisely controlled, leading to substantial enhancements in triboelec-
tric performance. These insights extend beyond TENGs, offering a pathway for improving
other dielectric-based devices where charge carrier movement and dielectric constant op-
timization are important, such as in capacitors and memory devices. The demonstrated
benefits of multilayered structures and aligned nanoparticles suggest that similar strategies
could be employed to enhance the efficiency and performance of a wide range of dielectric
materials and devices.
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Figure 7. Schematic diagram of the ferroelectric P(VDF-TrFE) to modulate output performance and
related methods. (a) The schematic diagram of P(VDF-TrFE) dissolved in a high dipole moment
solvent and the resulting P(VDF-TrFE) film. (b) The GPC measurement of the molecular weight (Mw)
of P(VDF-TrFE) dissolved in four solvents (THF, MEK, DMF, and DMSO); a higher Mw indicates a
longer chain length of P(VDF-TrFE). (c) The CPDs of P(VDF-TrFE) dissolved in the four solvents; a
bias was applied to the central area of P(VDF-TrFE) for poling. Reproduced from [247], Copyright
2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d,e) Controllable charge transfer through
ferroelectric polarization. Reproduced from [252], Copyright 2016, WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. (f) The schematic diagram of three different sample types with the same thickness:
a PVDF-TrFE film, a single PVDF-TrFE/BTO composite, and a multi-layered PVDF-TrFE/BTO film.
(g) The comparison of the dielectric constants of the three different types of films. (h) The comparison
of the output current density under a vertical pressure of 98 kPa at 2 Hz. Reproduced from [250],
Copyright 2020, American Chemical Society.

3.3.4. Polymer–Inorganic Hybrid Dielectric Materials for TENG Devices

Beyond surface and bulk modifications, engineering intermediate layers presents a
promising strategy for enhancing triboelectric performance. These interlayer modifications
are introduced between the triboelectric materials and electrodes, allowing for control
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over the interfacial properties based on the physical attributes of the interlayer materials.
Two primary challenges include surface charge decay and the hindrance of electrostatic
induction due to charge recombination at the electrodes [255]. Surface charges in contact
with air can gradually dissipate because their electric field attracts ions that are constantly
present in the atmosphere [256]. Furthermore, surface charges can decrease due to a drift
process caused by the electric field and a diffusion process driven by the electron concen-
tration gradient. This reduction in surface charges leads to a decline in the triboelectric
performance. Electrostatic induction can also be hindered at the interface between the
triboelectric materials and electrodes, where the presence of numerous free electrons in
the electrodes may neutralize electrostatic induction through recombination [257]. The
suppression of electrostatic induction has a detrimental effect on triboelectric behavior,
resulting in lower performance. To address these challenges and enhance triboelectric effi-
ciency, various interfacial engineering techniques have been thoroughly researched. This
section examines interfacial engineering strategies, highlighting two primary approaches:
electron-trapping layers (ETLs) and electron-blocking layers (EBLs).

Kim et al. introduced an innovative design for a TENG incorporating a polymeric
interlayer. In this study, electrospun PVDF-TrFE served as the negative tribo-material, while
PDMS was used as the charge-trapping layer [258,259] (Figure 8a). The design featured an
interfused charge-trapping layer intended to capture triboelectric charges within the PDMS
interlayer (Figure 8b). This interfused structure improved the contact between PVDF-TrFE
and PDMS, thereby enhancing charge transfer from PVDF-TrFE to PDMS. As a result, the
charge-trapping efficiency of the PDMS layer was significantly increased, leading to a
triboelectric performance boost of approximately two times compared to a PVDF-TrFE-
based TENG and six times higher than a TENG with a simply bonded PVDF-TrFE/PDMS
structure (Figure 8c).

Table 4. Summary of polymer dielectric-based TENGs.

Dielectric
Material

Working
Mode

Surface
Charge
Density

Output
Voltage

Output
Current

Output
Power

Applied
Force,

Pressure
[Ref.]

FEP Single
electrode

~200
µC·m−2 ~1000 VPP

~78 mA/m2

(IPP) 315 W/m2 20 N [243]

mCSs 1 Single
electrode

~75
µC·m−2 ~600 VPP

12.8 µA
(IPP) 5.83 mW 80 N [223]

PEI(b)-PET 2 Double
electrode

52
µC m−2 ~520 VPP

110 mA/m2

(IPP) 55 W/m2 0.15 MPa [244]

BMF-CCTO 3 Free-
standing N/A 268 VRMS

25.8 mA/m2

(IRMS) 25.8 W/m2 N/A [60]

PVDF-TrFE
(DMSO)

Double
electrode N/A ~340 VPP

~220 µA
(IPP) N/A 1 kgf [247]

PVDF-TrFE
(poled)

Double
electrode

20.86
nC·m−2 ~400 Vamp N/A N/A 1 kgf [252]

PVDF-
TrFE/BTO

Double
electrode N/A ~44 Vamp

1.77 µA/cm2

(Iamp) 29.4 µW/cm2 98 kPa [250]

PVDF-
TrFE/PDMS

Double
electrode N/A ~40 VPP

~350 µA
(IPP)

125.5
mW/cm2 N/A [260]

PI/rGO 4 Double
electrode N/A 190 Vamp

~70 µA
(Iamp) 6.3 W/m2 N/A [261]

PDMS/TiO2
Double

electrode
30

µC·m−2 272 Vamp
~9.1 µA
(Iamp) N/A 5 N [257]

1 mesoporous carbon spheres (mCSs). 2 branched polyethylenimine (PEI(b)-PET) functionalized on the O2 plasma-
treated PET. 3 butylated melamine formaldehyde (BMF)–CaCu3Ti4O12 (CCTO). 4 reduced graphene oxide (rGO)
on PI.
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Researchers have investigated advanced charge-trapping layers made from conduc-
tive materials and polymer composites. Wu et al. demonstrated improved triboelectric
performance using a reduced graphene oxide (rGO)-based electron-trapping layer (ETL)
(Figure 8d). Polyimide (PI) was employed as the negative tribo-material, with a PI/rGO
composite layer integrated within the PI layer to function as an electron storage layer.
Additionally, rGO adjusted the interfacial energy band alignment (Figure 8e), enhancing its
ability to trap electrons. Electron trapping resulted in more than three times improvement
in the triboelectric performance compared to a pristine PI-based TENG device (Figure 8f).
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Figure 8. The designs of charge-trapping layers and their impact on triboelectric performance.
(a) The illustration of the TENG device featuring an interfused charge-trapping layer. (b) The FE-
SEM results of an electrospun PVDF layer and a PVDF/PDMS interfused friction layer. (c) The
dependency of the thickness of the interlayer and configuration on the output voltage. Reprinted
with permission from [260], Copyright 2022, Elsevier. (d,e) The schematic diagram of the PI/rGO
multilayer TENG. (f) The measured open-circuit voltages (VOC) of the TENG based on the PI/rGO
multilayer. Reproduced from [261], Copyright 2017, Elsevier. (g) The device design of an interface-
engineered TENG based on the intermediate layer (TiOx) and (h) the description regarding the
electron block event by the TiOx interlayer. (i) Measured voltages as a function of the thickness of the
intermediate layer. Reprinted with permission from [257], Copyright 2018, Elsevier.
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Electron-blocking layers (EBLs) have been researched as a means to reduce electrostatic
induction hindrance at the interface between triboelectric materials and electrodes. Park
et al. proposed an EBL by incorporating a sputtered titanium oxide (TiOx) layer (Figure 8g).
PDMS served as the friction layer and an Al film as the electrode in this setup. The electron-
blocking mechanism relies on the capacity of oxygen vacancies in the TiOx layer to capture
free electrons (Figure 8h). These oxygen vacancies, which act as electrically positive defects,
can trap free electrons from the Al electrode when an external electric field is applied. The
efficiency of the TiOx layer in blocking electrons is closely tied to the quantity of oxygen
vacancies, highlighting the importance of increasing the ratio of these vacancies in the
interlayer. Moreover, the interlayer affects both the electron-blocking capabilities and
the device’s capacitance. As the material thickness increases, both the capacitance and
electrostatic induction may decrease, making it crucial to achieve an optimal thickness for
the interlayer. A 25-fold enhancement in the triboelectric performance was achieved using
the electron-blocking effect (Figure 8i).

4. Challenges
4.1. Challenges in the Area of Dielectric Polymers for Future Memory Technologies

Polymer dielectric materials have been used extensively in memory devices, specifi-
cally in developing conductive filament memristors and charge-trap memory transistors.
These applications leverage the unique electrical properties, processability, and flexibility
of polymers to enhance device performance. On the other hand, several challenges and
opportunities exist for polymer dielectric materials in memory applications:

(1) Electrical Property Improvement: Polymers have shown high dielectric constants
and reliable insulating properties, but their electrical characteristics are often not
as advanced as those of inorganic materials. Enhancing the dielectric constant and
minimizing the leakage current paths, even at extremely thin thicknesses, requires
molecular-level material and structural design. For example, incorporating polar
functional groups that respond effectively to electric fields can improve the dielectric
constant [262,263]. In addition, forming a denser polymer matrix can help reduce the
leakage currents [97].

(2) Process Optimization: Polymer dielectric films are primarily fabricated through
solution-based processing methods, which offer simplicity and potential for large-
scale production [96,264]. On the other hand, these methods can introduce residual
solvents or additives that adversely affect electrical properties [80]. Exploring alter-
native processing techniques, such as chemical vapor deposition (CVD), can help
achieve high-purity polymer films and homogeneous mixing, improving the overall
performance of memory devices [51,55,85,86,95].

Despite these challenges, the flexibility, tunability, and ease of the processing of
polymer dielectric materials make them promising candidates for next-generation memory
devices. Ongoing research aim to address these hurdles and unlock the full potential of
polymer dielectrics in advanced memory applications.

4.2. Challenges in the Area of Dielectric Polymers for Future FETs

Polymer dielectric materials have been used extensively in FET devices based on
emerging semiconductors, as highlighted in this paper. Polymer materials have been
designed to have high dielectric constant and reliable insulating performance to fabricate
high-performance and low-power FETs. Some polymers can exhibit unique characteristics
such as dopant properties, barrier properties, or ferroelectricity. Polymers have also been
used as organic moieties in hybrid dielectrics, enhancing the FET performance, opera-
tional stability, or mechanical deformability. Nevertheless, there are still challenges and
opportunities for polymer dielectric materials in FETs, as follows:

(1) The electrical properties should be further improved. Although a high dielectric con-
stant and reliable insulating properties have been secured in some polymers, polymer
dielectric materials are still considered inferior to inorganic counterparts in their elec-
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trical characteristics. Overcoming these limitations and developing polymer dielectric
layers with high capacitance will need molecular-level material and structural de-
sign [5,36]. For example, increasing the dielectric constant by allowing polar functional
groups to respond to the applied electric field may be necessary [114,117,121,126], and
ferroelectric polymer can be a representative example of this design [171,182,188]. In
addition, it is essential to densify the polymer matrix to minimize the leakage current
path even at extremely thin thicknesses [115,124,127,128].

(2) Appropriate material design and process optimization are necessary. Polymer dielec-
tric films are mostly fabricated through solution-based processing methods, which
are advantageous in terms of process simplicity and potential printability [47,118,166].
On the other hand, solution processes can affect the electrical properties of polymer
dielectric layers due to residual solvents or additives. Research has been performed
on polymer dielectric materials based on chemical vapor deposition processes such
as parylene [31,32,265]. Nevertheless, these processes require vacuum equipment
and cost. Furthermore, reliable and uniform processability on a large scale should
also be ensured to expand the practical application potential for polymer dielectric
materials [9,50,164].

Despite these challenges, polymer dielectric materials are expected to be highly valu-
able because of their unique characteristics, such as tunability in chemistry and excellent
mechanical properties, particularly in form factor-free, future electronics.

4.3. Challenges in the Area of Dielectric Polymers for Future TENGs

Polymer dielectric materials are used widely in TENGs to convert mechanical energy
into electrical energy. These materials have been engineered to enhance dielectric prop-
erties and charge-trapping capabilities, which are essential for high-performance TENGs.
Polymers, such as PVDF and its copolymers, have been popular because of their high
dielectric constant and flexibility, allowing for efficient energy harvesting and mechanical
adaptability. On the other hand, there are still challenges and opportunities for polymer
dielectric materials in TENGs, as follows:

(1) Efficiency and output performance: Although some polymer dielectrics show promis-
ing triboelectric properties, achieving higher efficiency and output performance re-
mains challenging. Enhancing the dielectric constant and surface charge density
through material innovation and surface engineering is critical to improving the ef-
ficiency of TENGs. For example, integrating high-dielectric nanoparticles, such as
BaTiO3 or TiO2, into the polymer matrix can significantly boost the output perfor-
mance. In addition, producing nanocomposite structures that incorporate conductive
fillers like Au nanoparticles can further enhance charge transport and storage capabil-
ities, increasing the overall energy conversion efficiency of TENGs [266].

(2) Durability and wear resistance: TENGs are subject to repeated mechanical contact and
friction, which can degrade polymer materials over time. Developing polymers with
high mechanical durability and wear resistance is essential for ensuring long-term
reliability and consistent performance [267]. Innovations can enhance durability, such
as crosslinking polymer chains to produce a more robust network or adding wear-
resistant additives. For example, incorporating silicone-based elastomers or other
flexible yet tough materials can reduce surface wear and maintain the integrity of the
triboelectric layers. Furthermore, applying protective coatings that resist abrasion
and environmental degradation can help preserve the functional properties of the
polymer dielectric materials in TENGs.

(3) Environmental stability: TENGs often operate under various environmental condi-
tions, such as humidity, temperature fluctuations, and UV exposure. Ensuring that
polymer dielectrics maintain their performance under these conditions requires the
development of environmentally robust materials. Polymers with inherent environ-
mental stability, such as fluorinated polymers or those that can be chemically modified
to resist harsh conditions, will be crucial for the reliable operation of TENGs in diverse
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settings. For example, surface modification with hydrophobic coatings can prevent
moisture absorption [268], while UV stabilizers protect the material from photodegra-
dation. In addition, selecting polymers that have a broad operational temperature range
can ensure consistent performance in both high- and low-temperature environments.

Despite these challenges, polymer dielectric materials are expected to be highly valu-
able for TENG applications because of their unique properties and potential for innovative
designs. The ability to tailor polymer properties at the molecular level offers significant
opportunities for optimizing TENG performance. Ongoing research and development are
needed to overcome these hurdles and unlock the full potential of polymer dielectrics in
next-generation energy-harvesting devices.

5. Conclusions and Outlook

Polymer dielectric materials have potential applications in memory devices, FETs,
and TENGs. The integration and synergy among these devices can lead to innovative
solutions and advancements in flexible and wearable electronics, self-powered systems,
and sustainable technologies.

5.1. Interconnected Functionalities

(1) Memory devices and FETs: Polymer dielectric materials can be used to develop
flexible, low-power memory devices that integrate seamlessly with FETs. The high
dielectric constants and reliable insulating properties of polymers enable the devel-
opment of memory–transistor hybrid systems that combine data storage with logic
functions, such as logic-in-memory systems. This integration can result in compact,
high-performance devices capable of performing complex computations while retain-
ing data, all within a flexible form factor.

(2) TENGs and FETs: TENGs can be self-powered sources for FET-based electronic circuits
and sensors. By converting mechanical energy from movements or environmental
vibrations into electrical energy, TENGs can provide a sustainable power supply
for FETs, eliminating the need for external batteries. This integration is beneficial
for wearable sensors and remote monitoring devices where replacing or recharging
batteries is impractical.

5.2. Specific Integration Strategies in Artificial Intelligence of Things (AIoT) Devices

Integrated systems that combine TENGs, FETs, and memory devices can play a crucial
role in AIoT applications where continuous and reliable power supply is essential. These
advanced systems can harness energy from environmental sources using TENGs, ensuring
a sustainable power supply without external batteries. The harvested energy can power
FETs for data processing and memory devices for data storage, enabling smart sensors and
devices to function autonomously.

For example, smart infrastructure sensors can use TENGs to convert mechanical energy
from vibrations or movements into electrical energy. This energy can power FETs that
process real-time data and memory devices that store historical data. These AIoT devices
can then use artificial intelligence algorithms to analyze the data, predict maintenance
needs, and optimize performance. This integration allows for real-time decision making
and adaptive responses to changing conditions, enhancing the efficiency and reliability of
smart infrastructure.

In agricultural settings, AIoT devices can monitor soil conditions, weather patterns,
and crop health. TENGs can harvest energy from wind, rain, or mechanical movements,
powering the sensors and processors needed to collect and analyze data. Memory devices
can store large datasets for longitudinal analysis, while AI algorithms can provide insights
and recommendations for improving crop yields and resource management.

Wearable health monitors in the AIoT ecosystem can benefit from this integration
by harvesting energy from the user’s movements. TENGs can generate power from
everyday activities, enabling the continuous monitoring of vital signs without frequent
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recharging. The FETs process the health data in real time, and the memory devices store
critical health information. AI algorithms can analyze data to detect anomalies, provide
health recommendations, and alert users or healthcare providers to potential issues.

AIoT systems can achieve a high level of autonomy and intelligence by combining
TENGs, FETs, and memory devices, operating efficiently in various environments and
applications. This integration enhances the capabilities of IoT devices, making them more
sustainable, intelligent, and responsive to real-world conditions.
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