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Abstract: Magnesium alloy ZK60 shows great promise as a medical metal material, but its corrosion
resistance in the body is inadequate. Hydroxyapatite (HA), the primary inorganic component of
human and animal bones, can form chemical bonds with body tissues at the interface, promoting the
deposition of phosphorus products and creating a dense calcium and phosphorus layer. To enhance
the properties of ZK60, HA was added to create HA/ZK60 composite materials. These composites,
fabricated using the advanced technique of LPBF, demonstrated superior corrosion resistance and
enhanced bone inductive capabilities compared to pristine ZK60. Notably, the incorporation of
3 wt% led to a significant reduction in bulk porosity, achieving a value of 0.8%. The Ecorr value
increased from −1.38 V to −1.32 V, while the minimum Icorr value recorded at 33.9 µA·cm−2. Nano-
HA achieved the lowest volumetric porosity and optimal corrosion resistance. Additionally, these
composites significantly promoted osteogenic differentiation in bone marrow stromal cells (BMSCs),
as evidenced by increased alkaline phosphatase (ALP) activity and robust calcium nodule formation,
highlighting their excellent biocompatibility and osteo-inductive potential. However, when increasing
the HA content to 6 wt%, the bulk porosity rose significantly to 3.3%. The Ecorr value was −1.3 V,
with the Icorr value being approximately 50 µA·cm−2. This increase in porosity and weaker interfacial
bonding, ultimately accelerated electrochemical corrosion. Therefore, a carefully balanced amount of
HA significantly enhances the performance of the ZK60 magnesium alloy, while excessive amounts
can be detrimental.

Keywords: magnesium alloys; hydroxyapatite (HA); corrosion resistance; ZK60; composite material;
biological properties

1. Introduction

Magnesium is gaining significant attention for bone implant fixation due to its ex-
ceptional mechanical compatibility, inherent biodegradability, and favorable biological
properties, making it a promising medical metal [1]. Magnesium ions are naturally abun-
dant in the human body and play crucial roles in numerous metabolic reactions and
biological processes. The human body contains about 35 g of magnesium per 70 kg of body
weight, with a daily requirement of approximately 375 milligrams. This biocompatibility
enhances magnesium’s suitability for use in medical applications [2–4].

However, when pure magnesium is used as an implant, its naturally high hydrogen
evolution rate and hemolysis rate can result in significant local hydrogen generation
within the human body [5]. This disruption of the local PH balance can negatively impact
the biological performance of the implant [6]. Consequently, the general use of pure
magnesium in applications requiring long-term fixation, such as in the sternum, is not
compatible. Alloying treatments can significantly enhance the corrosion resistance of
magnesium, help mitigate the hydrogen evolution rate, and refine the microstructure of
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magnesium alloys by optimizing the precipitation of strengthened phases [7,8]. Despite
its promising applications in medical implants, the corrosion resistance of magnesium
alloys still does not fully meet stringent requirements [9]. Additionally, concerns remain
regarding the potential adverse effects of these alloys, including rapid stress concentration,
localized degradation rates [1], and a narrow hydrogen charge–discharge window [10],
which could trigger various inflammatory and adverse reactions.

Surface modification techniques, including chemical conversion, micro-arc oxidation,
coating technologies [11], and electrophoretic deposition, are effective strategies for con-
trolling the degradation of magnesium alloys [12]. However, if the protective coating is
damaged, it can lead to electric coupling between the inner and outer layers, which can
accelerate the corrosion rate [13]. Another effective approach to enhance the corrosion
resistance of magnesium alloys is the development of magnesium alloy composite ma-
terials [5,14,15]. These composites consist of at least two components: a matrix and a
reinforcement phase. For biodegradable composites, all components must be biocompati-
ble, biodegradable, and non-toxic. Metal-based biodegradable composites not only exhibit
good mechanical properties, such as ultimate tensile strength, Young’s modulus, and
yield strength, but also demonstrate excellent corrosion resistance and favorable biological
properties [16].

Hydroxyapatite (HA), the primary inorganic component of human and animal bones,
is known for its ability to achieve chemical bonding with body tissues at the interface.
It has some solubility in the body [17], releasing harmless ions, which participate in
metabolic processes. Additionally, HA stimulates bone hyperplasia and promotes the
repair of defective tissue, demonstrating significant biological activity [18]. To enhance the
corrosion resistance and promote the bone properties of ZK60 alloy, HA was introduced
to create HA/ZK60 composite materials [19]. The addition of 15 wt% HA enabled a
reduction in the corrosion rate of Mg-3Zn by approximately 60% [20]. When the HA
particle content reaches 10 wt%, the ZK61-HA composite displays suitable mechanical
properties, with its compressive strength and compressive yield strength being 481 MPa and
143 MPa, respectively. Furthermore, its corrosion current density (Icorr) is approximately
one-fifth that of the ZK61 Mg alloy [21]. Compared to the AZ91D matrix, the incorporation
of HA particles into the AZ91D matrix significantly improved its corrosion properties,
mitigated the increase in pH, and enhanced the cell viability of HBDC, MG63, and RAW
264.7 cells [22].

In the preparation of composite materials, casting methods are typically employed,
encompassing extrusion casting of Mg-Sn alloy composites [23], the electromagnetic stir-
ring casting technique for the production of graphene nanosheet-reinforced AZ91D matrix
composites [24], and the combination of extrusion casting with mixing casting for the
fabrication of SiCnp/Al6082 aluminum matrix composites [25], among others. However,
when such composite materials are destined for use in implants, they frequently necessitate
customization based on the patient’s unique condition, and the utilization of casting meth-
ods can significantly escalate production costs. Laser powder bed fusion (LPBF) is a typical
additive manufacturing technology. This layer-by-layer manufacturing process allows for
the easy creation of implants with controllable pore structures, enabling customization for
different patients and defect sites. This study focuses on analyzing the effects of HA on the
microstructure, corrosion properties, degradation properties, and osteogenic potential of
ZK60, while also exploring the underlying reinforcement mechanisms.

2. Methodology
2.1. Preparation and Characterization of the HA/ZK60 Composites

To prepare the HA/ZK60 powder required for LPBF, nano hydroxyapatite (HA) was
mixed with ZK60 using the mechanical ball milling method. Studies indicate that when
the HA content exceeds 20%, the corrosion resistance of the local electro-couple can be
significantly compromised [26]. The preparation process involved three groups, with
weight percentages of 3 wt% and 6 wt% HA, respectively, which were pre-mixed using an
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ultrasonic vibration device. The pre-mixed powders were then placed in a ball mill tank
(with a ball-to-powder ratio of 4:1) under a high-purity argon atmosphere to minimize
oxidation. The powders were mixed for 1 h at a speed of 100 r/min using a high-energy
ball mill (Fritsch Pulverisette-6, Idar-Oberstein, Germany). After milling, the irregular
powders were separated using a sieve with an aperture of 140 µm. For clarity, the weight
percentages were designated as follows: 0 wt% HA was labeled as ZK60, 3 wt% HA as
ZK60/3HA, and 6 wt% HA as ZK60/6HA.

The three mixed powder groups are illustrated in Figure 1c. It is evident that the
composite powders maintain a nearly spherical shape, with a smooth surface, which en-
hances powder fluidity. At a 3% weight percentage of HA, the nanoparticles are uniformly
distributed on the surface of the spherical ZK60 powder. When the HA content reaches 6%,
the nanoparticles remain evenly dispersed, though some clustering occurs on the powder
surface due to van der Waals forces [27]. The morphology, size, surface characteristics, and
composition of the powder significantly influence the forming quality of samples prepared
by LPBF. In laser additive manufacturing, the laser reflectivity and absorptivity of the
powder are critical factors that determine thermal efficiency and process stability [28]. To
evaluate these properties, UV–visible near-infrared diffuse reflectance experiments [29]
were conducted (UV-3600i Plus, Shimadzu, Kyoto, Japan), with results shown in Figure 1d,e.
The results indicate that the laser reflectivity of the ZK60/3HA and ZK60/6HA powders is
lower at a wavelength of 1064 nm compared to ZK60 powder. Consequently, the absorptiv-
ity of the composite powders is higher than that of the original ZK60 powder, as shown in
Figure 1e. It is important to note that the absorption rate, being an average volume value,
does not fully capture the mechanism of laser shaping.
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2.2. Preparation and Characterization of the HA/ZK60 Product

This experiment used BLT-S210 to prepare the samples. To enhance the quality of
the formed samples, a series of pilot studies were conducted to establish the optimized
processing parameters: a laser power of 80 W, scanning rate of 600 mm/s, layer thickness
of 30 µm, and hatching space of 60 µm. HA/ZK60 samples were manufactured using these
parameters. As shown in Figure 2a, the prepared sample dimensions are 6 × 6 × 8 mm3.
The addition of nano HA influences the absorption and reflection characteristics of the
laser when interacting with the powder, which in turn affects the formation quality of
the samples.
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Figure 2. (a) HA/ZK60 composite samples prepared by LPBF; (b) surface morphology of the formed
samples; (c) XRD map of LPBF parts and HA particles; (d) SEM microstructure of the formed sample.

To evaluate the surface quality of ZK60 with varying HA content, the samples were
first polished on sandpaper and mechanically polished with diamond polishing paste, then
electrochemically polished using the ITECH DC power meter (IT6154, B + K-Precision,
Yorba Linda, CA, USA). The electrolyte solution used was 20% nitric acid/alcohol solution,
the working parameters were voltage (15 V), current (5 A), and electropolishing for 5~10 s.
The treated samples were observed using an electron microscope (IPG’s YLR-SM Series,
Figure 2b). The treated samples were subsequently observed using a gold phase microscope
(GX 53, OLYMPUS, Tokyo, Japan). Subsequently, the optical micrographs of the sample
surface were analyzed with Image-Pro Plus 6.0 software, from which the porosity was
determined. To mitigate experimental error, at least three 50× positions were randomly
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selected for measurements, and the aforementioned process was repeated to analyze
three layers in total.

2.3. Electrochemical Measurements

The electrochemical properties of the prepared samples were evaluated utilizing
an electrochemical workstation to assess the impact of HA on the corrosion resistance
of ZK60. Electrochemical testing employs an electrochemical workstation (PARSTAT
4000 A, Princeton Applied Research, Oak Ridge, TN, USA), in which the test sample,
a platinum tablet, and AgCl are utilized as the working, auxiliary, and reference elec-
trodes, respectively. The electrolyte comprises a homemade simulated body fluid (SBF,
pH 7.4), with the specific constituents being NaCl (8.035 g/L), NaHCO3 (0.355 g/L),
KCl (0.225 g/L), K2HPO4·3H2O (0.231 g/L), MgCl2·6H2O (0.311 g/L), CaCl2 (0.292 g/L),
Na2SO4 (0.072 g/L), and (HOCH2)3CNH2 (6.118 g/L) [30].The processed sample was
immersed in SBF for 24 h to develop a relatively stable corrosion layer on its surface,
enabling the detection of a relatively stable open-circuit potential (OCP). Subsequently,
electrochemical impedance spectroscopy (EIS) was conducted, spanning from high fre-
quencies of 105 Hz to low frequencies of 10−2 Hz. The acquired data were analyzed and
fitted using ZSimpDemo 3.30 software. Additionally, potential dynamic polarization (PDP)
curve data were measured at a scan rate of 1 mV/s, with a potential range centered at the
OCP ± 500 mV.

2.4. Immersion Experiments

In vitro immersion experiments were conducted to further investigate the degradation
behavior of the samples. After grinding and polishing, the samples were soaked in 37 ◦C
of SBF (pH 7.4) for 7 days. The ratio of the solution volume to the exposed surface of the
sample was 100 mL/cm2. The generated hydrogen was collected into a 25 mL inverted
dropper through a funnel placed above the sample. The pH change was monitored using
a pH meter (FE28-Standard, Mettler-Toledo Instruments (Shanghai) Co., Ltd., Shanghai,
China). To maintain a stable pH, the simulated body fluid (SBF) was replaced in a timely
manner, and the volume of hydrogen generated was recorded every 12 h. The calculation
formula for the corrosion rate of hydrogen evolution (PH, mm/year) is as follows:

PH = 2.088 × VH
t

(1)

where VH (mL/cm2) represents the volume of hydrogen produced and t (day) denotes the
soaking time. Following 7 days of immersion, the morphology of the corrosion products
on the sample surface and cross-section was observed using scanning electron microscopy
(SEM), while the composition of these products was analyzed via X-ray Diffraction (XRD).
Subsequently, the corrosion products were removed with chromic acid, and the mass loss
was recorded to calculate the corrosion rate (PW, mm/year):

PW = 2.10 × W
At

(2)

Among these parameters, W (mg) represents the lost mass, A (cm2) denotes the
exposed surface area, and t (day) signifies the duration of immersion. These values are
used to calculate the corrosion rate. The corrosion surface characteristic after removing the
corrosion product was also observed through the SEM.

3. Results and Discussion
3.1. Microstructure

The ZK60 sample exhibited a volumetric porosity of 1.5%, with some visible fine pores.
Notably, increasing the nanoscale HA content to 3 wt% resulted in a significant reduction
in bulk porosity to 0.8%, along with a decrease in the number of fine pores. However, when
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the nano HA content increased to 6 wt%, the bulk porosity rose significantly to 3.3%. This
indicates that the addition of nano HA to ZK60 can enhance its density and processing
capability, but an excessive HA content may lead to increased porosity.

The observed phenomenon can be attributed to the higher laser absorption rate of the
ZK60/3HA composite powder compared to that of the ZK60 alloy powder. This enhanced
absorption effectively addresses the naturally high laser reflectivity of magnesium, thereby
improving the forming capability of the LPBF process. Additionally, the nano-HA coating
on the powder’s surface absorbs some of the laser energy and efficiently transfers it to
adjacent powder particles through thermal conduction [31] This process reduces the amount
of laser energy directly absorbed by the powder, minimizes magnesium vapor generation,
stabilizes the melt pool, and ultimately decreases the occurrence of defects. However, when
excessive amounts of nano-HA are added, the agglomeration of HA can hinder the fluidity
of the molten phase within the melt pool, resulting in increased viscosity. This elevated
viscosity obstructs the smooth escape of magnesium vapor and diminishes the wettability
between the re-aggregated HA and the substrate, leading to a significant increase in defect
formation [32]. Thus, it can be concluded that the relative density and processing capacity
of LPBF-prepared parts can be enhanced only by adding 3 wt% of nano-HA to ZK60.

The phase of the HA/ZK60 composite samples was examined using XRD analysis,
as depicted in Figure 2c, along with the XRD profiles of the HA nanoparticles, the ZK60
alloy, and the HA/ZK60 composite samples. The results reveal that both the ZK60 alloy
and various HA/ZK60 composite samples exhibit α-Mg and Mg7Zn3 phases, while the
characteristic peaks corresponding to HA are evident in the XRD pattern of the HA/ZK60
composite. Furthermore, the intensity of HA peaks in the composite samples gradually
increases with the increase in the nano HA content. To investigate the specific distribution
of nano-HA within the magnesium matrix, higher magnifications were observed using
electron microscopy (Figure 2d). It can be observed that when the content of HA particles
is low, they are uniformly dispersed within the ZK60 matrix [21]. However, the presence
of HA in the composite was evident when the HA particles accounted for 6 wt%. This
suggests inadequate binding at the interface between HA and the magnesium matrix. In
general, an uneven distribution of enhanced particles within the matrix can negatively
impact composite performance. Therefore, achieving a uniform distribution of enhanced
phases in the matrix and eliminating the microscopic holes are crucial for optimizing
composite material performance. This implies that selecting an appropriate HA content is
essential for sample performance.

3.2. Electrochemical Behavior

Studies have demonstrated that HA has the potential to elicit the deposition of a cal-
cium and phosphorus layer, thereby enhancing the protective capabilities of the corrosion
layer [21]. To specifically analyze the effect of HA on the corrosion resistance of ZK60,
further investigation is required. The electrochemical properties of the three samples were
analyzed. Meanwhile, the formation of the corrosion layer over time was explored. There-
fore, the three groups of samples were tested in EIS (electrochemical impedance spectra) to
study the change in the surface corrosion layer impedance. The EIS profiles in ZK60 and
HA/ZK60 composite samples at different immersion times are shown in Figure 3 (Bode
plots and Nyquist plots). Since the frequency range of the EIS atlas acquired was 106~1 Hz,
the Nyquist atlas of all alloy samples soaked for 1, 4, and 7 days consisted of only two ca-
pacitance circuits: the capacitance rings at high and intermediate frequencies, respectively.
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The high-frequency capacitance ring is caused by the charge transfer resistance on the
alloy surface and the corrosion product film. The Nyquist plots reflected the presence of
charge transfer resistance and Warburg resistance in the corrosion process of magnesium
alloy. It is pointed out that the larger the arc radius of high-frequency capacitance, the
better the corrosion resistance of the alloys will be [33]. With the soaking time, the radius of
the capacitance ring becomes larger, indicating that the corrosion behavior changes during
soaking. Meanwhile, the ZK60/3HA alloy has the largest capacitor ring radius, indicating
that it provided the strongest protection to the alloy substrate when the HA content was
3 wt%. More specifically, the ion migration and charge transfer processes were inhibited,
and the alloy had the best electrochemical corrosion resistance.

The obtained EIS results were fitted using ZsimpWin software to the equivalent circuit
diagram R(Q(R(CR))) in Figure 3, and the data obtained from the fit are counted in Table 1.
Rs in the equivalent circuit represents the solution resistance (ideally close under any
conditions), Rt represents the charge transfer resistance, CPEdl represents the electron layer
constant phase element (CPE) between the corrosion product and the electrode interface
(Rct and CPEdl are determined by the high-frequency capacitance circuit), Rf represents
the corrosion product film’s resistance, Cf means the capacitance of the corrosion product
film (Rf and Cf are determined by the medium frequency capacitance circuit). The CPEdl
is a double-layer capacitor composed of an electrolyte and a sample substrate surface
that involves two important defining parameters, Y0 and n. Y0 indicates its non-ideal
capacitance due to cracks, surface oxide film, impurity, and secondary phases. The value
of n is the dispersion index, with values ranging from 0 to 1 and used to represent the
smoothness of CPEdl. When n = 0 and 1, CPEdl is the capacitance and pure resistance,
respectively. According to Table 1, Rct and Rf gradually increase with the soaking time.
However, the ZK60/3HA alloy showed the maximum Rct and Rf values in different immer-
sion time periods, which showed that the surface corrosion product layer is the most stable,
providing the best protection for the magnesium matrix and delaying the degradation of
the magnesium matrix [34].
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Table 1. Fitting results of different soaking time-equivalent circuits for ZK60 and HA/ZK60 samples
prepared by LPBF.

Sample Time Y0 × 10−5 Ω−1 cm2sn n Rt
(Ω·cm2)

Cf

(µF/cm2)
Rf

(Ω·cm2)

ZK60
One day

17.7 ± 2.3 0.5 ± 0.2 90.2 ± 3.2 15.7 ± 0.4 286.8 ± 13.2
ZK60/3HA 15.4 ± 1.6 0.4 ± 0.1 125.2 ± 8.1 9.8 ± 1.2 393.3 ± 16.2
ZK60/6HA 14.9 ± 2.1 0.5 ± 0.1 103.9 ± 4.7 12.9 ± 2.3 306.6 ± 14.7

ZK60
Four days

12.2 ± 2.1 0.6 ± 0.2 98.8 ± 6.1 13.7 ± 2.3 323.6 ± 12.5
ZK60/3HA 26.6 ± 3.2 0.4 ± 0.1 228.7 ± 1.6 8.1 ± 0.02 604 ± 26.8
ZK60/6HA 19.2 ± 2.6 0.5 ± 0.2 141.3 ± 8.7 10.8 ± 0.02 436 ± 13.5

ZK60
Seven days

11.6 ± 1.5 0.5 ± 0.2 141.8 ± 16.1 4.4 ± 1.1 355 ± 15.4
ZK60/3HA 22.7 ± 5.1 0.3 ± 0.1 303.3 ± 4.1 2.2 ± 1.3 673 ± 34.5
ZK60/6HA 17.8 ± 5.1 0.4 ± 0.1 201.4 ± 3.2 3.8 ± 1.2 489 ± 32.3

In the electrochemical experiments, in addition to obtaining the above EIS curves,
the PDP polarization curves were measured, as shown in Figure 4a, where the shapes of
the three test groups were similar. However, an obvious inflection point was shown in
the anodic polarization curve of ZK60/3HA. The inflection point is called the breakdown
potential (Eb), and the current density changes rapidly when it is exceeded, implying the
occurrence of local corrosion [35]. The passivation phenomenon (the curve is relatively flat)
can be found when the corrosion potential is lower than Eb, indicating the passivation of
membrane formation, which hinders the degradation of the sample. Upon incorporating a
3% HA content, a more pronounced passivation behavior emerges, leading to enhanced
protection of the corrosion product film, thereby decelerating the corrosion rate of the
sample. The cathodic polarization curve that depicts the process of hydrogen evolution
remains similar in shape subsequent to the addition of HA to the alloy, suggesting that an
augmentation in the HA content exerts minimal influence on the cathode’s current density.
However, it is imperative to observe that all these curves exhibit a rightward shift relative
to the alloy cathode branch devoid of HA. Furthermore, the corrosion current density
undergoes a gradual decline, suggesting that the quantity of hydrogen precipitation initially
diminishes and subsequently increases with the increase in the HA content. Nevertheless,
the corrosion rate is markedly slower in comparison to that of ZK60, as evident from
Figure 4c,d. Due to the asymmetry of the polarization curve between the anode and
cathode branches, the corrosion current density (Icorr) and corrosion potential (Ecorr) are
calculated by the cathode Tafel extrapolating method. The corresponding results are
plotted in Figure 4b. As the HA content increases, the polarization curve gradually moves
positively to the X axis, and the corrosion potential increases. Among these, the Ecorr value
of ZK60 was −1.38 V, while the Ecorr of ZK60/3HA and ZK60/6HA increased to −1.32 V
and −1.30 V, respectively. Notably, ZK60/3HA exhibited the smallest Icorr, measuring
33.9 µA/cm−2. This indicates that the introduction of a certain amount of HA matrix can
improve the corrosion resistance of ZK60.
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3.3. In Vitro Degradation Behavior

The volume of hydrogen released from the immersion experiment over time is shown
in Figure 4c. The evolution of hydrogen from ZK60 was the fastest during the immersion. In
contrast, the evolution of hydrogen from ZK60 supplemented with HA increased relatively
slowly. Indeed, among the three groups tested, the ZK60/3HA composite exhibited the
lowest volume of hydrogen generated, suggesting it possesses the slowest degradation
rate. Specifically, the corrosion rate for this composite was calculated to be 0.56 mm/year,
indicating its relatively high resistance to corrosion and degradation processes. However,
after the further addition of 6 wt% HA, the ZK60 showed a faster hydrogen release rate
and a faster corrosion speed. Indeed, hydrogen has garnered significant attention for
its therapeutic potential in treating various diseases associated with oxidative stress and
inflammation. Its unique ability to act as a biological reductant and regulate homeostasis
makes it a promising therapeutic agent. Hydrogen has been shown to effectively neutralize
harmful reactive oxygen species (ROS) and other free radicals, thereby mitigating oxidative
damage and reducing inflammation [36].

As depicted in Figure 5a, the corroded surfaces of three samples were observed using
SEM after every 1, 4, and 7 days of immersion in SBF. With the extension of soaking time,
all sample surfaces gradually became covered by corrosion products, which progressively
increased in abundance over time. It is noteworthy that the corrosion on the ZK60 surface
is the most pronounced, whereas both ZK60/3HA and ZK60/6HA exhibit relatively even
corrosion surfaces. ZK60/3HA possesses the most smooth and dense corrosion surface.
Spalling and cracking of corrosion products were observed in all samples due to dehy-
dration prior to SEM observation. High-resolution SEM observation revealed that the



Micromachines 2024, 15, 1156 10 of 15

ZK60 surface was covered with a rough and loose structure of Mg(OH)2. In contrast, some
white particles/clusters were deposited on the surface of both ZK60/3HA and ZK60/6HA,
respectively. According to previous studies, clustered spherical particles are a typical
morphology of apatite. The EDS analysis shows (Figure 5c) that they are rich in Ca, P,
and O, confirming that ZK60/3HA and ZK60/6HA are covered with Ca10(PO4)6(OH)2.
The deposited apatite layer reduces the corrosion rate of the magnesium matrix because
it has a more stable and compact structure compared to Mg(OH)2. The surface corrosion
products were removed with a chromic acid solution consisting of chromium trioxide and
silver nitrate, as shown in Figure 5b. It can be clearly seen that the surface of ZK60 is
seriously corroded, with obvious local corrosion. In contrast, the corrosion of HA is more
uniform, especially in the ZK60/3HA composite. However, it is worth noting that the
corrosion surface of ZK60/6HA has some small corrosion pits, which may be caused by
the electro-couple corrosion between the clustered HA and the magnesium matrix [37].
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the corrosion surface morphology of corrosion products; (c) EDS analysis of degradation products on
surfaces of ZK60/3HA.

3.4. The Biological Properties of Magnesium Alloy Composites

An indirect live/dead cell staining method was used to assess the biocompatibility
of the ZK60/HA composite. Staining images of bone mesenchymal stem cells (BMSCs)
cultured for 1, 3, and 5 days, as shown in Figure 6a. Overall, no significant BMSCs died
during culture in each group (red). With prolonged culture, the number of BMSCs increased,
and the cell morphology changed from a circular shape on day 1 to a fusiform shape on
day 5. The changes in the number and morphology of BMSCs reflect the suitability of
the culture medium. For the same culture days, cell growth in the ZK60/3HA group was
superior to that in the ZK60 group. Cell viability was determined by a CCK-8 assay, and
the results are shown in Figure 6b. The cell viability of 100% extracts at 1, 3, and 5 days
was 74.2%, 75.9%, and 79.1% in the ZK60/3HA group, and 61.2%, 62.8%, and 65.8% in
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the ZK60 group, respectively. Due to the high concentration of ions, the 100% extract was
poor, but it improved in the 50% extract group. Cell viability increased to 91.2% at day 5
in the ZK60/3HA group and to 76.8% in the ZK60 group, demonstrating no cytotoxicity
according to ISO criteria 10993-5:1999 [38,39].
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Figure 6. (a) Image of live/dead cells stained with BMSCs; (b) results of 100% dissolution and 50%
dissolution CCK-8.

In addition to live/dead cell staining and CCK-8 experiments, alkaline phosphatase
(ALP) activity was tested in the ZK60/3HA and ZK60 (as a control) extracts. The ALP
activity is commonly used to assess the degree of differentiation of BMSCs, as ALP is a
marker of early osteogenic differentiation. When the cells were cultured for 7 and 14 days,
they were washed three times with a phosphate-buffered saline (PBS), fixed with 4%
paraformaldehyde for 15 min, and then stained with an ALP staining kit for 12 h before
being observed under the microscope. The cells were harvested after 10 min of incubation
with 0.05% EDTA and 0.02% EDTA (Gibco BRL, New York, NY, USA). The ALP activity was
measured by the absorbance at 520 nm using a microplate reader (Beckman, Indianapolis,
IN, USA). As shown in Figure 7a, after 7 and 14 days of culture, more purple areas
(indicating ALP) were evident in the ZK60/3HA group, indicating that the ZK60/3HA
group exhibited higher ALP activity compared to the ZK60 group. The enhancement in
ALP activity was due to the introduction of HA, accelerating the release of Ca2+ and PO4

3−,
thus facilitating the mineralization process. The quantitative analysis of ALP also further
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verified the above conclusion, with a higher ALP content in the ZK60/3HA at both 7 and
14 days compared to the ZK60 group, as shown in Figure 7c.
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In addition, the calcium nodules of the ZK60, ZK60/3HA, and ZK60/6HA groups
were determined by Alizarin Red S (ARS). When the cells were cultured for 7 and 14 days,
the cultured cells were fixed with 4% paraformaldehyde for 30 min. The fixed cells were
cultured in a 0.5% ARS solution for 20 min in the dark. They were then observed with a
light microscope. For quantification, ARS was harvested by dissolving it in 20% methanol
and 10% acetic acid in water for 15 min and measured at 405 nm using a microplate reader.
As shown in Figure 7b, after 7 and 14 days of culture, the number of calcium nodules
(red) in the ZK60/3HA group was more than that in the ZK60 group, indicating that the
addition of HA nanoparticles obviously promoted osteogenic differentiation. Subsequently,
by the quantitative analysis of the ARS dyes at 7 and 14 days (Figure 7d), the amount of
ARS performance increased with culture time, and higher levels of ARS performance were
detected in the ZK60/3HA group compared to the ZK60 group, both at 7 and 14 days.

4. Conclusions

In this paper, a ZK60/HA composite sample was prepared using laser powder bed
fusion (LPBF). The influence of HA on the forming quality, corrosion resistance, and biolog-
ical properties of the ZK60 magnesium alloy was systematically studied. The mechanism
of action was thoroughly analyzed and explained. The main conclusions are as follows:

(1) The forming quality of the magnesium alloy can be evenly distributed on the surface of
ZK60 spherical powder through mechanical ball grinding and adjusting the absorption
and reflection of the laser. However, the introduction of excessive HA results in
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agglomeration on the powder surface, which is unfavorable for the formation of the
magnesium alloy and instead promotes the formation of pore defects.

(2) Introducing an appropriate amount of nanosized HA (3 wt.%) results in its even
distribution within the matrix, providing a large number of calcium and phosphorus
attachment sites and promoting the formation of an apatite protective layer. This
apatite layer is dense and effectively protects the Mg matrix from further corrosion.
However, excessive HA tends to cluster, and these clusters can form a local electric
couple with the matrix, accelerating electrochemical corrosion.

(3) ZK60/3HA not only exhibits good corrosion resistance but also provides a suitable
environment for cell growth, demonstrating good biocompatibility. Furthermore, the
introduction of bioactive ceramic HA enhances the release of Ca2+ and PO4

3−, which
promotes the mineralization, proliferation, and differentiation processes of bone cells,
ultimately accelerating bone healing.
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