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Abstract: Piezoresistive microcantilever sensors for the detection of viruses, pathogens, and trace
chemical gasses, with appropriate measurement and signal processing methods, can be a powerful in-
strument with high speed and sensitivity, with in situ and real-time capabilities. This paper discusses
a novel method for mass sensing on the order of a few femtograms, using a dual-microcantilever
piezoresistive sensor with a vibrating common base. The two microcantilevers have controllably
shifted natural frequencies with only one of them being active. Two active piezoresistors are located
on the surfaces of each of the two flexures, which are specifically connected in a Wheatstone bridge
with two more equivalent passive resistors located on the sensor base. A dedicated experimental sys-
tem measures the voltages of the two half-bridges and, after determining their amplitude–frequency
responses, finds the modulus of their differences. The modified amplitude–frequency response
possesses a cusp point which is a function of the natural frequencies of the microcantilevers. The
signal processing theory is derived, and experiments are carried out on the temperature variation
in the natural frequency of the active microcantilever. Theoretical and experimental data of the
temperature–frequency influence and equivalent mass with the same impact are obtained. The results
confirm the sensor’s applicability for the detection of ultra-small objects, including early diagnosis
and prediction in microbiology, for example, for the presence of SARS-CoV-2 virus, other viruses, and
pathogens. The versatile nature of the method makes it applicable to other fields such as medicine,
chemistry, and ecology.

Keywords: microcantilever; piezoresistor; vibration; virus detection; SARS-CoV-2

1. Introduction

The detection of chemical substances, viruses, and pathogens with masses in the
femtogram range when performed by microcantilever sensors is distinguished by their low
power consumption, high sensitivity, and fast response. An undoubted advantage of these
sensors is that, under appropriate conditions, the detection of the chemical or the diagnosis
of the presence of a particular virus can be made at an early stage, in situ in real time, even
before the contamination process or harmful chemical saturation has occurred.

Single microcantilever sensors have already been applied in various fields, for example,
to detect C-reactive protein (CRP) [1] or to determine optical bias for single-nucleotide
mismatch recognition [2]. The simplified design of these sensors is a prerequisite for their
lower cost and low power consumption and creates opportunities for the application of
simple electronic circuits and signal processing software. On the other hand, compared
to dual-microcantilever sensors, they have lower temperature compensation and lower
sensitivity and reliability.
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In dual-microcantilever sensors, one of the most popular detection methods is based
on comparing the natural frequencies of a passive and active microcantilever. Tian X. et al.
demonstrated dual-microcantilever sensors containing a microcantilever for hydrogen
sulfide gas detection, which compared with metal oxide gas sensors have ultra-low power
and high sensitivity in certain cases [3]. The ratio of amplitudes in a coupled dual-
microcantilever beam has been used as a sensing factor by achieving noise suppression,
smaller damping forces, and the larger mass difference of the microcantilevers [4]. A
dual-microcantilever sensor with high sensitivity and trace hydrogen sulfide gas detection
capabilities with positive and negative frequency shifts has been demonstrated in [5]. In
some studies on the application of piezoelectric polymer two-microcantilever sensors, it
has been shown that higher sensitivity is achieved when operating with the second order
of natural frequencies [6].

The operating principles of microcantilever piezoresistive sensors are mainly divided
into static and dynamic. In the former, the signal is produced by the static deformation
of the microcantilever, which affects the parameters of an electrical circuit through the
piezoresistive effect [7,8]. In dynamic methods, the microcantilever is forced to vibrate,
for example, by photo- or electro-thermal effects [9,10], by the vibratory actuation of the
substrate [11,12], or by other actuation characteristics of microelectromechanical systems
(MEMS), such as piezoelectric [13], capacitive [14], or magnetic actuation [15].

In terms of the application of microcantilever sensors, more versatile applications are
envisaged beyond those in microbiology or chemistry. Genesensors obtained by modifying
the surface of a microcantilever with applications in biology, chemistry, pharmaceutics, and
environmental monitoring have been systematically studied in terms of immobilization
processes, complementary hybridization, and signal extraction and processing [16].

The theory for the study of microcantilever sensors includes both lumped and dis-
tributed dynamic models. It is well known that distributed parameter models give a clearer
picture of the behavior of the objects under study, but due to their complexity, they pose
some theoretical difficulties, for example, in describing resonant modes. A dynamic dis-
tributed parameter model of a cantilever with base excitation and tip mass was presented
by To C. in [17], and studies of forced vibrations near the resonant mode were modeled by
Repetto et al. in [18]. Alternatively, lumped parameter models find applications in solving
a variety of problems, such as those related to antistiction problems [19] or for static and
modal analysis [20].

The aim of this paper is to elucidate and experimentally validate the theoretical basis
of a new method for the detection of viruses, pathogens, and chemical gasses with masses
in the order of several femtograms, based on the measurement of the frequency of a cusp
point in the amplitude–frequency response of two microcantilevers. The research presented
here summarizes some of the work of several research projects and is based on a recent
patent-applied method [21]. In a publication by Banchelli et al. [22], the patented method
was investigated with respect to its robustness and sustainability.

2. Sensor Description and Problem Statement Formulation

The sensor consists of two silicon microcantilevers with a common base. One piezore-
sistor with a resistance R0 is located on the surface of each of the microcantilevers and
two equivalent resistors are added at the base. Thin-film aluminum U-shaped heaters
were fabricated on the two microcantilevers, as shown in Figure 1a. The piezoresistors and
passive resistors were connected in a Wheatstone bridge, as shown in Figure 1b. Through
the two passive resistors, temperature compensation is achieved in the output signal of
the Wheatstone bridge. Figure 1c reveals the appearance of the sensor. The close-up of
the sensor shown in Figure 1d shows that thin-film gold-coated pads are patterned on the
two microcantilevers, and each can be selectively activated for detection, while the other
performs a passive function. The gold pads are not shown in Figure 1a.
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with the neutral longitudinal line of the beam, and the deformation transverse 
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lumped microcantilever parameters is depicted in Figure 2b. 
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Figure 1. Schematic overview and topology of dual-cantilever microsensor: (a) electromechanical
schematic; (b) Wheatstone bridge circuit; (c) photo of sensor; (d) close-up view of sensor topology.

The principle of operation of the sensor is similar in operation to most dual-microcantilever
sensors with an active and passive microcantilever but differs in the method of signal de-
tection. The two microcantilevers have close but controllably shifted natural frequencies.
The base of the two cantilevers vibrates with a monotonically varying frequency swept
in a narrow range around the natural frequencies of the sensor. During the sweep at
the frequency from the Wheatstone bridge, a signal is measured that has a point in its
amplitude–frequency response curve between the two natural frequencies of the microcan-
tilevers with an amplitude lower than the sensor noise level. The change in frequency of
the zero point is sensitive enough to register a change in the mass of one of the cantilevers
relative to the other on the order of femtograms. This principle will be elucidated in
detail later.

3. Load and Dynamic Model of Cantilever Beam with Harmonic Base Excitation

The base of the microcantilevers is assumed to move by a harmonic function y1 of
the form

y1 = a sin ωt, (1)

where a is the amplitude of the excitation function, ω is the circular frequency, and t is the
time. The axis x of the absolute coordinate system Axy is assumed to coincide with the
neutral longitudinal line of the beam, and the deformation transverse displacements are
performed along the axis y (Figure 2a). The dynamic model with lumped microcantilever
parameters is depicted in Figure 2b.

The microcantilever has a length l1 and a constant rectangular cross section with width
l2 and height l3.

Consider an elementary cantilever volume of length dx, located at an arbitrary distance
x from the fixation point A. On this volume due to the acceleration of the base,

d2y1

dt
= −aω2 sin ωt (2)
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an inertial elementary force

dϕ = −
(
−aω2 sin ωt

)
dm (3)

acts with the help of the elemental mass dm, which is calculated by

dm = ρl2l3dx, (4)

where ρ is the density of silicon, the material from which the microcantilever is made.
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Figure 2. Microcantilever beam with harmonically driven base: (a) microcantilever diagram;
(b) lumped dynamic model of microcantilever beam.

The inertial elementary force is distributed along the length of the microcantilever
with the longitudinally distributed load

qi =
dϕ

dx
= ρal2l3ω2 sin ωt. (5)

In addition, the regularly distributed weight qG acts on the cantilever:

qG =
dG
dx

= −ρal2l3g, (6)

where
dG = −gρl2l3dx (7)

is the weight of the elementary volume, and g is the gravity acceleration.
The two longitudinally uniformly distributed loads have equivalent concentrated

inertial Qi and weight G forces, which are located in the middle of the cantilever and,
respectively, have the form

Qi = qil1 = ρal1l2l3ω2 sin ωt = maω2 sin ωt, (8)

G = qGl1 = −gρl1l2l3dx. (9)

Since the cantilever vibrates at frequencies as high as 50 kHz, and the amplitude of the
vibrations is greater than 1 µm, the acceleration generated by the base motion exceeds the
ground acceleration by at least two orders of magnitude, warranting the neglection of the
gravitational force. Another reason for neglecting this loading is that it causes deformations
of the microcantilever on the order of several angstroms (Å) [23].

The microcantilever loaded as such, also referred to as the original, is fitted with a
concentrated model [23], which is a mass point located in the middle of the microcantilever
on which the applied inertial force acts (Figure 2b). The mass point moves according to
the same law as that of the midpoint on the neutral line of the cantilever. The concentrated
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model has an effective mass me and an effective stiffness ke, obtained under the condition
of equality of the model and original energies.

The motion of the concentrated mass is described by the differential equation

me
d2y
dt2 + b

dy
dt

+ key = Qi (10)

where b is the viscous resistivity coefficient.
After taking (8) into account and dividing by me, (10) is rewritten as

d2y
dt2 + 2β

dy
dt

+ ϖ2y = aeω2 sin(ωt), (11)

where
β =

b
2m

(12)

is the damping coefficient,

ϖ =

√
k
m

(13)

is the natural frequency of the microcantilever, and

ae =
ma
me

(14)

is the effective amplitude of the forced vibration.
The solution of the Linear Differential Equation (10) is obtained as the sum of the

solution of the homogeneous equation and a partial integral of the inhomogeneous equation.
The solution of the homogeneous equation is damped and vanishes after a short time. This
is a reason to take the solution of (11) as only the forced oscillations of the microcantilever,
which, for the case under consideration, have the form

y = B sin(ωt + ψ), (15)

where the amplitude B of the forced oscillations is

B =
aω2√

(ω2 − ϖ2)
2 − 4β2ω2

(16)

and the forced vibration phase has the form

ψ =
2ωβ

ω2 − ϖ2 . (17)

The piezoresistors are formed in the fixed end of the cantilever, where the mechanical
stress σ is calculated using the formula

σ =
My

W
, (18)

where the bending moment My is determined by the expression

My =
Qil1

2
= −

l2
1q
2

(19)

The force Qi is substituted according to (8), and the resisting moment Wy is calculated
using the formula

Wy =
l2l2

3
6

. (20)
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The transverse displacement of the static elastic line of the microcantilever under a
uniformly linear distributed load is given by

w(x) =
qx2

24EI

(
6l2

1 − 4l1x + x
)

, (21)

where

Iy =
l2l3

3
12

(22)

is the moment of inertia of the cross section with respect to the axis x.
At the midpoint of the beam at x = l1

2 and with the help of (21), the deflection w2
is found

w2 = w
(

l1
2

)
=

17l4
1q

384EI
(23)

From the above formula, q is expressed and substituted into (19), and after taking into
account that w2 ≡ y, the relationship between the midpoint displacement and the fixed-end
mechanical stress is obtained:

σ =
96El3
17l2

1
y(t) =

96El3
17l2

1
B sin(ωt + ψ). (24)

4. Basic Concepts of the Considered Piezoresistor Detection Method

At the ends of piezoresistor 1 of the Wheatstone bridge (Figure 1b), the electrical
voltage is obtained

u1 =
R0 + ∆R1

2R0 + ∆R1
vcc. (25)

Similarly, the end-to-end voltage of piezoresistor 2 is measured:

u2 =
R0 + ∆R2

2R0 + ∆R2
vcc. (26)

In Formulas (25) and (26), since silicon is an anisotropic material according to [24]
and [25], the relative resistance change ∆R1 in the piezoresistor is proportional to the
mechanical stress, and for plane (100) and direction [110] the relations for the two piezore-
sistors, respectively, are

∆R1
R0

= πl(1 + νπt)σ1 = πRσ1
∆R2
R0

= πl(1 + νπt)σ2 = πRσ2
, (27)

where in plane (100) for direction [110], πl =
1
2(π11 + π12 + π44) and πt =

1
3(π11 + 2π12 − π44),

ν is Poisson’s ratio, πR = πl(1 + νπt), and vcc is the supply voltage.
Having considered the formulas in (27), σ1 and σ2, assuming a form according to (24)

for the electrical voltages of the two piezoresistors, are obtained:

u1 = 1+δRB1 sin(ωt+ψ1)
2+δRB1 sin(ωt+ψ1)

vcc,

u2 = 1+δRB2 sin(ωt+ψ2)
2+δRB2 sin(ωt+ψ2)

vcc,
(28)

where
δR =

96El3πR

17l2
1

(29)

is called the generalized piezoresistivity coefficient.
The functions in (28) are periodic and at the time points

t = 4πn+π−2ψi
2ω

t = 4πn−π−2ψi
2ω

n = 1, 2, 3 . . . i = 1, 2, (30)
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these have the following maximum and minimum values, respectively:

umaxi =
1+δRBi
2+δRBi

vcc,

umini =
1−δRBi
2−δRBi

vcc i = 1, 2.
(31)

It is assumed that the amplitude is the measured peak-to-peak voltage; therefore, the
amplitude–frequency response function is represented by

VAi(ω) = umaxi − umini =
2δRBi(ω)

4 − δ2
RB2

i (ω)
vcc i = 1, 2. (32)

Figure 3 shows the plots of the amplitude–frequency characteristics of microcantilever
1 and microcantilever 2 obtained by Equation (32) and the data in Table 1.
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Figure 3. Calculated amplitude–frequency responses of microcantilever 1 VA1 [V] and microcantilever
2 VA2 [V] as function of frequency f [Hz].

Table 1. Microcantilever geometry and materials data.

Parameter Symbol Value Unit

Length of microcantilever 1 l11 294 × 10−6 m

Length of microcantilever 2 l12 292 × 10−6 m

Width of microcantilever 1 l21 150 × 10−6 m

Width of microcantilever 2 l22 172 × 10−6 m

Height of microcantilever 1 l31 4 × 10−6 m

Height of microcantilever 2 l32 4 × 10−6 m

Basis resistance of a piezoresistor R0 1000 Ω

Density of the silicon ρ 2329 * kg/m3

Young’s modulus of the n-silicon in [110] direction E110 170 * GPa

Piezoresistivity coefficient for direction 11 n-Si π11 −102 × 10−11 ** Pa−1

Piezoresistivity coefficient for direction 12 n-Si π12 53 × 10−11 ** Pa−1

Piezoresistivity coefficient for direction 44 n-Si π44 −14 × 10−11 ** Pa−1
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Table 1. Cont.

Parameter Symbol Value Unit

Stiffness for n-type silicon plane 100 in axis [110] C11 165.65 × 109 *** Pa

Stiffness for n-type silicon plane 100 in axis [010] C12 63.94 × 109 *** Pa

Stiffness for n-type silicon plane 100 in axis [001] C44 79.51 × 109 *** Pa

Natural circular frequency of microcantilever 1 ϖ1 10,402.535 s−1

Natural circular frequency of microcantilever 2 ϖ2 10,568.028 s−1

Natural frequency of microcantilever 1 fs1 65,361.057 Hz

Natural frequency of microcantilever 2 fs2 66,400.888 Hz

Supplying voltage vcc 8 V

Effective amplitude of the external vibrations ae 9.92 × 10−8 m

Damping factor of microcantilever 1 β1 1554.755 s−1

Damping factor of microcantilever 2 β2 1675.886 s−1

* According to data from [26]. ** According to data from [27]. *** According to data from [28].

The output voltage of the Wheatstone bridge [29] is calculated using the formula

Vout = u1 − u2 =
[B1 sin(ωt + ψ1)− B2 sin(ωt + ψ2)]δrvcc

[2 + δrB1 sin(ωt + ψ1)][2 + δrB2 sin(ωt + ψ2)]
, (33)

which was obtained after taking into account Formula (28) and making simplifications.
For the experimental study of the output voltage amplitude, the difference is mea-

sured here:

VAout = VA1 − VA2 =
2δR(B1 − B2)

(
B1B2δ2

R + 4
)(

δ2
RB2

i − 4
)(

δ2
RB2

2 − 4
) vcc. (34)

The graph of the difference VAout according to (34) is plotted in Figure 4a. It is
noticeable that the extreme points in the figure do not coincide with the natural frequencies
of the microcantilevers.
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Devices that measure the amplitude–frequency response, such as those in [30], typi-
cally convert the voltage by an absolute value, resulting in the graph shown in Figure 4b. In
this graph, the cusp point fcusp, which in Figure 4a is the root of the amplitude–frequency
response, is clearly visible.

The cusp point fcusp has a signal that is below the noise level. Further theoretical and
experimental studies will show that this point is sensitive enough to the variation in the
natural frequency of one of the microcantilevers to register a mass change in the order of a
few femtograms (10−15 g).

5. Experimental Study of the Dual-Microcantilever Sensor

In parallel with the development of this theory, an experimental test system was built
to verify it. Figure 5a shows the general view of the system. The sensor signals were
collected in a National Instruments PXI system with up to 2 MS/s sampling capability.
Signal processing was performed using a LabVIEW 11 program capable of measuring high-
frequency vibrations with frequencies up to 300 kHz and a resolution of 0.01 Hz [22]. Sensor
1 is elucidated in detail in Figure 5b, where the chip, piezoelectric actuator, and housing
can be seen. High-frequency electrical sine signals were produced by a Digilent sine signal
generator and fed into a piezoelectric actuator, which excited mechanical vibrations at the
base of the two microcantilevers.
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Figure 5. Experimental system for testing piezoresistive sensors with dual-microcantilever beams:
(a) general view; (b) closer look at sensor and its actuation. 1. Sensor. 2. NI PXI system. 3. Ammeter,
4. Digilent wave generator. 5. Potentiometers for adjusting current in microcantilever heaters.
6. Batteries to power heaters. 7. Monitor. 8. Microchip. 9. Piezoelectric actuator. 10. Sensor housing.

Initially, experiments were conducted to verify the theory derived above. For this
purpose, vibrations were generated through the sine wave generator, which varied in a
range from 64 kHz to 68 kHz, which includes the natural frequencies of the beams. The fre-
quency range was divided into 400 steps, and for each step, vibrations of an order of several
periods were generated. For each step, the maximum amplitude between the maximum
and minimum voltages was measured for the piezoresistors of the two microcantilevers
separately and the output of the Wheatstone bridge. Using the LabVIEW 11 program, the
results were saved in an Excel file and then processed in Maple.

Figure 6a,b show the plots of the amplitude–frequency responses for microcantilever
1 and microcantilever 2, respectively, obtained experimentally and compared with the



Micromachines 2024, 15, 1117 10 of 18

theoretical results obtained above. In Figure 6a, the second peak in the experimental plot is
not typical and is due to random error.
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Figure 6. Theoretical and experimental plots of amplitude–frequency response: (a) theoretical and
experimental amplitude–frequency response of microcantilever 1; (b) theoretical and experimental
amplitude–frequency response of microcantilever 2.

Figure 7a shows the voltage differences of the two amplitude–frequency responses
obtained by experiment and those from theory, plotted with a solid line. Figure 7b plots the
absolute value of the Wheatstone bridge output voltage.
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Figure 7. A graphical representation of the amplitude–frequency response results. The experimental
results are plotted with a solid line, and theoretical results are represented by a circle symbol: (a) the
theoretical and experimental amplitude–frequency response of the output voltage of the Wheatstone
bridge; (b) the theoretical and experimental amplitude–frequency response of the absolute value of
the output voltage of the Wheatstone bridge.

It is evident from the presented graphs that there is a consistent pattern and a reason-
ably good accuracy of agreement between the theoretical and experimental results. It is
noteworthy that in spite of larger deviations in the extreme values, at the cusp point of
Figure 7b or the root of Figure 7a, the matching of the two graphs is of higher accuracy.
This indicates that the method possesses high robustness, which will be the subject of
other studies.
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6. An Investigation of the Sensitivity of the Method through the Possibilities of
Determining the Frequency of the Cusp Point

In Equation (34), the angular frequencies, ω, ϖ1, and ϖ2 [rad/s], are converted into
the rotational frequencies f , fs1, and fs2 [Hz], respectively, according to the relation

ω = 2π f . (35)

For the damping factors β1 and β2, the substitution

βi = 2πηi i = 1, 2 (36)

was used. After ω, ϖ1, ϖ2, β1, and β2 are transformed according to (35) and (36), they are
substituted into (34), the numerator of the difference is set to zero, and the equation for the
frequency of the cusp point is obtained:

π2a2
e δ2

r

 B̃2√
B̃2

− B̃1√
B̃1

 f 6
cusp + 4

 B̃1B̃2√
B̃1

− B̃1B̃2√
B̃2

 f 2
cusp = 0, (37)

where

B̃1 = π2
[(

f 2
cusp − f 2

s1

)2
+ 4η2

1 f 2
cusp

]
,

B̃2 = π2
[(

f 2
cusp − f 2

s2

)2
+ 4η2

2 f 2
cusp

]
.

(38)

The solution of (37) yields an important result for the studies here, by which the cusp
point frequency is analytically determined:

fcusp =

√
2

2

√
f 4
s1 − f 4

s2

f 2
s1 − f 2

s2 − 2
(
η2

1 − η2
2
) . (39)

By the formula thus derived, it is seen that the dependence of the cusp point frequency on
the natural frequencies and damping of the microcantilevers can be analytically investigated.

For the case under consideration and from the data in Table 1, the cusp point in
Equation (39) was calculated to be fcusp = 65,889.06309 Hz, which confirms the graphical
results for the cusp point in the theory and experiments obtained in Figures 4b and 7b.
The same result was confirmed by numerically solving the equation directly composed
from (34).

Formula (39) shows that fcusp depends only on the natural frequencies and damping of
the system, indicating that the method is stable and is not affected by the amplitude of the
excitation base vibrations, the values of the supply voltages, and other system parameters.
Since in (39) the squares of the damping factors are subtracted, it is evident that their
influence is also small because at close values their difference is zero.

In order to perform an approximate sensitivity analysis of the method, Formula (39) is
transformed into the form

fcusp =

√
2

2

√√√√√ f 2
s1 + f 2

s2

1 − 2(η2
1−η2

2)
f 2
s1− f 2

s2

. (40)

It is assumed that due to the same geometrical and physical parameters, both beams
have almost the same losses, i.e.,

η1 ≈ η2 (41)

and Expression (40) can be assumed to be approximately equal to

fcusp ≈
√

2
2

fs1

√
1 + f 2

s21, (42)
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where
fs21 =

fs2

fs1
. (43)

When the natural frequency fs1 of microcantilever 1 increases by a small value ∆ fs1,
the new cusp point is calculated by the formula

fcusp1 ≈
√

2
2

( fs1 + ∆ fs1)
√

1 + f 2
s21; (44)

where the ratio fs21 is assumed to be independent on ∆ fs1 due to its small value. Consider-
ing (40), the change in the cusp point frequency value in this case is

fcusp − fcusp1 ≈
√

2
2

∆ fs1

√
1 + f 2

s21, (45)

from which the relationship between the frequency change ∆ fs1 and the cusp point change
is obtained:

∆ fs1 ≈
√

2
(

fcusp − fcusp1
)√

1 + f 2
s21

, (46)

considering that the natural frequency of microcantilever 1 can be represented by
the expression

fs1 =
1

2π

√
k1e
m1e

, (47)

where k1e and m1e are the effective stiffness and effective mass of cantilever 1, respectively.
It follows from (47) that

me1 =
k1e

2π2 f 2
s1

, (48)

Assuming that the effective mass has increased by a small value ∆m1, the new mass is
as follows:

me1 + ∆m = me11 =
k1e

4π2 f 2
s11

, (49)

where fs11 is the natural frequency effective variation in microcantilever 1 due to the added
mass. By (48) and (49), the difference of the squares of the natural frequencies can be
expressed as

f 2
s1 − f 2

s11 =
k1e

4π2

(
1

me1
+

1
me11

)
. (50)

The resulting expression is transformed after the simplifications

f 2
s1 − f 2

s11 = ( fs1 + fs11)( fs1 − fs11) ≈ 2 fs1( fs1 − fs11), (51)

are made, because it is assumed that fs1 ≈ fs11 and

1
me1

− 1
me11

=
me11 − me1

me1me11
≈ ∆me1

m2
e1

. (52)

Here, the simplification is based on the small differences of masses, i.e., me1 ≈ me11.
Once the above simplifications are made, the difference in natural frequencies is found:

∆ fs1 = fs1 − fs11 ≈ k1e∆me1

8π2m2
e1 fs1

=
fs1∆me1

2me1
. (53)
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From (46) and (53), the relationship between the cusp points frequency variation and
the effective mass of the microcantilever 1 is given by

∆me1 ≈
2
√

2
(

fcusp − fcusp1
)
me1√

f 2
s1 + f 2

s2

. (54)

Using this expression, one can calculate what the resolution of the method is; for
example, with a measurement limit of ∆ fcuspmin =

(
fcusp − fcusp1

)
min = 0.01 Hz, an effective

mass of me1 = 33m1
280 =4.43951 × 10−11 kg [23], and beam natural frequencies according to

Table 1, a limiting sensitivity lower than 1.5 × 10−17 kg or 15 fkg is obtained. Here, the
mass of the microcantilever is 14.108 × 10−10 kg. From Equation (54), it is concluded that
to increase the limiting sensitivity, it is necessary to improve the measurement accuracy
and increase the natural frequencies of the microcantilevers. At natural frequencies of the
microcantilevers twice as high, for the considered case, the limit resolution is increased by
one order of magnitude.

7. Experimental Determination of the Capabilities of the Method, Changing One of the
Natural Frequencies of the Microcantilevers by Heating

The experimental setup shown schematically in Figure 8 was used to investigate the
sensitivity of the detection method. The heater of microcantilever 1 was connected to a bat-
tery via a serially connected ammeter and a variable resistor. The current in the heater was
continuously adjusted through the adjustable resistor, which caused the microcantilever to
heat up at different temperatures. As a result of the increased temperature, the microcan-
tilever changed its dimensions in proportion to the coefficient of thermal expansion (CTE),
and the natural frequency changed in proportion to a parameter called the temperature
coefficient of frequency (TCF) [31–33].
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Figure 8. A schematic of the experiment to change the temperature of microcantilever 1 by
Joule heating.

The experiments were conducted after the common base of the two microcantilevers
was vibrationally driven by setting 400 uniformly varying values in the range of the two
natural frequencies of the microcantilevers. The vibration time of each of these frequencies
was selected to be greater than five oscillation periods. For each step of these 400 frequencies,
the electrical voltages of the two half-bridges were measured and processed according to
the methodology described above. The electric current in the heater of microcantilever
1 was varied from 0 to 1800 µA by setting 20 different values. Twenty Technical Data
Management (TDM) files [34] were generated using LabVIEW 11 with the recorded values
of the differences of the voltage amplitude–frequency characteristics of the two half-bridges.
The TDM files were converted to an Excel file and then processed using the Maple program.
The Maple program algorithm finds the smallest value of the absolute voltage Vabs array
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and divides it into left Vabsle f t and right Vabsright, and then approximates them with the
parabolas, respectively,

Ṽabsle f t = al + bl f + cl f 2

Ṽabsright = ar + br f + cr f 2 . (55)

The intersection fce of these parabolas is called the experimental cusp point. The
processing of the experimental results for a single file is illustrated graphically in Figure 9.
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Figure 10a illustrates the obtained experimental relationship between the cusp point 
frequencies cef   and the values of the heating current i. The experimental data are 
approximated linearly by a line of the type caprf bi c≈ + , depicted in Figure 10a with a 
solid line. The natural frequency of microcantilever 1 is expressed by (39) and the results 
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Figure 10. Experimental data on the effect of heating microcantilever 1 on the frequency of the 
experimental cusp point, natural frequency, and their approximation: (a) the cusp point frequency 

Figure 9. Experimental data processing for Vabs from an Excel file obtained at current i = 1053 µA.
The frequency of the forced vibrations at the base of the two microcantilevers was varied in the range
[65,520, 66,150] Hz.

Figure 10a illustrates the obtained experimental relationship between the cusp point
frequencies fce and the values of the heating current i. The experimental data are approxi-
mated linearly by a line of the type fcapr ≈ bi + c, depicted in Figure 10a with a solid line.
The natural frequency of microcantilever 1 is expressed by (39) and the results with their
corresponding linear approximation are plotted in Figure 10b.
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Figure 10. Experimental data on the effect of heating microcantilever 1 on the frequency of the
experimental cusp point, natural frequency, and their approximation: (a) the cusp point frequency as
a function of the heater current and its approximating linear relationship; (b) tge dependence of the
natural frequency of microcantilever 1 on its heating current i and the approximating line.
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8. Determine the Sensitivity of the Detection Method by Examining the Offset of the
Cusp Point

In order to investigate the sensitivity of the sensor with respect to the mass added to
microcantilever 1, we assume here the addition of a thought uniform homogeneous layer
of mass ∆mscv of the same density as that of the beam material to the active surface of the
microcantilever. Then, the thickness l3 of the beam will increase by ∆l3 as the added mass
∆mscv is calculated by the formula

∆mSCV = ρl1l2∆l3, (56)

where
∆l3 =

∆mSCV
ρl1l2

. (57)

The natural frequency of microcantilever 1 with the additional layer according to [35–38]
is calculated by

f1SCV =
1.875104069

2π

2
√

EISCV

ρASCV l4
1

, (58)

whereby replacing

ISCV =
l2(l3 + ∆l3)

3

12
, (59)

ASCV = l2(l3 + ∆l3), (60)

and taking (57) into account, after transformations, the following is obtained:

f1SCV = 0.161540067953243
m + ∆mscv

l3
1 l2ρ

√
E
ρ

, (61)

where m = l1l2l3ρ is the mass of microcantilever 1 without the added thought layer. Here,
the calculations are performed with double precision to reflect small masses on the order
of femtograms.

If the above formula is substituted with ∆m = 0, one arrives at the simplification

fs1 = 0.1615400679053
l3
l2
1

√
E
ρ

, (62)

which is the natural frequency of the unchanged microcantilever 1.
In order to investigate the correlation between the added mass and the frequency, the

frequency difference was found:

∆ f1 = f1SCV − fs1 = 1.609414378345883929 × 1014∆mscv, (63)

from which the inverse dependence follows

∆mscv = 6.213440201943362337853559 × 10−15∆ f1. (64)

Figure 11 shows the equivalent change in mass that would have resulted from the
temperature change of the natural frequency of microcantilever 1, illustrated by Figure 10b.
In the figure, the processed experimental data are represented by an asterisk symbol, and
the approximated dependence according to Equation (64) is plotted as a solid straight line.

By the coefficients in front, ∆mscv and ∆ f1 are the frequency sensitivities from the mass
and vice versa, respectively. By (63) and (64), it is calculated that when the experimental
system can be measured to the nearest 0.1 [Hz], it will register a mass that, for every
hundredth of a Hz, increases by 6.21344 × 10−16 kg. This corresponds to 6.21344 × 105 fg.
The mass of a SARS-CoV-2 virus is on the order of 1 fg = 1 × 10−18 kg. One person
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was found to carry 1010 to 1011 viruses with a total mass of 1–100 µg during the peak of
infection [39,40].
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The result obtained here indicates that with the accuracy of the measurement system
and the adopted parameters of the microcantilevers thus established, it will be possible
to detect SARS-CoV-2 viruses at the initial stage of infection before infection occurs. The
sensitivity of the system allows it to be applied to the detection of other viruses, pathogens,
and chemical substances. There is some margin for improvement in sensitivity in the
accuracy of the system itself. Increasing the natural frequency of the microchannels will also
have a beneficial effect on sensitivity. This study showed that of the two microcantilevers,
the one with the higher natural frequency has a higher sensitivity, and hence, it is advisable
to keep this one active.

9. Conclusions

The theoretical foundations of a new method for the detection of objects with masses
on the order of femtograms are described and justified. Although sensors with two mi-
crocantilevers have a well-known structure with one active and another passive micro-
cantilever, and their investigation methods are well known, a new method is proposed
here that allows us to sum the amplitude–frequency responses of the voltages at the two
Wheatstone half-bridges, thus avoiding the influence of the phase shift of the signals from
the piezoresistive sensors in the microcantilevers. Another novelty is the measurement
of the cusp point frequency of the amplitude–frequency response of the differences of
the two half-bridge voltages, which provides higher accuracy compared to offset-based
eigenfrequency methods.

A formula was derived that gives the relationship between the cusp point frequency
and the natural frequencies of the microcantilevers. The relationship between the cusp
points frequency variation and the effective mass of microcantilever 1 was obtained. The
analytical relationships for the variation in the mass of microcantilever 1 and the cusp point
frequency were derived, which also determine the sensitivity of the method.

A high-precision experimental system was designed to investigate the method, by
which controlled harmonic excitation was generated at the common base of the microcan-
tilevers, and simultaneously, the voltages obtained from piezoresistive sensors formed
on the microcantilevers were measured. Using a LabVIEW 11 program in real time, the
excitation of the base was simultaneously controlled, and the result obtained due to the
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deformations of the piezoresistive sensors was measured. The experimental system com-
bined with the proposed measurement method allowed the measurement of the cusp point
frequency in the amplitude–frequency response with a resolution of 0.01 Hz, which is
sufficient to detect the presence of SARS-CoV-2 virus at an early stage before infection
has occurred.

The method was verified by a temperature shift of the frequency of microcantilever 1,
and the offsets of the natural frequency and the magnitude of the equivalent femtogram
mass that would cause it were determined.

The dual-microcantilever piezoresistive sensor with the experimental system described
here and the measurement method applied are universal in nature and can find various
applications in medical, chemical, environmental, and other research.
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