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Abstract: Piezoelectric ultrasonic motors (USMs) are actuators that use ultrasonic frequency piezoelec-
tric vibration-generated waves to transform electrical energy into rotary or translating motion. USMs
receive more attention because they offer distinct qualities over traditional magnet-coil-based motors,
such as miniaturization, great accuracy, speed, non-magnetic nature, silent operation, straightforward
construction, broad temperature operations, and adaptability. This review study focuses on the
principle of USMs and their classifications, characterization, fabrication methods, applications, and
future challenges. Firstly, the classifications of USMs, especially, standing-wave, traveling-wave,
hybrid-mode, and multi-degree-of-freedom USMs, are summarized, and their respective functioning
principles are explained. Secondly, finite element modeling analysis for design and performance
predictions, conventional and nano/micro-fabrication methods, and various characterization meth-
ods are presented. Thirdly, their advantages, such as high accuracy, small size, and silent operation,
and their benefits over conventional motors for the different specific applications are examined.
Fourthly, the advantages and disadvantages of USMs are highlighted. In addition, their substan-
tial contributions to a variety of technical fields like surgical robots and industrial, aerospace, and
biomedical applications are introduced. Finally, their future prospects and challenges, as well as
research directions in USM development, are outlined, with an emphasis on downsizing, increasing
efficiency, and new materials.

Keywords: piezoelectric; ultrasonic motors (USMs); traveling-wave ultrasonic motor; standing-wave
ultrasonic motor; multi-DOF ultrasonic motors; fabrications; characterizations; applications; challenges

1. Introduction

Acoustic waves are an assortment of mechanical waves made up of mechanical vi-
bration that is considered an environmentally omnipresent, immaculate, and ecological
energy source [1–4]. The most tactical kind of sound wave among the many other sound
waves, for instance, infrasonic waves (below 20 Hz), human-audible waves (20–20,000 Hz),
and ultrasound (above 20,000 Hz), is ultrasound [5,6]. Because of their elevated frequency
and tiny wavelength, ultrasonic waves have the properties of vigorous directivity as well
as a lengthy propagation distance, which have led to extensive research in detection and
actuating generically in various fields like surgery therapy [7,8], diagnostic imaging [9],
food processing [10], toxic compound degradation [11], the welding and forming of metal
and plastics [12], aerospace [13], robotics [14], etc.

Piezoelectric materials are the best materials for generating ultrasonic waves. Their
distinguishing feature of the piezoelectric effect converts electrical to mechanical energy
and vice versa, rendering them the backbone of the ultrasonic industry. They are capable of
efficient energy transmission, allowing for adjustable frequency ranges, with tiny and solid-
state architectures that are robust and suitable for durable operation. These piezoelectric
materials are used in electromechanical devices [15] such as transducers [16–18], sensors,
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and actuators [19,20]. These piezoelectric-based devices are employed in various applica-
tions, including microphones [21], surface acoustic waves for space applications [22], ac-
celerometers [23], pressure sensors [24], clocks and timing devices [25], traffic systems [26],
non-destructive testing [27], Internet of Things [28], underwater sonar [29,30], energy
harvesting [31–33], medical applications [34,35], and many more. In ultrasonic-based
technology, piezoelectric devices are irreplaceable for generating and receiving ultrasonic
waves at high frequencies. Hence, piezoelectricity has a major impact on every aspect of
our lives, from ordinary electronics in our wallets to complex gear in numerous sectors.

The origins of piezoelectric ultrasonic motors (USMs) can be traced back to the initial
stages of investigating piezoelectric materials for use in motors. Figure 1 demonstrates a
chronological sequence of significant milestones and achievements. The historical develop-
ment of USMs demonstrates a persistent endeavor to utilize the capabilities of piezoelectric
materials for effective and accurate motion control. From the first theoretical notions to
the implementation and extensive use by firms such as Canon, USMs have emerged as
valuable instruments in diverse fields [36,37].
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1.1. Applications of Piezoelectric Materials to USMs

Piezoelectric materials are essential to ultrasonic motor technology due to their abil-
ity to convert electrical energy into mechanical energy. They involve the coupling of
mechanical parameters (T, S) to electrical parameters (E, D) or vice versa to form the
electromechanical equations of piezoelectric elements. The direct piezoelectric effect is
described in Equation (1), while the inverse piezoelectric effect is described in Equation (2).

Dm = dmj Tj + εT
mn En (m, n = 1, 2, 3) (1)

Si = sE
ijTj + dniEn (i, j = 1, 2 . . . 6) (2)
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where the symbol ε represents the dielectric constant, D indicates electric displacement,
E specifies the electric field strength, d expresses the piezoelectric constant, S denotes
the stress vector, s is the elastic compliance, and T represents the strain vector of the
piezoelectric material. Equation (3) represents the matrix form of the coupling equation
of the direct piezoelectric effect, while Equation (4) represents the matrix form of the
coupling equation of the inverse piezoelectric effect. The mechanisms of both the direct
and inverse piezoelectric effects are graphically shown in Figure 2. Where an electric field
generated in response to mechanical stress or external force is shown in Figure 2a. While
the external electrical field applied to piezoelectrical material that produces a structural
deformation is shown in Figure 2b. F indicates the applied force, while E represents the
applied electric field.
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Figure 2. Polarization and deformation in piezoelectric material where the ‘+’ sign shows the positive
charge while ‘-’ sign shows the negative charge and the dashed lines show the deformed plate:
(a) direct piezoelectric effect, (b) inverse piezoelectric effect.

Doping or swapping additives allow for a wide range of adjustments to the piezoelec-
tric characteristics. The particular goals of the devices must be taken into consideration
while determining the necessary characteristics of the piezoelectric materials. For instance,
(i) the material must have modest permittivity with lower dielectric loss at high-frequency
in order to be employed in high/ultra-high-frequency applications; (ii) the material’s acous-
tic impedance and coupling coefficient are often put under strain in the context of energy
transducer applications; and (iii) a material that has great frequency stability and high
mechanical quality factor (Qm) values can be used as standard-frequency oscillators. To
meet the requirements of delay-line applications, the materials must be frequency-stable,
and the sound velocity in the materials must also be taken into account. Ceramics em-
ployed in the electroacoustic area must possess a significant permittivity, electromechanical
coupling factor kp value, and elastic compliance coefficient; however, dielectric loss has
little effect on the devices. For hydroacoustic transducer applications, if employed as
receivers, the material must have a high kp value, a large piezoelectric coefficient of g33
or g31, and a compliance constant, with a large permittivity; however, a Qm value is not
strictly required. On the other hand, if piezoelectric material is used as a power emitter
in hydroacoustic transducers, it is necessary that it has a small dielectric loss (tanθ), a
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high dielectric constant (εr), a great Qm under an electric field range, a large piezoelectric
constant, and a high kp value. Filters require materials that possess exceptional durability
and resistance to temperature fluctuations. Additionally, these materials should exhibit
high Qm and low tanθ. The specific value of kp needed for the filters depends on their
bandwidth. High-voltage generators and igniters necessitate materials with high values
of g33 and k33, a high permittivity, a high Qm, and a low tanθ. Hence, USMs are highly
dependent on the characteristics of the piezoelectric materials that are employed in their
fabrication. Table 1 shows a list of commonly used piezoelectric materials in ultrasonic
motors, including their most notable characteristics, advantages, and disadvantages. In
modern times, the properties of piezoelectric ceramics may be finely tuned throughout a
broad spectrum through the use of doping and substitution techniques, allowing them to
be tailored for many application scenarios [38–40].

Table 1. A list of commonly used piezoelectric materials in USMs, including their characteristics,
advantages, and disadvantages.

Material Characteristics Advantages Disadvantages

Lead Zirconate
Titanate (PZT)

➢ Most common material
➢ High piezoelectric

coefficient
➢ Tailorable properties

➢ Widely available
➢ High efficiency

➢ Aging effects
➢ Lead content

(environmental concerns)

Single-Crystal
Piezoelectric Materials
(e.g., Lithium Niobate)

➢ Excellent mechanical
properties

➢ Exceptional piezoelectric
coefficients

➢ Superior strength and
wear resistance

➢ High performance

➢ High cost
➢ Less scalable
➢ Manufacturing challenges

Lead-Free
Piezoelectric Ceramics

➢ Potential for higher
operating temperatures

➢ Environmentally friendly
alternative

➢ Reduced environmental
impact

➢ Lower efficiency
➢ Lower piezoelectric

coefficients
➢ Limited availability

(more expensive)

Piezoelectric Polymers
(e.g., PVDF)

➢ Lightweight and flexible
➢ Low cost

➢ Design advantages for
compact USMs

➢ Potentially cost-effective

➢ Lower efficiency
➢ Lower piezoelectric

coefficients
➢ Limited temperature

range

1.2. Piezoelectric USMs

Piezoelectric USMs leverage the inverse piezoelectric effect and frictional coupling
to convert electric inputs to mechanical outcomes. Based on their vibration states, they
can be classified as resonant and non-resonant. Non-resonant piezoelectric motors often
achieve efficiencies near the nanoscale magnitude; however, their highest velocity is barely
tens of millimeters/second [41,42]. Resonant piezoelectric motors achieve significantly
greater velocities exceeding one meter/second [43–48]. A resonant piezoelectric motor
can be referred to as a USM because it operates at a frequency that is usually greater
than 20 kHz to prevent damaging an individual’s hearing. As a category of solid-state
actuators, USMs offer advantages over other types of motors, such as electrostatic motors,
electromagnetic motors, electro-conjugate fluid motors, and thermal mechanical motors
in terms of simplicity of design, rapid response, a substantial output torque at a small
size, and freedom from electromagnetic interference [49–51]. The advantages of USMs
over other traditional motors are shown in Table 2. In the previous decade, several unique
USMs have been suggested for implementation in many fields such as invasive surgical
procedures, handling medications, optical focusing systems, microrobots, and aeronautical
devices. Furthermore, due to their unique characteristics, USMs have become an essential
part for many advanced applications. For instance, (i) in healthcare industries, they are
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used for dental drilling procedures, robotic surgeries, and drug delivery systems; (ii) in
aerospace applications, they are used for satellite positioning and missile guidance; and
(iii) in daily life electronics, they are used for mobile phone cameras, audio equipment,
projectors, focus control purposes, etc.

Table 2. Advantages of piezoelectric USMs over other traditional motors.

Feature Piezoelectric
Ultrasonic Motor

Electromagnetic
Motor

Electrostatic
Motor

Thermal
Mechanical Motor

Electro-Conjugate
Fluid Motor

Voltage(I/P) Lower voltage Lower voltage High voltage
required Moderate voltage Moderate voltage

Size and Weight Compact and
lightweight

Bulky due to
magnets and coils

Can be bulky
and heavy Can be bulky Can be complex

Suitable
Environment

Works in air
and vacuum

Affected by
magnetic fields

Limited by air
breakdown

Sensitive to
temperature Sensitive to leaks

Noise Silent operation Can be noisy
(brushes/gears)

May generate
noise

May generate
noise

May generate
noise

Electromagnetic
Interference (EMI) No EMI Generates EMI May generate EMI No EMI No EMI

Low-Speed Torque High torque at
low speeds

Torque decreases
at low speeds

Limited torque at
low speeds

Limited torque at
low speeds

Generally lower
torque

Response Time Very fast
response time

Can be slow
depending on
design

Slower response
time

Slowest response
time

Slower response
time

Motor Complexity Simple design Complex design
with moving parts Complex design

Complex
heating/cooling
system

Complex fluid
dynamics

Temperature
Stable performance
across a
wide range

Performance may
be affected

Performance may
be affected

Performance may
be affected

Performance may
be affected

Motor Efficiency
High efficiency,
especially at
low speeds

Varies depending
on design Lower efficiency Lower efficiency Lower efficiency

1.3. Basic Operating Principle of USMs

An ultrasonic piezoelectric motor comprises two primary components: a stator and
rotor. The stator is the immobile part that contains the piezoelectric components. The stator
design can change based on the exact type of ultrasonic motor, such as standing-wave
or traveling-wave motors. While the rotor is the mobile part that works with the stator
to produce rotational or linear movement [52]. The USMs’ universal working concept is
to convert the spiraling driving foot motion to the movement of the rotor via the friction
interaction that occurs between the rotor and its stator, as demonstrated in Figure 3. The
pushing element of the circular motion moves the runner with the friction force, while
the pressing element shifts the force that is normal within the driving foot and the runner
on a periodic basis. The pushing and pressing elements are parallel and perpendicular to
the runner’s traveling trajectory, respectively. In Figure 3, from point P to Q, the normal
and frictional forces increase, and the driving foot’s horizontal speed exceeds the runner
speed, causing the driving foot to accelerate the runner. The normal force drops in the
direction from Q to R, the flow of the friction force goes backward, and the driving foot’s
horizontal speed falls compared to that of the runner speed. As a result, the driving foot
slows down the runner. The friction and normal forces rise from R to P, where the runner’s
speed decreases further. Hence, in this manner, the circular motion behavior of the driving
foot causes the runner to move periodically. Therefore, the pressing and pushing elements
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of the circular movements have the predominant impact on the motor’s thrust and speed,
respectively [53].
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1.4. Characteristics of USMs
1.4.1. Advantages

• USMs have the benefits of a nano/micro-structure that allows a variety of flexible
designs. Because of the piezoelectric material characteristics, USMs can produce many
forms of vibrations, which involve bending, longitudinal, and torsional vibrations.
The torque density of USMs is greater than in conventional motors.

• USMs provide strong torque at low speeds to be capable of driving loads directly
with no gear requirement. This advantage improves positioning accuracy as well
as response speed by reducing the additional weight and volume imposed by the
gearbox, transmission-induced position error, vibrations, noise, energy loss, etc.

• A USM’s rotor possesses a tiny amount of inertia, a rapid response at the microsecond
level, self-locking, and high holding torque. USMs may reach a stable speed in a few
milliseconds and stop even faster due to friction between the rotor and stator.

• The position and velocity control of USMs is great with good displacement resolu-
tion. Because the stator operates at a high frequency and the rotor or slider operates
at low frequency, they are capable of controlling precision within microns or even
nanoseconds in a servo system and hence respond quickly.

• USMs have distinct characteristics from regular motors as they generate no magnetic
fields and are resistant to electromagnetic interference when operating.

• They are environmentally friendly devices due to low noise. USMs typically operate
at frequencies greater than 20 kHz, which are beyond human hearing. Furthermore,
the noise generated by the gearbox to decrease the speed is eliminated because the
motor can directly drive loads.

• USMs can operate under harsh environmental circumstances such as in a vacuum
and under high/low temperature by selecting a proper design, fractional part, and
piezoelectric material.

1.4.2. Disadvantages

• USMs usually generate small power with low efficiency as they involve two-step
energy conversion techniques. The first approach uses the reverse piezoelectric effect
to convert electrical power into mechanical energy. The second mechanism transforms
the stator’s vibration into macro one-directional motion of the rotor via friction be-
tween its rotor and stator, which causes energy loss. Hence, the overall effectiveness
of USMs is reduced.
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• USMs have a limited functional life and are not appropriate for continuous operation
for long periods. Friction and wear issues emerge at the stator–rotor interfaces during
friction drive. Furthermore, high-frequency vibration can cause fatigue damage to the
rotor and piezoelectric materials, particularly when the power output is large and the
ambient temperature is high.

• USMs have specific criteria of excitation/drive signals for the amplitude, frequency,
and phase in order to activate the stator’s resonance. Whenever the motor temperature
varies, the frequency of the excitation signals for piezoelectric devices must be adjusted
appropriately to ensure output performance stability. Thus, the circuitry for USM
drivers is sophisticated as well.

1.5. Organization

In this paper, the operational principles, characteristics of various classifications,
state-of-the-art designs, their finite element modeling, fabrication, characterizations, ap-
plication in different fields, challenges, and future trends in USMs are investigated in
detail. This paper is organized as follows: Section 2 discusses the classification of USMs
including traveling-wave, standing-wave, hybrid-mode, multiple-degree-of-freedom USMs
and their performance analyses. Section 3 highlights the 3D finite element modeling of
USMs. Section 4 describes the various types of existing fabrication methods that includes
conventional and micro/nano-fabrication methods of USMs. The performance, material,
and dynamic characterization of USMs are elaborated in Section 5. The controller and drive
of USMs are presented in Section 6. Furthermore, Section 7 discusses USMs in various
applications like surgical robots and industrial, aerospace, and biomedical fields. Section 8
reports some trends and future challenges of USMs, and Section 8 provides the summary
of this paper’s achievements and contributions.

2. Classification of USMs

USMs are principally divided into three categories: standing-wave USMs (SUSMs) [54–58],
traveling-wave ultrasonic piezoelectric motors (TUSMs) [59–65], and hybrid-mode ultra-
sonic piezoelectric motors (HUSMs) [66] based on the technique in which the driving foot
acquires circular movement. The divisions of USMs are graphically illustrated in Figure 4.
TUSMs produce elliptical moment via creating a traveling wave within the stator, which is
further classified into three subcategories based on the mode of the stator’s vibration: the
disk’s axial bending mode, cylinder’s radial mode, and ring’s axial bending mode. SUSMs
produce elliptical movements by triggering the stator’s standing wave with many vibration
modes applied. Future SUSMs are characterized as unidirectional or bidirectional motors
based on the runner’s output movements rather than the stator’s vibration patterns [67–70].
The circular movement of HUSMs is achieved by creating two distinct modes of vibration
for identical frequency. HUSMs are divided into four subcategories based on the stator’s vi-
brations. These subclassifications include the longitudinal–longitudinal, bending–bending,
longitudinal–torsional, and longitudinal–bending categories. USMs can also be classified
as single-degree-of-freedom (S-DOF) and multi-degree-of-freedom (M-DOF) motors based
on their output movements. S-DOF motion includes linear and rotational motion and is
possible with any working fundamentals of the TUSMs, SUSMs, or HUSMs. In USMs, a
versatile technique can be used to produce M-DOF movements as the operational principle
of TUSMs, SUSMs, and HUSMs, which may be applied in USMs independently or together.
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2.1. Traveling-Wave Motor

When a traveling wave propagates through the stator, it causes elliptical motions on
its surface. Figure 5 depicts the basic working concept of a traveling-wave USM, where
the driving foot is the point at which the stator and the runner make contact. The vertical
amplitudes of the traveling wave and driving foot coincide. The driving foot’s horizontal
amplitude is related to the slope angle generated through the moving wave and its distance
from the stator’s neutral layer and driving foot. The horizontal and vertical elements of the
driving foot are connected precisely with the traveling wave’s slope angle and amplitude.
The stator’s driving foot alternately drives the runner/rotor with its elliptic movements as
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the traveling wave spreads onward. Hence, the runner moves against the other direction
as the traveling wave moves. In overlapping two standing waves, a traveling wave is
formed. The vibration superposition principle states that two standing waves should have
identical vibrational structures, frequencies, and amplitudes, with a wavelength of one
quarter variance in space and a distinction in phase of ±π/2 over a period. The vibration
equations for traveling and standing waves are presented in Equations (5)–(7):

X1 = ksin
(

2π

ζ
y
)

cos(ϖt) (5)

X2 = ksin
(

2
π

(
y +

ζ

4

))
cos

(
ϖt +

π

2

)
(6)

X3 = X1 + X2 = ksin
(

2π

ζ
y −ϖt

)
(7)
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Figure 5. Operating principle of TUSMs.

The mathematical representation of the standing waves is shown in Equations (5) and (6),
while the traveling wave is described in Equation (7), where t is time; ζ, wavelength; ϖ,
the angular frequency; and k, the standing wave’s amplitude. Equation (7) demonstrates
that the traveling-wave motor requires two sinusoidal stimulating impulses of an identical
frequency with a phase alteration of +π/2 or −π/2. Furthermore, the two sinusoidal waves
will stimulate the identical vibrational mode of the stator alongside an identical amplitude
separated by a distance ζ/4 in space. Changing the difference in phase between the
excited signals causes the traveling wave to flow in the reversed direction of the runner’s
movement. Therefore, the traveling-wave motor can achieve bidirectional motion with the
phase variation. The driving foot can regulate the magnitude of the elliptical movement by
varying the exciting voltages at the same time. It is worth noting that changing the voltage
levels of both exciting signals would result in additional standing waves formed in the
stator, which will have an influence on the circular driving foot’s motion. The structure of
elliptical movement remains constant since the amplitudes of the vibrations of pressing
and pushing both components are connected, which restricts the adaptability of modifying
the traveling-wave motor’s output torque and speed.

Some performance analysis results of various state-of-the-art TUSMs are numerically
presented in Table 3. The motion and type of stator, size of the piezoelectric element,
driving voltage, rotational velocity and speed, frequency, preload force, and generated
torque for various proposed motors are listed.
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Table 3. Performances analysis of various TUSMs.

Reference Year Motion Stator
Type

Size of Piezoceramic
(mm) Voltage Velocity/Speed Frequency

(kHz) Force (N) Torque (Nm)

[71] 2024 Rotary Ring 12 × 5 × 2 500 Vpp 62 rpm 40 10 0.94
[72] 2023 Linear Disk 9 × 1.65 × 2.7 500 Vpp 19.04 rpm 19 300 1.2
[73] 2023 - Ring 0.5 200 Vp 120 rpm 41 250 1.1
[74] 2023 - Radial 3 × 10−3 6 Vpp >12,000 rpm 95.2 0.05 14.89 × 10−6

[75] 2023 Rotary Disk <10 × 10−3 80 Vp 158 rpm 41.9 40 0.073
[76] 2023 Rotary Disk - 500 V 153 rpm 36.2 280 1.5
[77] 2023 Linear Cylinder 15 × 15 60 Vpp * 7.9 mm/s 96 - -
[78] 2021 - Ring 27 × 2 × 0.5 200 Vp * 128.2 rpm 41 250 0.9
[79] 2020 Rotary - 7.5 × 4.2 × 1.5 250 Vpp 53.86 rpm 24.86 0.69 0.11
[80] 2020 - - - 1.3 Vpp 160 rpm 41.5 - 1
[81] 2020 Rotary Ring 0.34 × 0.18 - 17.09 rpm 39.6 250 0.35
[82] 2020 Ring 60 24 Vp 110 rpm 37.2 200 1.2
[49] 2020 Linear Disk - 6 Vpp 1.7 mm/s 19.3 - -
[83] 2019 Rotary Disk 60 30 Vpp 90 rpm 0–100 60 1.5

* Vpp is the peak–peak voltage; Vp is the peak voltage.

2.2. Standing-Wave USMs

The driving foot’s elliptical motion is created by generating a standing wave (also
known as a mode shape) in the stator of a USM [84]. The basic working mechanism of
standing-wave USMs is graphically demonstrated in Figure 6. Despite the driving foot’s
pushing and pressing components being produced by the same exciting sinusoidal signal,
the elliptical movement can be obtained due to the stator’s damping ratios along the distinct
directions of these components. As a small difference between the damping ratios, the
motion trajectory typically degenerates into an almost straight line-like flat ellipse [85,86].
The oscillating driving foot’s direction is consistently diagonal to the forward motion of the
runner (rotor), ensuring that both components are sufficiently powerful to propel the runner.
The runner’s movement direction is governed by the driving foot’s vibrational direction.
In Figure 6, one may clearly observe that the driving foot’s position and the stator’s mode
shape determine the vibration direction for the standing-wave motor. Both the stator
design and exciting frequency dictate the mode shapes. The driving foot moves diagonally
when seen from the bottom left to the top right if it is positioned on the antinode’s right
side. Conversely, the driving foot will experience vibrations that travel from the bottom
right side to the top left, causing the runner to drive toward the left. In contrast to the
generation of traveling waves in the stator of a TUSM, the stator of an SUSM may readily
produce standing waves despite its geometry. SUSMs may utilize rotors as runners for
linear motion and sliders for rotational motion. Therefore, several linear SUSMs [55,87,88]
and rotary SUSMs [89–91] have been proposed as state of the art, each exhibiting different
vibration patterns in the stators. SUSMs can be further categorized into two types based on
their output motions: unidirectional and bidirectional SUSMs. Some performance analysis
results of various state-of-the-art SUSMs are numerically demonstrated in Table 4, where
the vibrator, stator shape, driving voltage, rotational velocity and speed, frequency, and
force are shown for various proposed USMs. Figure 7 shows the V-shaped standing-wave
USM presented by Xiandi et al. [92], where Figure 7a shows a physical prototype photo
of the standing-wave transducer, Figure 7b shows excitations that appear in the motor,
Figure 7c illustrates the excitation signals followed by the vibration direction, Figure 7d
presents the driving tip’s elliptical trajectory evolution along the phase difference, Figure 7e
demonstrates the ultrasonic testing setup, and Figure 7f presents the complete experimental
setup for a standing-wave ultrasonic motor.
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Table 4. Performances analysis of various SUSMs.

Reference Year Vibrator Stator Shape Voltage Velocity/Speed
(m/s)

Frequency
(kHz) Force (N)

[93] 2023 - V-shaped 90 V 0.2 32.2 10
[92] 2023 linear V-shaped 80 Vrms * 0.23 33 20
[94] 2023 linear V-shaped 150 V - 39.1 -
[95] 2021 linear V-shaped 400 Vrms 0.53 39 30
[96] 2020 linear V-shaped 350 Vrms 1.27 38.6 80

* Vrms is the root mean square voltage.

2.3. Hybrid-Mode USMs

Hybrid-mode USMs (HUSMs) are USMs that use two distinct modes of operation
to mimic the elliptical motion of the driving foot. The working mechanism of HUSMs is
graphically demonstrated in Figure 8. The driving foot oscillates in distinct ways in modes
A and B. Based on the concepts of vibration superposition and Lissajous curves, the driving
foot’s elliptical motion can be accomplished through stimulating modes A and B with
two sin impulses at an identical frequency and a specified phase variation (ϕ). To reverse
the rotation direction of the elliptical trajectory, flip the phase difference of the excited
signals to −ϕ. Hence, varying the phase difference allows HUSMs to achieve bidirectional
movements. Furthermore, the two exciting signals can separately change the pressing
and pushing components of elliptical movement, which are subjected to modes A and B,
correspondingly. Therefore, the electrical voltage levels of the exciting signals may be used
to modulate the HUSM’s output speed and thrust with great versatility.

The performances of various state-of-the-art pre-HUSMs are numerically illustrated
in Table 5. The table summarizes the vibration or motion patterns, stator type, presented
prototype dimensions, applied voltage, obtained velocity and speed, operating frequency,
and force. A hybrid-mode ultrasonic piezoelectric motor is shown in Figure 9, presented
by Ziang et al. [97]. The overall configuration of the hybrid motor is presented in Figure 9a,
where longitudinal PZT plates are powered by phased voltages and longitudinal traveling
waves (LTWs) travel in a pair of arms oriented over the x-axis, causing another arms pair
(the passive arms) to produce bending vibration as shown in Figure 9b. The finite element
modeling of the meshed structure concerning the LTWs is described in Figure 9c. The
elliptical motions created by bending standing waves (BSWs) in the xz and yz planes
are presented in Figure 9d. The mesh shapes created by BSWs in vertical directions are
shown in Figure 9e. Another type of HUSM is integrated with the first longitudinal and
second bending mode, which is called an L1B2 USM [98,99]. This type of L1B2 USM has
been used for various precision motion controls. Tables 6 and 7 present the advantages of
various types of USMs in different applications and the limitations of USMs for various
applications, respectively.
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Figure 7. V-shaped vibrator of standing-wave linear ultrasonic motor: (a) proposed physical prototype
motor, (b) motor in excitation mode, (c) the vibration following direction, (d) the driving tip’s elliptical
trajectory progress along the phase difference, (e) testing the ultrasonic motor prototype, and (f) the
complete experimental testing setup [92].
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Table 5. Performances analysis of various HUSMs.

Reference Year Motion/Vibration Stator
Structure

Prototype
Size Voltage Velocity/Speed Frequency

(kHz)
Force
(N)

[100] 2022 Longitudinal–
Bending tuning fork - 320 Vpp 88.67 mm/s 80.2 0.099

[101] 2022 Bending–
Longitudinal - 45.7 × 30 mm2 180 Vp 1103 mm/s 30.2 0.392

[102] 2020 Transverse–Shear disk 2 × 10 × 4 mm3 300 Vpp 169.4 mm/s 24.7 7.5

[103] 2020 Longitudinal–
Torsional cylinder 10 × 10 × 55 mm3 400 Vpp 483 rpm 56 22

[104] 2019 Bending–Bending planar 20 × 44 × 30 mm3 400 Vpp 300 µm/s 0.04 1.47

[97] 2023 Longitudinal–
Bending disk 68 × 68 × 28 mm3 250 V 877 mm/s 27.4 40.2

[105] 2019 Longitudinal–
Bending disk 40 × 112 × 38 mm3 400 Vpp 124.2 mm/s 1.4 105
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Figure 9. Hybrid-mode ultrasonic piezoelectric motor. (a) The overall configuration of the hybrid 
motor; (b) the longitudinal traveling waves (LTWs) travel in the active pair of arms (x-axis), and the 
bending vibration travels in the passive arms pair (y-axis); (c) the mesh structures related to the 
LTWs; (d) the elliptical motions caused by bending standing waves (BSWs); and (e) the mesh shapes 
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Table 6. Advantages of various types of USMs in different applications. 

Type of USMs Characteristic Advantages Applications 

Standing-Wave USMs 

Simple design and 
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Figure 9. Hybrid-mode ultrasonic piezoelectric motor. (a) The overall configuration of the hybrid
motor; (b) the longitudinal traveling waves (LTWs) travel in the active pair of arms (x-axis), and
the bending vibration travels in the passive arms pair (y-axis); (c) the mesh structures related to the
LTWs; (d) the elliptical motions caused by bending standing waves (BSWs); and (e) the mesh shapes
caused by BSWs in vertical directions [97].
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Table 6. Advantages of various types of USMs in different applications.

Type of USMs Characteristic Advantages Applications

Standing-Wave USMs

Simple design and
manufacturing Cost-effective automation

Conveyor systems
packaging machines
material handling

Higher torque output Precision positioning
and control

Robotics
assembly lines
medical devices

Traveling-Wave USMs

Wider speed range
Precise movements at

different speeds

Satellite positioning and aircraft
control systems
electric power steering
window regulators

Higher power output

Energy generation systems
Wind turbines
wave power generators
marine and offshore applications

Automation and
manufacturing

Large-scale automated systems
industrial machinery
construction equipment

Hybrid-mode USMs

Enhanced torque and speed Consumer electronics
Wearable devices
cameras
drones

Improved efficiency

Energy-efficient automation
Conveyor systems
packaging machines

Renewable energy systems
Solar tracking
wind turbines

Enhanced controllability Medical devices
Surgical robots
dental equipment

Table 7. Limitations of USMs for various applications.

Performance-Degrading Characteristics USMs Are Not Suitable for These Applications

Extremely High Speeds
Laser cutting
High-Speed Data Storage Devices
High-Performance Robotics

Harsh Environments (high shocks, corrosion, and vibrations) Oil and Gas Industry

Heavy Loads Heavy Manufacturing, Industrial Machinery,
Construction Equipment (crane, bulldozer, etc.)

Outdoor Environments (extreme temperature, humidity, and contaminants)
Marine Environments
Desert Environments
Chemical Industries

2.4. Multi-DOF Piezoelectric Ultrasonic Motor

The following functions associated with the concurrent management of numerous
degrees of freedom (DOF) with USMs provided investigators with a particularly extensive
area of exploration [106,107]. Various multi-DOF USMs have been described [108,109] that
follow the core operation fundamentals of SUSMs, TUSMs, and HUSMs for the purposes
of offering qualities such as nanometric resolution, self-braking, high controllability, rapid
response time, and other similar characteristics. Several stators can work together to
provide multi-DOF USMs movements for the runner. The next sub-sections discuss three
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distinct categories of multi-DOF USMs, which include spherical, rotary–linear, and planar
USMs. The rotary–linear and planar USMs have just two DOFs, while spherical USMs have
two or three DOFs.

2.4.1. Spherical USMs

S. Toyama invented one of the first ‘spherical’ USMs in 1991 [110], which was im-
proved later [111]. The drive was designed for machine assembly, laser cutting, and use
as an individual joint in robots. Recent advancements in MEMS technology and active
piezoelectric materials have led to the development of expert spherical USMs. A bonded-
type longitudinal–bending mode spherical-shape two-DOF HUSM was presented to meet
the needs for accurate movement along with control in a limited space for underwater
and space applications [112]. The motor comprises a pyramid-shaped piezoelectric active-
element mover and a friction base with a curved spherical shape that serves as the stator,
where the prior loading force is generated by a tension spring underneath the piezoelectric
mover. Functioning modes include the mover’s bending and longitudinal vibrations. The
geometry parameters were optimized using the FEA of the motor. And the experimental
findings showed that the highest velocity of rotation in both the x and y directions ap-
proached 414 deg/s when a 550 Vpp excitation voltage was applied. Moreover, the results
also showed that the highest peak forces for the spherical-based two-DOF HUSM in the
x and y directions are 5.25 N and 5.34 N, correspondingly, where the excitation voltage
is 525 Vpp. Mizuno et al. [109] presented spherical-shaped stator base multi-DOF USMs
utilizing the rotational mode vibrational motion of the stator, shown in Figure 10a, where
24 multilayer piezoelectric actuators are embedded on the surface of the stator. Other
highlighted spherical-shape multi-DOF USMs are presented in [113–115].

2.4.2. Rotary–Linear USMs

Linear and rotary motors are the two distinguished classes of USMs. However, some
multi-DOF USMs may produce both linear and angular motion [116,117]. For instance,
a linear–rotary moment-based USM was presented [118] for optical beam luminous flux
density control. The motor features a single stator made of a piezoelectric bimorph disk
and a carbon fiber cylindrical tube attached in the center. The disk is perpendicular to its
flat surface. Quadrilateral waveguides are generated in the inner circumference of the disk,
aligning with the tangential direction of the cylindrical tube’s outer surface. This waveguide
arrangement converts the radial vibrations of the bimorph disk into rotational oscillations
of the cylindrical tube. The USM has two vibration modes: second out-of-plane bending
and first radial. The carbon-based tube has a ring-shaped rotor that may be moved or
rotated using the inertia principle. Another highlighted USM named precise linear–rotary
positioning stage (LRPS) was presented by Chang et al. [119] for optical focusing, graphi-
cally shown in Figure 10b. This motor achieves both linear and rotational motions along
and around the vertical directions, respectively. Furthermore, an experimental study was
conducted on the LRPS prototype to evaluate its performance, as illustrated in Figure 10c.
The experiment demonstrated that it could perform linear motion with a stroke of 5 mm
and rotational motion with a stroke of 360◦. The resolutions for upward and downward
linear movements were 82.32 and 86.26 nm, respectively. The resolutions for clockwise and
anticlockwise rotating rotations were 3.90 and 3.85 µrad, respectively.

2.4.3. Planar USMs

Ref. [120] describes a planar motion-based USM called a twin coil spring-based soft
actuator, which is powered by two flexible USMs. Each USM consists of a small metallic
stator and an elastic, extended coil spring. It can travel forward and backward with
extensibility and bend left and right with flexibility. The motor’s basic operating concept
is based on two vibrational modes: the first mode repeats contraction and expansion
symmetrically around the central cross-section, while the second mode is asymmetrical.
The model has been experimentally examined, which has demonstrated strong response
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characteristics, high sensor linearity, and resilience, while maintaining flexibility and
controllability in planar motion. Wentao et al. [121] presented a bonded-type planar multi-
DOF USM that operates in both torsional and bending hybrid modes containing PZT plates.
Its working principle is shown in Figure 10d, where the vibration displacement occurs in
all four directions. Another prominent study on planar-type USMs based on two-mode
X-Y direction motion is represented [122].
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3. Finite Element Modeling of USMs

Finite element modeling (FEM) is an important computational method for analyzing
and forecasting USM behavior. Before building actual prototypes, engineers can use FEM to
realistically replicate the motor’s efficiency under various operating situations. This method
significantly saves time and resources during the design and implementation phase.

The initial step of FEM is system modeling that includes defining geometry dimen-
sions, material properties, mesh generation, boundary conditions, and loading conditions.
Once the system modeling is completed, the analyses are carried out through simulations
and results are obtained, which may include strain and stress distribution, model analysis,
performance prediction, etc. With FEM, the torque/speed under loading and unloading
conditions, displacements, efficiency, and noise generations are the characteristics observed
in the performance prediction step. Various commercial software like COMSOL multi-
physics, ANSYS, ATILA, ADINA, and Abaqus offer FEM features and tools to analyze the
piezoelectric devices effectively. However, FEM for USMs still have some challenges, such
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as careful consideration of material characteristics, boundary conditions, and nonlinearities;
for instance, friction in the contact region is necessary to create an accurate FEM model.
Furthermore, to execute simulations, sophisticated models with precise meshing may need
large amounts of processing power and time. To make sure that the model correctly depicts
behavior in the actual world, experimental testing is required to validate the FEM results.

The first FEM of USMs was performed by Yamabuchi and Kagawa [123] in 1989 in
order to analyze the piezoelectric elastic structures and present a study to understand
the qualitatively characteristics of the ultrasonic motor. Later, in 1992, Maeno et al. [124]
shed light on the mechanical properties of the ring-type ultrasonic motor using FEM
code MSCINASTRAN to determine the real ring-type stator’s vibration mode. In 1996,
another study was presented to look at how the piezoceramic’s shape affects the stator’s
vibration by FEM [125], where a detailed geometry was considered to compute the electrical
excitation and mechanical vibration in the stator of a USM. In the last two decades, a lot
of work has been carried out on the FEM of USMs to obtain more advanced, efficient,
and optimized designs. The highlighted work includes a model analysis conducted to
demonstrate the elliptical vibration process [14,103,126,127]. The major steps of the FEM
of USMs are graphically demonstrated in Figure 11, and the design and modeling figures
were taken from the FEM study presented by Yang et al. [128].
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4. Fabrication Methods of USMs

Several considerations, such as the intended USM size, functionality, and cost, influ-
ence the selection of the fabrication technique. Larger USMs usually require bulk machining
methods while thin-film manufacturing methods work better for microscale USMs.

4.1. Conventional Fabrication Methods of USMs

The conventional technique known as “bulk machining” consists of a milling process
with the ceramic or metal parts that make up the stator and rotor. With adhesives, the
piezoelectric components are then attached to the stator. This process consists of two
main steps: machining and piezoelectric element attachment. The machining process
consists of grinding, milling, or turning techniques to manufacture the stator and rotor
from the desired material like stainless steel, aluminum, ceramic, etc. It guarantees that
every component has exact measurements and the desired shape. The vibration-producing
piezoelectric ceramic components are then firmly attached to the stator with the use of
adhesives such as epoxy. Adhesives must be carefully chosen and applied in order to
enable adequate vibration transmission and prevent the introduction of stress spots that
might cause cracking.

Jing et al. used a hollow-design fabrication method to obtain a hollow-structure stator
instead of using bolts and glue to connect different parts of the stator [129]. The major
benefits of this approach are that it is good for mass manufacturing and provides excellent
accuracy. It enables the fabrication of precise rotor and stator shapes and tight tolerances,
which are required for effective motor functioning. The comparatively straightforward
and well-established methodologies of this technology make it ideal for the high-volume
manufacturing of USMs. The main drawbacks are that it can be laborious, time consuming,
and challenging in terms of bonding, particularly for micromachined USMs. The bonding
procedure must be well thought out. A poor choice or application of glue can result in
weak joints, obstruct vibration transmission, or introduce stress concentrations that could
lead to fractures in the motor parts.

4.2. Micro- and Nano-Fabrication Methods of USMs

Techniques for fabricating micro- and nanoscale materials provide benefits for intricate
designs and downsizing. Major essential techniques are thin-film deposition, micromachin-
ing, and lithographie galvanoformung abformung (LGA). Several considerations influence
the choice of micro- or nano-manufacturing technique, notably the necessary performance
of the motor, the size and complexity of the desired feature, the material’s suitability to the
piezoelectric film, and the volume and cost of production [130,131]. The techniques, advan-
tages, and considerations of these nano/micro-fabrication methods are listed in Table 8.

Table 8. List of various techniques for micro/nano-fabrication methods along with their advantages
and considerations.

Method Techniques Considerations Advantages

Thin-Film
Deposition

CVD Cost Complex designs
Sputtering Performance of thin films Miniaturization

EHJ printing Dedicated
apparatus Remove the need of bonding process

LGA
X-ray lithography Expert tools, Good quality surface,

Raised proportions of aspects of
metal structures

Electroplating Complex process,
Molding limited materials

Micromachining
RIE, Surface roughness, Intricate characteristics,

Combines thin-film deposition processesPhotolithography, Multi-step process,
DRIE residual stress
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The thin-film deposition method utilizes processes like chemical vapor deposition
(CVD), sputtering, and electrohydrodynamic jet printing (EHJ printing) in order to directly
deposit a thin film of piezoelectric material onto a printing surface. Atoms that form a thin
layer on the substrate are ejected using sputtering processes, which use a high-energy laser
to target the piezoelectric material. Precursor chemicals are introduced using CVD, and
they react and break down on the substrate to generate the appropriate piezoelectric layer.
Piezoelectric ink with suspended particles is applied onto the substrate by EHJ printing
using an electric field. Micromachining entails the use of several methods, including
reactive ion etching (RIE), photolithography, and deep reactive ion etching (DRIE), for
removing material from a substrate to produce the required USM geometries. Figure 12
shows the basic steps of the micromachining fabrication process for a thin-film micromotor.
Zhou et al. presented a MEMS (microelectromechanical system) technology based on a
silicon wafer consisting of metal decomposition, etching, and sputtering [132]. Another
highlighted MEMS technology-based fabrication was presented by Yang et al. for a thin-film
piezoelectric micromotor [133].
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The first miniature tube ultrasonic motor was fabricated by Uchino [134–136]; the
motor was fabricated in three different designs by reducing its size. The total length of the
tube ultrasonic motor of the first design was 10 mm, the second design was 6 mm, and the
third design was 4 mm, as shown in Figure 13. Kohei et al. [137] utilized the micromachining
technology to produce a small stator of dimensions of 0.41 mm × 0.41 mm × 0.25 mm. The
success of the stator manufacturing process is attributed to a micromanipulator that can
regulate a small quantity of glue in a sub-milligram order. Another highlighted miniature
ultrasonic motor was fabricated by Shunsuke et al. [138] for focus systems.

“Lithographie Galvanoformung Abformung” (LGA) is the German acronym that
translates to “X-ray lithography, electroplating, and molding”. A high-resolution resist
design is fabricated on a substrate using X-ray radiation in this procedure. A thick coating
of metal is electroplated onto the patterned resist. Following that, the resist is removed, re-
vealing a metallic mold with a high aspect ratio. The USM’s stator with exact characteristics
may then be created by casting molten metal into the mold.
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5. Characterizations of USMs

USMs may be characterized using a variety of techniques to assess their functionality
and performance, such as performance, dynamic, and material characterizations. These
characterization techniques offer insightful information about the capabilities, effectiveness,
and constraints of USMs. The kind of USM being analyzed and the target information
determine which specific approaches should be used. Various characterization methos
of USMs are summarized and presented in Figure 14. Equipment and techniques used
for various characterization of USMs are listed in Table 9. Below is a summary of several
important methods.
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Table 9. Equipment and techniques used for various characterizations of USMs.

Characteristic Equipment Technique

Torque
Torque meter Static or dynamic load

application [130]

load cell [130,134]
pre-load mechanisms
custom test configuration

Speed and
Velocity

Tachometer Transient characterization
method [130,135]

laser Doppler
vibrometer [131] direct measurement

encoders frequency sweep techniques

Efficiency

Power supply Calculation of mechanical output
power/electrical input power

load cell Frequency sweep techniques
tachometer Torque x angular speed/input

power [136]multimeter

Vibration
Accelerometer Measurement of vibration levels and

patterns [131]laser scanner vibrometer

Strain
Strain gauge Non-contact optical method
Digital image correlation
Interferometry High-precision technique

Temperature Thermocouple
or thermistor Monitoring temperature distribution

Noise Sound level meter Measurement of acoustic noise

Electric
parameters Multimeter Direct measurement of current

and voltage

Friction and wear Tribometer Simulation of operating conditions

Piezoelectric
coefficient

Berlincourt meter
Quasi-static methodd33 meter

laser interferometry

Holding force Load cell Measurement of maximum static load

Frequency
response

Signal generator
Inputting varying frequency signals
and measuring the response

Power amplifier
laser Doppler vibrometer
Spectrum analyzer

Resonance

Signal generator Identification of resonant frequencies
and mode shapes

power amplifier
Frequency sweep techniqueslaser Doppler vibrometer

spectrum analyzer

Impedance

Impedance analyzer [138] Direct measurement
LCR meter Vectorial measurements
Network analyzer S-parameters [139]
Oscilloscope

Displacement
angular acceleration

Linear variable differential Measurement of linear or angular
displacement [131]

transformer

Newton’s second law [135]
laser triangulation sensor
laser displacement sensor
laser interferometer
linear encoder

Quality factor Bode plot Bode plot [131]
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5.1. Performance Characterization

The USMs’ torque, speed, and efficiency measurements are carried out in performance
characterization. Torque measurement, which gauges the motor’s rotary force at various
speeds and loading scenarios, is an essential component of motor characterization. These
techniques include the use of torque meters or custom test configurations. The ability to
detect the motor shaft’s speed of rotation utilizing a variety of tools, such as encoders [135],
tachometers, or laser Doppler vibrometers (LDV) [130] for high-precision applications, is
another crucial feature. To calculate the motor’s energy conversion efficiency, the electrical
power input and mechanical power output must be measured. In contrast, high-accuracy
linear displacement (travel distance) is determined in a displacement measurement utilizing
laser interferometry or linear encoders. The performance characterizations of various
proposed USMs are listed in Tables 3–5.

5.2. Material Characterization

This characterization involves the piezoelectric coefficient and tribological measure-
ments of USMs. The ability of the stator’s piezoelectric material to transform electrical
power into vibratory motion is measured using the piezoelectric coefficient. To evalu-
ate this attribute, specialized tools are employed. Tribological characterization measures
the wear and friction characteristics of the materials of the rotor and stator. Tribometers
and wear pattern analysis in simulated operating circumstances are used in these proce-
dures. Kohei et al. [137] characterized a microscale ultrasonic motor with rotor diameter of
0.15 mm that obtained 5.4 nNm in maximum torque and 714 rad/s in angular velocity by
applying a voltage of 44.8 Vpp. This characterization was performed with hard/soft PZT
and lead magnesium niobate-lead zirconate titanate (PMN-PT) piezoelectric materials for
the transient response study shown in Figure 15.

Figure 15. The micromotor’s transient reaction: (a) experiments and least minimal approach for
hard PZT, (b) the torque derived from the angular velocity curve approximation for hard PZT,
(c) experiments and the least minimal approach for PMNPT, (d) the torque derived from the angular
velocity curve approximation for PMNPT [137].

5.3. Dynamic Characterization

In dynamic characterization, frequency response and resonance analysis-based tech-
niques are usually applied to study important characteristics of USMs. The assessment
of the frequency response determines the motor’s reaction to varying driving frequencies.
Through employing frequency sweep techniques and examining the output torque or fluc-
tuations in speed, the performance of USMs may be quantified. The resonant frequencies
of the motor are identified using resonance analysis, which is important since they might
affect stability and performance. Vibration patterns or changes in electrical impedance are
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measured using these approaches. Shunsuke et al. [138] performed the characterization
of a thin hollow linear ultrasonic motor for lens focus systems and studied the transient
response, force, and velocity characteristics of the motor shown in Figure 16.
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6. Controllers and Drives of USMs

Numerous companies, such as Micromechatronics, Inc. https://www.mmech.com/
(accessed on 19 September 2024) and Nanomotions.com https://www.nanomotion.com/
(accessed on 19 September 2024), offer a full ultrasonic motion solution that includes a USM
motor, a closed-loop feedback circuit, a driver, and a motion controller with programming
help to ensure optimal movement and positioning efficiency. The conventional USM design
benefits from an interaction between the mechanical resonance of a vibrating piezoceramic
stator and the electrical resonance of an alternating current drive circuit, allowing for
relatively large vibration amplitude while employing modest supply voltages. Figure 17
depicts the whole structure of a motion solution, which includes an ultrasonic motor, motor
driver, and motion controller with closed-loop position encoder feedback. The controller
employs a pre-programmed control algorithm to achieve the required (stage) motion profile
by applying a suitable voltage command level to the motor driver, which then supplies a
sufficient AC drive voltage to the motor, causing it to move the stage. The stage’s position
is continuously corrected based on the position feedback signal given to the controller by
the encoder in order to reduce the position error that exists between the required and actual
positions [98,99]
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7. Applications of USMs

USMs occupy a particular gap in numerous fields by providing a combination of
high precision and control, fast response and speed, quiet operation, EMI-free operation, a
compact size, and clean operation [140,141]. These attributes render them indispensable for
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jobs necessitating precise control, rapidity, and efficient operation within a compact frame-
work [142–144]. Thus, the ultrasonic motor has been used in fields such as semiconductor
manufacturing [145,146], textile and printing machinery [147–150], ultrasonic cleaning and
drying [151–153], aerospace [154–156], robotics [120,157,158], endoscopy [138], intelligent
surgical robots [137,159], optical fiber [160,161], biomedical engineering [140], magnetic
resonance images [162,163], artificial intelligence [164,165], laser surface texturing [92],
etc. Figure 18 illustrates the various application of USMs. In this section, the detailed
utilization of USMs in the fields of surgical robots, industry, aerospace, and biomedicine
is provided. The importance of each USM characteristic in the fields of surgical robots,
industry, aerospace, and biomedicine are summarized in Table 10.
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Table 10. Importance of various characteristics of ultrasonic motors in various applications.

Characteristic Importance Fields Applications

High Precision and Resolution

Allows precise and intricate
motions, Allowing for
accurate placement and
providing manipulation at the
micrometer scale.

Minimally invasive surgery Instrument control

Aerospace Antenna pointing
Telescope adjustment

Biomedical engineering Drug delivery
Microfluidic devices

Industrial automation
Robotic assembly
Laser cutting
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Table 10. Cont.

Characteristic Importance Fields Applications

Fast Response and Speed

Enables fast operation and
swift adjustments in position
using speedy start–stop and
motion functions.

Industrial automation
Assembly lines
Material handling

Biomedical engineering Pumps
Microfluidic devices

Silent Operation
Essential for locations that are
sensitive to noise by
producing minimum noise.

Minimally invasive surgery
Improved patient comfort
Quieter surgical environment
Improved communication and
collaboration of surgical teams

Biomedical engineering
Medical pumps
Diagnostic equipment
Implantable devices

Aerospace
Minimizing acoustic
disturbances
Microgravity experiments

No Electromagnetic
Interference (EMI)

Ensures optimal performance
in the proximity of delicate
electronic devices while
preventing electromagnetic
interference (EMI)
disturbances.

Biomedical engineering Implantable devices

Industrial automation

Environments with sensitive
electronics
Medical device production
and assembly
Applications requiring sparks
or flammable materials

Aerospace

Safeguarding sensitive
electronics
Compatibility with scientific
equipment
Reduced risk of signal
interference

Compact Size and Light
Weight

Enables reduction in size of
instruments and decreases the
total weight.

Minimally invasive surgery Surgical tools

Aerospace Spacecraft design

Biomedical engineering Implantable devices

Harsh Environment Tolerance

Capable of functioning in
harsh conditions such as
severe temperatures,
radiation, and vacuum,
making it indispensable for
space operations.

Aerospace

Satellite components

Deployment mechanisms

Low Power Consumption

Conserves energy and
prolongs battery lifespan in
circumstances with limited
resources.

Aerospace Spacecraft design

Biomedical engineering Implantable devices

7.1. Surgical Robots Based on USMs

USMs serve an important role in minimally invasive surgery. The noteworthy ad-
vantages of these surgeries include a decrease in post-operative discomfort, diminished
risks during and after surgery, shorter hospital stays, faster healing, fewer cuts and scars,
less immune system stress, shorter surgical times, and lower total expenses [166,167]. A
broad range of nano- and microscale medical ultrasonic robots have been revealed in
the last decade to approach and transcend the level of biological tools used for general
surgeries in the pancreas, liver, intestines, gallbladder ducts, and cardiovascular, spinal,
and genital areas. Furthermore, various research investigations are being undertaken in
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oncological surgeries, such as urology and lung surgery. Moreover, some of these models
deal with detecting tumoral lesions and establishing resection margins, while others are
meant to assess the viability of ultrasound-guided surgeries. A few studies have assessed
the robotic drop-in probe, the consistency of the hepatic tissue, and the circulatory flow in
the pulmonary vein [168]. A millimeter-scale rolling microrobot was designed for gastrin
testimonial tracks and arteries. Driven by a micro-ultrasonic motor and a micro-planetary
gear train, it can produce 60 µNm of torque and a speed of 4500 rpm. The prototype
measures 14 mm in length, 10 mm in width, and 7 mm in height and weighs 640 mg.
Experiments showed that the microrobot maintains speed on slopes with a high friction
coefficient, even on low-friction slopes [169].

7.1.1. Laparoscopic Surgery

Electromechanical rotatory USMs based on piezoelectric material are commonly em-
ployed in laparoscopic single-site operations owing to their tiny wound size, wide field
of vision (FoV), ease of repetitive high positioning precision, small dimensions, and fast
response [170,171]. Jingwu et al. [172] presented a USM-based laparoscope, which is shown
in Figure 19. The authors described a novel three-degree-of-freedom laparoscopic surgical
robot (LSR) powered by a double-leg ultrasonic motor (DUM) containing piezoelectric
ceramic active plates in order to induced longitudinal and bending coupling vibrations.
The two-stage, three-order bending vibrations can form a traveling wave that drives the
DUM rotor. The genetic algorithm-II is used to optimize the DUM stator, leading to in-
creased moving stability and driving efficiency. The mechanical properties of the DUM
have been investigated experimentally. The maximum no-load rotational speeds are 333.75
and 335.77 rpm for clockwise and counterclockwise rotation, respectively, with maximum
output torques of 2 and 1.6 N mm. An experimental platform was designed to demonstrate
that the LSR may alter its posture to obtain a proper surgical FoV, demonstrating that the
use of a DUM in an LSR has substantial benefits and potential [172]. Katsuhiko et al. [173]
suggested a soft actuator with a cylindrical cam mechanism that converts linear movement
to rotating movement for laparoscopic surgery. In laparoscopic surgery, a tiny rotating
actuator is mounted on the edge of a forceps manipulator, resulting in 3 Nmm torque with a
70◦ angle of rotation. The actuator has the benefit of being easily sterilized and disposable.
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7.1.2. Neurosurgery

For conducting robotic neurosurgery, the ultrasonic piezoelectric motor is noticeably
a favorite part of the system, especially in microsurgery and stereotactic procedures. It
has several benefits, including nonferrous material, tiny size, strong holding torque, and
quiet operation. A researcher developed a magnetic resonance (MR) conditional parallel
robot that consists of three-degree-of-freedom translational and remote center of motion
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(RCM) modules using the actuation capabilities of USMs [174]. A model evaluation based
on the genetic algorithm was performed in order to obtain maximized dexterity. Then,
prototype fabrication and experimental verification were carried out. The RCM module’s
orientation stability was measured to be 0.055 ± 0.0016◦, with an absolute orientation
inaccuracy of 2.05 ± 0.019◦. The robot’s impact on the signal-to-noise ratio in images
obtained from MR imaging was less than 4%, demonstrating a high potential application
in MR-restricted neurosurgery. Another flexible surgical robot that uses the beacon total
focusing technique (b-TFM) to enable high-accuracy ultrasonic position sensing and strong
magnetic steering is presented [175] in Figure 20. This robot demonstrates the ability
to drive nimbly. A 1 mm × 1 mm PZT patch inserted on the tip of the robot determines
the robot’s location. The ultrasonic position sensing system used in the model oversees
the entire navigation process, with a maximum error of 0.8 mm at a steering radius of
100 mm. Moreover, USMs employed in MRI-guided robotic systems have been proven to
increase accuracy using the system’s uncertainties and nonlinearities due to its MR safety
properties [176,177]. For example, the positioning accuracy can be effectually reduced to a
sub-degree level using particularly developed controllers [178,179].
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robot system with magnetic control and ultrasonic motor for positioning detection; (b) flexible robot
for neurosurgical route tracking; (c) flexible robot for vascular navigation [175].

7.1.3. Cardiovascular Surgery

A hollow ultrasonic motor (HUM) was successfully utilized in master–slave vascular
interventional robotic systems for minimally invasive cardio surgery [158]. A flow diagram
of a remote-controlled vascular interventional robot (RVIR) is shown in Figure 21. The goal
of the vascular interventional robotic system using a hollow ultrasonic motor is to provide
physicians the ability to carry out intricate vascular procedures precisely and dependably.
The proposed slave robot is made up of a linear movement platform and a hollow drive
mechanism that relies on a traveling-wave ultrasonic motor, as shown in Figure 22. The
stator of the HUM, optimized by an evolutionary algorithm for superior quality and larger
amplitudes of traveling waves, which are beneficial to the drive efficiency, eliminates the
need for a redundant transmission mechanism and maintains beneficial co-axiality due to
its properties of a high positional precision and fast response. The overall master–slave
vascular interventional robotic systems feature high kinematic accuracy, little hysteresis,
and excellent cooperative performance.
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7.2. Industrial Applications

USMs have gained a lot of popularity in industrial environments. They are exten-
sively employed in numerous industries, like chemical processes, machinery, automobile,
and aerospace, because of their appealing characteristics, such as small structure, quick
response, excellent accuracy, their intrinsic virtuous electromechanical coupling factor, com-
patibility in extreme environments, production of massive force, and their other mechanical
aptitudes [180]. To meet the growing demand for USMs, their capability to adapt to harsh
environments [154], which is a factor that leads to the deterioration of performance and
the failure mechanism of an ultrasonic motor when it is exposed to a shock environment,
was investigated. A physical experiment and a finite element modeling simulation were
carried out in order to investigate the effect on an ultrasonic motor. This investigation
included the environmental influence on the mechanical characteristics of an ultrasonic
motor as well as the vibration characteristics of a stator. In addition, the protective effect
of rubber on an ultrasonic motor in a distress environment was demonstrated using an
experimental approach. A nonlinear dynamic model and identification approach were
described for the purpose of designing a driver circuit for high-voltage excitation appli-
cations in industrial settings [181]. The outcomes of the experiments indicated that there
is a reduction in harmonic distortion below 500 Vpp, which enables higher motor output
power. A small camera module employed as an image stabilizer and for security systems
has been studied and developed over the course of many years, particularly with regard
to its minimized size, related output force, speed, and maximum output power demand
for a variety of loads. The experimental research that was conducted in [182] focused on
simple bimorph and multi-layer bimorph USMs. According to the findings, the thrust was
as high as 3.08 N and 2.57 N, with a satisfactory free speed and structural thickness of
0.7 and 0.6 mm, respectively. In addition, the design suggested has a significant potential
for use in a smartphone camera module, particularly in the field of moving sensor image
stabilization. A minuscule, ring-shaped linear USM with a single, in-plane E01 mode [183]
was presented in order to generate the accurate precision suitable for changing temperature
environments. The motor has a peak driving force of 2.7 N, output power of 18.6 mW, a
no-load driving velocity of ~56 mm/s, and a precise position/displacement accuracy of
0.1µm under open-loop control. They presented the linear motor’s simple shape, broad
bidirectional operating stroke, and adjustable micrometer-scale displacement, proving that
it has tremendous promise for manufacturing applications, particularly in precise actua-
tions. A four-leg USM model consisting of eight PZT sheets is described in [184], providing
a high-voltage two-phase signal excitation. The four ceramic feet efficiently move a slider
in a straight path. A 600 × 160 mm prototype was created for experimental purposes. The
testing findings demonstrated that a 200 V driving voltage provides a maximal translated
speed of 135 mm/s and an effective force of 3.6 N, making it an intriguing choice for precise
and industrial applications due to its size, features, and great output efficiency.

7.3. Aerospace Applications

USMs possess a distinctive blend of accuracy, dependability, and effectiveness, render-
ing them extremely advantageous for a wide range of aerospace applications. Due to their
impeccable performance in the harsh environments of space and their tiny dimensions
and energy-efficient design, they are highly favored for space exploration missions. In
aerospace, these USMs are used for satellite systems, deployable mechanisms, telescopes,
and other optical instruments, micro-positioning tasks, sample manipulation, and explo-
ration or maintenance robotic systems. Ma et al. [185] describes a unique rotary ultrasonic
motor based on numerous Langevin transducers that is intended for long-term, steady
operation in aeronautical systems. The study of a motor’s maximal no-load speed with
pre-pressure was carried out, and it was observed that it has excellent loading perfor-
mance, rapid reaction capacity, and high displacement angle resolution while retaining its
miniature size. Setting the driving voltage 350 Vpp, with variation in pre-pressure from
10 N and 60 N, yielded no-load speeds of 62 and 34 rpm, respectively. This shows that as
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the pre-pressure rises to 60 N, the no-load maximal speed drops. The motor’s start/stop
response period is 4.6/5.5 milliseconds [185].

Another design strategy for rotary traveling-wave ultrasonic motors was developed
based on the bending mode of a ring-shaped stator that uses less PZT ceramics to minimize
bulk and increase mechanical output properties. The two standing waves and the driving
tips’ motion patterns were calculated. The motor achieved an output speed of 53.86 rpm
with a preload of 0.69 N at 24.86 kHz and 250 Vpp. The highest stall torque was 0.11 Nm at
3.14 N. Furthermore, comparing to a prior design, it was discovered that the volume was
greatly decreased; additionally, the system efficiency, no-load speed, torque, and power
density were increased considerably [79]. Another study was carried out to examine the
driving properties of the built-in sandwich traveling-wave transducer that was proposed.
To construct a traveling-wave piezoelectric motor, the rotor was driven by the transducer
that was presented. Also, tests were performed on the motor prototype’s output perfor-
mance. The experimental findings showed that with a pre-pressure of 300 N, a voltage of
500 Vpp, and an exciting frequency of 19 kHz, the motor’s no-load speed was 19.04 rpm.
Its stall torque was 1.2 Nm, the machine’s maximum output power was 0.6453 W, and
the highest possible output efficiency was 15.87%. The dependable operation of the drive
application and the practicality of the transducer structure design method were further
confirmed by the normal functioning of the rotating motor [72].

USMs are also being investigated as wireless motors based on traveling waves due
to their flexibility, excellent durability, and convenience for aerospace applications. A
stated solution seamlessly integrates capacitive power transmission into a USM to provide
a newly created non-magnetic wireless direct-drive motor. In contrast with previous
wireless motors, the suggested wireless USM prevents the use of delicate microcontrollers
and passive or active controls on the motor side, allowing for complete control on the
primary side, enabling high-degree integration and zero-maintenance process. Furthermore,
bidirectional motion capabilities and adjustable speed regulation may be easily obtained by
varying the amplitude and sequence of two-phase outputs on the primary side, allowing
for a true sensation of wireless direct drive. Moreover, conceptual evaluations and practical
testing were shown to demonstrate the practicality of the proposed wireless USM for
aircraft applications [71]. The authors proposed a viable technique to build friction-stress
management and energy conversion augmentation toward an energy-saving and high-
efficiency friction USM for aerospace technology. The model describes a low-voltage
rotating USM that utilizes laser-induced microtextured stators and flexible rotors, achieving
158 rpm and 73 Nmm torque at 80 Vp with a 40 N preload [75].

To meet the high reliability requirements of aerospace applications, a unique traveling-
wave rotary USM with a ceramic support capability (backup motor) was developed.
Two USM models of a cantilever-tooth backup motor (CTBM) and a modified backup
motor with straight teeth (STBM) were prototyped, utilizing the electromechanical char-
acteristics of PZT. These models performed in standard, backup, and boosted modes
depending on the excitation parameters of the PZTs. Finite element analysis and prototype
testing were used to investigate the links between the performances of the three different
working modes. The outcomes revealed that backup mode, as a substitute, closely matches
the performance of regular mode; however, boosted mode clearly outperforms the others.
Extreme working trials further validated the effect of decreasing stress on PZT degradation.
The comparison of two distinct types of motors showed that STBMs can deliver greater
frictional drive achievement [186]. A low-voltage driving traveling-wave USM containing
four multilayer piezoelectric ceramics was proposed to excite two twisting modes at the
same frequency corresponding to the motor. Experimental studies were conducted to
examine the stator’s vibration features and the mechanical output characteristics of the
proposed model. Analysis showed that the motor can operate at voltages that are as small
as 5 Vpp A long stroke was executed, exhibiting maximum forward and backward rota-
tional velocities of 187.7 and 176.6 rpm, respectively. Additionally, a peak stalling torque of
4.8 Nm was attained at 47.3 kHz while operating at 15 Vpp [187]. Moreover, a detachable
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stator constructed using the fine-blanking technique has been provided [188]. Experimental
findings revealed that the maximum rotating speed is 150 rpm, and the highest stalling
torque is 1.42 Nm, demonstrating the stator structure’s fine-operating performance and
rationale. The study revealed that the detachable stator fabricated using fine-blanking
technology has a promising future in the ultrasonic motor application sector [188].

7.4. Biomedical Applications

The recent advancements in biomedical science studies require the miniaturization of
electronics [157]. USMs play important roles for multifunctional control in microelectrome-
chanical system devices. Traditional multiaxial phases are inadequate for multipurpose
manipulation, requiring numerous manipulators. These precision mobile robots are not
suitable for miniaturized multifunction operations because of their complex connecting
wires. Therefore, USMs are practical controllers for creating wireless robots since their
energy efficiency is significantly greater than that of other millimeter-scale motors. An
omnidirectional mobile robot named ∆-type driven by a USM was proposed and inves-
tigated. Its capabilities in terms of positioning deviation, velocity, and consistency of
translational motions under open-loop conditions were experimentally studied. The ∆-type
robot achieves velocities ranging from 18.6 to 31.4 mm/s and a repeatability of 4.1–9.1%
with a weight of 200 g, where the repeatability was calculated as the ratio of the finishing
points’ standard deviation to the mean route length [157].

8. Piezoelectric USMs’ Trends and Future Developments

The future of piezoelectric USMs seems promising, as there is a growing need for
smaller, more accurate, and efficient motors in several industries. Below are a few prospec-
tive future trends in piezoelectric USMs.

8.1. Material Advancements

New piezoelectric materials: Researchers are now working on creating new piezoelec-
tric materials that possess enhanced characteristics such as increased efficiency, a broader
range of operating temperatures, and improved resistance to fatigue. This will result in
USMs that have improved performance and a broader range of uses.

Composite materials: Ongoing research is being conducted on composite materials
that integrate the piezoelectric effect with additional advantageous characteristics such
as lightweight construction or stiffness. These composite materials have the potential to
enable the development of USMs with distinct and specialized capabilities.

8.2. Miniaturization and Integration

Micro-USMs: Miniaturizing USMs, especially for use in microrobots, healthcare equip-
ment, and hydrodynamic systems, is a significant current development. The invention
of micromachining and fabrication processes will facilitate the production of increasingly
miniature and accurate USMs.

Integration with other technologies: USMs are being combined with other microelec-
tromechanical system (MEMS) devices and sensors to form more intricate and versatile
systems. These advancements will create opportunities for the development of new appli-
cations in fields like biotechnology and aviation.

8.3. Improved Control and Performance

Advanced control algorithms: The development of advanced control algorithms
will enable the more accurate and efficient functioning of USMs. This will enhance their
productivity and empower them to tackle more intricate tasks.

Higher torque and speed: USMs are continuously enhanced to attain greater torque
and speed characteristics. This will increase their potential for use in areas such as manu-
facturing automation and robotics.
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Self-sensing USMs: Ongoing research is being conducted on USMs that possess the
ability to perceive their own internal state and adapt their functioning accordingly. This
would improve the quality and durability in a wide range of applications.

Structural Design Optimization: Research should be conducted on new stator and
rotor configurations in order to achieve improvements in speed, torque, and efficiency.

Failure Analysis: To gain a better understanding of the factors that cause motor failure
and to create preventative interventions, in-depth investigations should be conducted.

Power Consumption: Different ways to include energy harvesting capabilities into
ultrasonic motors should be investigated in order to lessen the amount of power that is
required from the outside.

8.4. New Application Areas

Medical devices: Miniaturized USMs show potential for application in surgical in-
struments, pharmaceutical delivery devices, and precise manipulation duties inside the
human body.

Nanotechnology: USMs have the potential to manipulate and position items at the
nanoscale, which could lead to significant improvements in nanorobotics and material science.

Energy harvesting: USMs serve as energy harvesters, transforming surrounding
vibrations into electrical energy. This technology has the potential to be used in powering
low-energy devices such as wearable electronics and wireless sensor networks.

Smart cities: USMs have the potential to have a substantial impact on the development
of smart cities. Their capabilities extend beyond basic automation, making a significant
contribution to the development of a sustainable, customized, and adaptable urban envi-
ronment. Envision a system of self-repairing infrastructure, where embedded USMs in
buildings or roads initiate repairs upon sensing damage, or a network of microfluidic chan-
nels driven by USMs that gather real-time environmental data. USMs have the potential to
allow building facades to adapt to weather conditions and to generate customized experi-
ences in public spaces using equipment that can be rearranged. USMs could potentially
improve waste management by providing the power needed for robotic sorting systems or
autonomous collection bots. To create a more peaceful urban environment, USMs could be
included into active noise cancelation systems in designated areas or even public transit
vehicles. USMs could be advantageous in traffic management by implementing them in dy-
namic traffic light actuators to enhance traffic flow optimization. The potential is extensive,
as USM technology progresses in conjunction with the idea of optimal smart cities, we may
anticipate the development of even more innovative and influential applications.

8.5. Challenges and Considerations

Manufacturing complexity: Advanced manufacturing processes are necessary for the
shrinking and integration of USMs, but they can be costly and difficult.

Material limitations: The characteristics of existing piezoelectric materials impose
restrictions on the capabilities of USMs in certain domains. Ongoing investigation into
novel materials is essential.

Cost reduction: Reducing the manufacturing expenses of USMs will be essential for
their extensive implementation in many different industries.

Cryogenic applications: Extreme temperature transducers are necessary to operate in
cryogenic conditions that are colder than −230 ◦C and hotter than 125 ◦C, specifically for
aerospace technologies. PMN-PT will be a good option due to its operational flexible rang
of cure temperature, and its multilayer structure will enhance the torque power density of
USMs [189,190].

As a result of the convergence of these possibilities and challenges, the development
of USMs will be driven in several different directions: The incorporation of USMs into
MEMS-based systems will make it possible to implement them in miniaturized systems like
micro/nanorobotics, medical devices, etc. The expansion of the variety of usage scenarios
for USMs will be facilitated by the combination of rotational and translational motion
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capabilities by introducing Multi-Axis USMs. The implementation of the energy harvesting
capabilities of USMs can lessen the requirement for external power sources, which renders
USMs more resilient to power outages. Ultimately, the future prospect for piezoelectric
USMs is favorable. Due to progress in materials, downsizing, control techniques, and the
emergence of new applications, USMs are on the verge of becoming even more adaptable
and essential tools in many different sectors.

9. Conclusions

A USM is a type of actuator that converts vibration into rotational or translational
motions by employing high-frequency ultrasonic waves. USMs provide unique charac-
teristics like high precision and speed, quiet operation, non-magnetic and simple design,
and versatility that make them valuable for lot of applications. Piezoelectric material is
the main driver of USMs due to its property of converting electrical energy into mechan-
ical vibration. This review paper describes the importance of piezoelectric material for
USMs, the advantages of these USMs over other traditional motors like coil- or magnetic
field-based motors, and the characteristics of these motors. It describes several types of
USMs, including traveling-wave, standing-wave, hybrid-mode ultrasonic wave, and multi-
degree-of-freedom motors, and provides their basic operating mechanisms, utilization, and
performance analysis of existing USMs. Design modeling like 3D finite element modeling
and fabrications of USMs, including conventional, micro/nano-fabrication methods, and
their characterizations, are discussed briefly. USMs have a lot of applications in industrial
and engineering fields due to their small size, enhanced precision, and high controllabil-
ity. Furthermore, a review of several highlighted applications, including the industrial,
aerospace, robotics, and biomedical applications of USMs, are addressed. Lastly, future
trends, challenges, and considerations, including material advancement, size miniatur-
ization, integration with other devices, and improvements in control and performance,
are elaborated.
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6. Čeponis, A.; Jūrėnas, V.; Mažeika, D. Low Profile Triangle-Shaped Piezoelectric Rotary Motor. Micromachines 2024, 15, 132.

[CrossRef] [PubMed]
7. Wang, Y.-H.; Tsai, S.C.-S.; Lin, F.C.-F. Reduction of Blood Loss by Means of the Cavitron Ultrasonic Surgical Aspirator for

Thoracoscopic Salvage Anatomic Lung Resections. Cancers 2023, 15, 4069. [CrossRef]
8. Zhang, J.; Wang, Y.; Liu, T.; Yang, K.; Jin, H. A Flexible Ultrasound Scanning System for Minimally Invasive Spinal Surgery

Navigation. IEEE Trans. Med. Robot. Bionics 2021, 3, 426–435. [CrossRef]

https://doi.org/10.3390/s21092929
https://www.ncbi.nlm.nih.gov/pubmed/33922056
https://doi.org/10.3390/mi13010030
https://www.ncbi.nlm.nih.gov/pubmed/35056195
https://doi.org/10.3390/mi15020186
https://doi.org/10.3390/s22030820
https://doi.org/10.1016/j.nanoen.2022.107879
https://doi.org/10.3390/mi15010132
https://www.ncbi.nlm.nih.gov/pubmed/38258251
https://doi.org/10.3390/cancers15164069
https://doi.org/10.1109/TMRB.2021.3075750


Micromachines 2024, 15, 1170 34 of 40

9. Zhang, D.; Wang, Y.; Yang, F.; Mao, Y.; Mu, J.; Zhao, L.; Xu, W. Diagnostic Value of Multi-Mode Ultrasonic Flow Imaging
Examination in Solid Renal Tumors of Different Sizes. J. Clin. Med. 2023, 12, 566. [CrossRef]

10. Qian, J.; Chen, D.; Zhang, Y.; Gao, X.; Xu, L.; Guan, G.; Wang, F. Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food
Processing: Mechanism and Parameters. Foods 2023, 12, 4027. [CrossRef]

11. Li, Y.; Zhang, W.; Mu, K.; Li, S.; Wang, J.; Zhang, S.; Wang, L. An Ultrasound–Fenton Process for the Degradation of 2,4,6-
Trinitrotoluene. Int. J. Environ. Res. Public Health 2023, 20, 3102. [CrossRef] [PubMed]

12. Salimi, M.; Teyeb, A.; El Masri, E.; Hoque, S.; Carr, P.; Balachandran, W.; Gan, T.H. Experimental and Numerical Investigation of
the Use of Ultrasonic Waves to Assist Laser Welding. Materials 2024, 17, 2521. [CrossRef]

13. Qiu, J.; Yang, Y.; Hong, X.; Vasiljev, P.; Mazeika, D.; Borodinas, S. A Disc-Type High Speed Rotary Ultrasonic Motor with Internal
Contact Teeth. Appl. Sci. 2021, 11, 2386. [CrossRef]

14. Xu, D.; Yang, W.; Zhang, X.; Yu, S. Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using
Bending-Bending Vibrations. Micromachines 2021, 12, 853. [CrossRef]

15. Zameer, A.; Naz, S.; Raja, M.A.Z. Parallel differential evolution paradigm for multilayer electromechanical device optimization.
Mod. Phys. Lett. B 2024, 22, 2450312. [CrossRef]

16. Naz, S.; Zameer, A.; Raja, M.A.Z.; Muhammad, K. Weighted differential evolution heuristics for improved multilayer piezoelectric
transducer design. Appl. Soft Comput. 2021, 113, 107835. [CrossRef]

17. Zameer, A.; Naz, S.; Raja, M.A.Z.; Hafeez, J.; Ali, N. Neuro-Evolutionary Framework for Design Optimization of Two-Phase
Transducer with Genetic Algorithms. Micromachines 2023, 14, 1677. [CrossRef]

18. Naz, S.; Usman, A.; Zameer, A.; Muhammad, K.; Raja, M.A.Z. Efficient multivariate optimization of an ultrasonic transducer with
genetic parallel algorithms. Waves Random Complex Media 2023, 1–25. [CrossRef]

19. Naz, S.; Raja, M.A.Z.; Mehmood, A.; Zameer, A.; Shoaib, M. Neuro-intelligent networks for Bouc–Wen hysteresis model for
piezostage actuator. Eur. Phys. J. Plus 2021, 136, 396. [CrossRef]

20. Naz, S.; Raja, M.A.Z.; Mehmood, A.; Jaafery, A.Z. Intelligent Predictive Solution Dynamics for Dahl Hysteresis Model of
Piezoelectric Actuator. Micromachines 2022, 13, 2205. [CrossRef]

21. Zheng, Z.; Wang, C.; Wang, L.; Ji, Z.; Song, X.; Mak, P.I.; Liu, H.; Wang, Y. Micro-Electro-Mechanical Systems Microphones: A Brief
Review Emphasizing Recent Advances in Audible Spectrum Applications. Micromachines 2024, 15, 352. [CrossRef] [PubMed]

22. Hatfield, A.C.; Xu, T.-B. Transparent Piezoelectric LiNbO3-based Surface Acoustic Wave for Dust Mitigation in Space Environment.
In AIAA SCITECH 2023 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2023. [CrossRef]

23. Ali, G.; Mohd-Yasin, F. Comprehensive Noise Modeling of Piezoelectric Charge Accelerometer with Signal Conditioning Circuit.
Micromachines 2024, 15, 283. [CrossRef] [PubMed]

24. Lai, Q.-T.; Sun, Q.-J.; Tang, Z.; Tang, X.-G.; Zhao, X.-H. Conjugated Polymer-Based Nanocomposites for Pressure Sensors.
Molecules 2023, 28, 1627. [CrossRef] [PubMed]

25. Bouhedma, S.; Taufik, J.B.; Lange, F.; Ouali, M.; Seitz, H.; Hohlfeld, D. Different Scenarios of Autonomous Operation of an
Environmental Sensor Node Using a Piezoelectric-Vibration-Based Energy Harvester. Sensors 2024, 24, 1338. [CrossRef] [PubMed]

26. Chen, C.; Xu, T.-B.; Yazdani, A.; Sun, J.-Q. A high density piezoelectric energy harvesting device from highway traffic—System
design and road test. Appl. Energy 2021, 299, 117331. [CrossRef]

27. Qiao, Q.; Wang, X.; Liu, W.; Yang, H. Defect Detection in Grouting Sleeve Grouting Material by Piezoelectric Wave Method.
Buildings 2024, 14, 629. [CrossRef]

28. Izadgoshasb, I. Piezoelectric Energy Harvesting towards Self-Powered Internet of Things (IoT) Sensors in Smart Cities. Sensors
2021, 21, 8332. [CrossRef]

29. Abdullah, Z.; Naz, S.; Raja, M.A.Z.; Zameer, A. Design of wideband tonpilz transducers for underwater SONAR applications
with finite element model. Appl. Acoust. 2021, 183, 108293. [CrossRef]

30. Shams, L.; Xu, T.-B. Underwater communication acoustic transducers: A technology review. In Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems 2023; Su, Z., Limongelli, M.P., Glisic, B., Eds.; SPIE: Bellingham, WA, USA,
2023; p. 8. [CrossRef]

31. Naz, S.; Raja, M.A.Z.; Kausar, A.; Zameer, A.; Mehmood, A.; Shoaib, M. Dynamics of nonlinear cantilever piezoelectric–mechanical
system: An intelligent computational approach. Math. Comput. Simul. 2022, 196, 88–113. [CrossRef]

32. Kausar, A.; Chang, C.-Y.; Raja, M.A.Z.; Zameer, A.; Shoaib, M. Novel design of recurrent neural network for the dynamical of
nonlinear piezoelectric cantilever mass–beam model. Eur. Phys. J. Plus 2024, 139, 16. [CrossRef]

33. Qian, F.; Xu, T.-B.; Zuo, L. Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism.
Energy 2019, 189, 116140. [CrossRef]

34. Lin, J.; Yuan, P.; Lin, R.; Xue, X.; Chen, M.; Xing, L. A Self-Powered Lactate Sensor Based on the Piezoelectric Effect for Assessing
Tumor Development. Sensors 2024, 24, 2161. [CrossRef] [PubMed]

35. Wang, J.; Zhang, F.; Gui, Z.; Wen, Y.; Zeng, Y.; Xie, T.; Tan, T.; Chen, B.; Zhang, J. Design and Analysis of a Cardioid Flow Tube
Valveless Piezoelectric Pump for Medical Applications. Sensors 2023, 24, 122. [CrossRef] [PubMed]

36. Wallaschek, J. Piezoelectric Ultrasonic Motors. J. Intell. Mater. Syst. Struct. 1995, 6, 71–83. [CrossRef]
37. Hunstig, M. Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives.

Actuators 2017, 6, 7. [CrossRef]

https://doi.org/10.3390/jcm12020566
https://doi.org/10.3390/foods12214027
https://doi.org/10.3390/ijerph20043102
https://www.ncbi.nlm.nih.gov/pubmed/36833797
https://doi.org/10.3390/ma17112521
https://doi.org/10.3390/app11052386
https://doi.org/10.3390/mi12080853
https://doi.org/10.1142/S0217984924503123
https://doi.org/10.1016/j.asoc.2021.107835
https://doi.org/10.3390/mi14091677
https://doi.org/10.1080/17455030.2023.2256889
https://doi.org/10.1140/epjp/s13360-021-01382-3
https://doi.org/10.3390/mi13122205
https://doi.org/10.3390/mi15030352
https://www.ncbi.nlm.nih.gov/pubmed/38542599
https://doi.org/10.2514/6.2023-0059
https://doi.org/10.3390/mi15020283
https://www.ncbi.nlm.nih.gov/pubmed/38399011
https://doi.org/10.3390/molecules28041627
https://www.ncbi.nlm.nih.gov/pubmed/36838615
https://doi.org/10.3390/s24041338
https://www.ncbi.nlm.nih.gov/pubmed/38400496
https://doi.org/10.1016/j.apenergy.2021.117331
https://doi.org/10.3390/buildings14030629
https://doi.org/10.3390/s21248332
https://doi.org/10.1016/j.apacoust.2021.108293
https://doi.org/10.1117/12.2663073
https://doi.org/10.1016/j.matcom.2022.01.011
https://doi.org/10.1140/epjp/s13360-023-04708-5
https://doi.org/10.1016/j.energy.2019.116140
https://doi.org/10.3390/s24072161
https://www.ncbi.nlm.nih.gov/pubmed/38610372
https://doi.org/10.3390/s24010122
https://www.ncbi.nlm.nih.gov/pubmed/38202984
https://doi.org/10.1177/1045389X9500600110
https://doi.org/10.3390/act6010007


Micromachines 2024, 15, 1170 35 of 40

38. Zhao, C. Ultrasonic Motors: Technologies and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2011; Available online: https://books.google.com/books?hl=en&lr=&id=gVbGGkT5emgC&oi=fnd&pg=PR4&dq=ultrasonic+
motors+technologies+and+applications+by+chunsheng+zhao&ots=4R_kqVr56E&sig=mPLMjASJ2kyu5IWkW4iA2c6vVqQ#
v=onepage&q=ultrasonic%20motors%20technologies%20and%20applications%20by%20chunsheng%20zhao&f=false (accessed
on 17 May 2024).

39. Ahmad, A.S.; Usman, M.M.; Abubakar, S.B.; Gidado, A.Y. Review on the application of Piezoelectric materials in the development
of ultrasonic motors. J. Adv. Res. Appl. Mech. J. Homepage 2017, 33, 9–19.

40. Spanner, K.; Koc, B. Piezoelectric Motors, an Overview. Actuators 2016, 5, 6. [CrossRef]
41. Xu, D.; Liu, Y.; Shi, S.; Liu, J.; Chen, W.; Wang, L. Development of a Nonresonant Piezoelectric Motor with Nanometer Resolution

Driving Ability. IEEE/ASME Trans. Mechatron. 2018, 23, 444–451. [CrossRef]
42. Golub, M.V.; Fomenko, S.I.; Usov, P.E.; Eremin, A.A. Elastic Waves Excitation and Focusing by a Piezoelectric Transducer

with Intermediate Layered Elastic Metamaterials with and without Periodic Arrays of Interfacial Voids. Sensors 2023, 23, 9747.
[CrossRef]

43. Wang, Y.; Wu, S.; Wang, W.; Wu, T.; Li, X. Piezoelectric Micromachined Ultrasonic Transducers with Micro-Hole Inter-Etch and
Sealing Process on (111) Silicon Wafer. Micromachines 2024, 15, 482. [CrossRef]

44. Mohsan, A.U.; Zhang, M.; Wang, D.; Wang, Y.; Zhang, J.; Zhou, Y.; Li, Y.; Zhao, S. Design and Effect of Resonant Ultrasonic
Vibration-Assisted Laser Cladding (R-UVALC) on AlCrFeMnNi High-Entropy Alloy. Materials 2024, 17, 969. [CrossRef] [PubMed]

45. Gou, L.; Wang, H.; Ding, Q.; Liu, Y.; Yang, R.; Zhang, F.; Zhang, P.; Cao, G. Investigation of New Accelerometer Based on
Capacitive Micromachined Ultrasonic Transducer (CMUT) with Ring-Perforation Membrane. Micromachines 2024, 15, 279.
[CrossRef] [PubMed]

46. Wellendorf, A.; von Damnitz, L.; Nuri, A.W.; Anders, D.; Trampnau, S. Determination of the Temperature-Dependent Resonance
Behavior of Ultrasonic Transducers Using the Finite-Element Method. J. Vib. Eng. Technol. 2024, 12, 1277–1290. [CrossRef]

47. Liu, Y.; Hafezi, M.; Feeney, A. A cascaded Nitinol Langevin transducer for resonance stability at elevated temperatures. Ultrasonics
2024, 137, 107201. [CrossRef]
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