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Abstract: The aim of this work is to study the phase transformations, microstructures, and
mechanical properties of ferritic stainless steel (FSS) 430 deposits on martensitic stainless
steel (MSS) 410 base metal (BM) using laser powder-directed energy deposition (LP-DED)
additive manufacturing. The LP-DED additive manufactured FSS 430 deposits on MSS
410 BM underwent post-heat treatment at 815 ◦C and 980 ◦C for 1 h, respectively. The
analyses of phase transformations and microstructural evolutions of LP-DED FSS 430
on MSS 410 BM were carried out using X-ray diffraction, SEM, and EBSD. The highest
strain was observed at the coarsened chromium carbide (Cr23C6) in the joint interface
between AM FSS 430 and MSS 410 MB. This contributed to localized lattice distortion
and mismatch in crystal structure between chromium carbide and the surrounding ferrite.
Tensile strength properties at elevated temperatures were discussed to investigate the
effects of the different post-heat treatments. The tensile properties of the as-built samples
including tensile strength of about 550 MPa and elongation of about 20%, were the same as
those of the commercial FSS 430 material. Tensile properties at 500 ◦C indicated a modest
increase in tensile strength to 540–550 MPa. The specimens heat treated at 980 ◦C retained
higher tensile strength than those heat treated at 815 ◦C. This would be attributed to the
grain refinement from prior LP-DED microstructure and chromium carbide coarsening at
higher heat treatment, which can increase dislocation density and yield harder mechanical
behavior.

Keywords: additive manufacturing; directed energy deposition; ferritic stainless steel 430;
martensitic stainless steel 410; chrome carbide precipitation

1. Introduction
Directed energy deposition (DED) additive manufacturing is a type of digital manufac-

turing processes from a CAD model which produces a near-net shape or final shape parts
composed of complicated geometries using a focused energy source such as a laser, electron
beam, or plasma arc to melt and materials deposited onto a surface layer by layer [1–4]. For
metal additive manufacturing (AM) processes, laser-based heat sources have been widely
used for powder bed fusion (PBF) and directed energy deposition (DED) processes due
to their capability to achieve precise, localized, and high-energy input for focusing metal
powders, enabling the formation of complex geometries with high precision controls [5–7].

Compared to austenite stainless steels such as AISI 304 and AISI 316, ferritic stainless
steel 430 has disadvantages, including environmentally lower corrosion resistance, poor
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weldability, susceptibility to embrittlement, limited work hardening ability, and unsuitable
mechanical properties for high-strength applications. Therefore, the uses of ferric stainless
steel (FSS) 430 are limited to kitchen appliances [8,9], automotive (trim, moldings, wheel
covers, and exhaust systems) [10–12], and architectural applications [13–15]. Nevertheless,
FSS 430 has received some great attention because it possesses good corrosion resistance in
mild environments and is a significantly more cost-effective choice compared to Ni-bearing
austenitic stainless steels [16–18]. In particular, FSS 430 has been commonly utilized in
steam turbine seals such as labyrinth seals [19,20], with the advantages of their good
corrosion resistance, machinability, and mechanically suitable performance for elevated
operating temperatures. The labyrinth seal of FSS 430 plays an important role as a type of
non-contact mechanical seal that significantly reduces fluid leakage between rotating and
the stationary parts by producing a tortuous path through a complex maze-like pattern
of grooves, but it requires good corrosion resistance and a proper mechanical property
without damaging the rotor [21–23].

Additive manufacturing joint FSS 430 onto MSS 410 may present unique metallurgical
and mechanical challenges due to differences in thermal expansion coefficients, phase
transformation behaviors, and mechanical properties [24–26]. Especially, MSS 410 has char-
acteristics of high strength and hardness, but it may be prone to brittleness and cracking
when exposed to rapid heating and cooling cycles [27–32]. It has been revealed that the
rapid solidification and thermal cycling during the LP-DED processes have a significant
impact on the microstructure evolutions, phase transformations, residual stresses, and
interfacial bonding between the deposit and the base metal [33,34]. Razzaq et al. [35]
reported a comprehensive review on joining dissimilar metals by additive manufactur-
ing, highlighting dissimilar welding challenges of large heat-affected zones (HAZ) and
intermetallic compounds at the interfaces, leading to untimely failure and/or cracking.
Khodabakhshi et al. [36] studied dissimilar metals deposition by DED based on powder
feed laser additive manufacturing with AISI 410L and 316L, suppressing the formation
of brittle intermetallic compounds and decreasing the level of thermal stress leading to
cracking. Several more research works on additive manufacturing ferritic stainless steels,
including AISI 430 onto austenitic stainless steels, have been carried out [37–39].

However, there have been no studies on the joint properties of LP-DED additive
manufactured ferritic stainless steel 430 deposits on martensitic stainless steel 410 base
metals. Therefore, this study attempts to investigate the microstructural evolutions, grain
growth and carbide precipitation in the vicinity of the interface, and high-temperature
tensile properties of LP-DED additive manufactured FSS 430 deposits on MSS 410 base
metals with various post-heat treatments.

2. Materials and Methods
2.1. Materials and Additive Manufacturing

The integrated LP-DED equipment (AM Solutions Co., Daejeon, Republic of Korea)
of a CNC machining center assembled with IPG Photonics (Oxford, MA, USA) ytterbium
fiber laser of 1000 W and beam size of 1.2 mm was used for manufacturing additively
the FSS 430. The feedstock material of the FSS 430 powder was manufactured using
vacuum induction gas atomization (VIGA) process by Shanghai Truer Technology Co., Ltd.
(Shanghai, China). For specimen fabrication, a powder with particle sizes of 45–150 µm,
flowability of 19.65 g/cm3, apparent density of 4.06 g/cm3, and tap density of 4.55 g/cm3

was employed, as shown in Figure 1.
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the deposit was measured by SPECTROLAB S (San Diego, CA, USA). For the preliminary 
experiments seen in Figure 2a, we conducted several attempts to find optimized condi-
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Figure 2. Preparations for (a) deposition of tensile specimen, drawings of (b) microstructure and (c) 
tensile samples, and (d) tensile specimen size. 

Figure 2b depicts the schematic of the AM FSS 430 deposit cube on the MSS 410 base 
metal for the microstructural observations. Figure 2c illustrates the drawing of the ex-
tended FSS 430 deposition along the longitudinal direction on the MSS 410 base metal. 

Figure 1. Micrographs of (a) feedstock FSS 430 powder and (b) EDS analysis.

The chemical compositions of the powder and its deposit are indicated in Table 1,
confirming compliance with the standard specification of AISI 430. The composition of
the deposit was measured by SPECTROLAB S (San Diego, CA, USA). For the preliminary
experiments seen in Figure 2a, we conducted several attempts to find optimized conditions
due to the difficulties in constructing the additive manufactured longish cubes before
producing mechanical characterization specimens.

Table 1. Composition of powder, deposit, and base metal (wt.%).

C Si Mn P S Ni Cr Fe

AISI 430 <0.12 max. 1.0 max. 1.0 max. 0.04 max. 0.03 0–0.75 16–18 Bal.
Powder max. 0.08 max. 1.0 max. 1.0 max. 0.04 max. 0.02 - 16–18 Bal.
Deposit 0.0159 0.827 0.930 0.01 0.007 0.152 17.3 Bal.
MSS 410 0.1463 0.3825 0.605 0.02 0.003 0.018 12.2 Bal.
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Figure 2. Preparations for (a) deposition of tensile specimen, drawings of (b) microstructure and
(c) tensile samples, and (d) tensile specimen size.

Figure 2b depicts the schematic of the AM FSS 430 deposit cube on the MSS 410 base
metal for the microstructural observations. Figure 2c illustrates the drawing of the extended
FSS 430 deposition along the longitudinal direction on the MSS 410 base metal. Figure 2d
illustrates the precise dimensions of the tensile specimen, in which the center of gage length
is the interface between the AM FSS 430 deposit and MSS 410 base metal after machining
the joined sample, as shown in Figure 2a,c.
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Finally, the optimized LP-DED process parameters obtained from the prelimi-
nary experiments are listed in Table 2. AISI 410 martensitic stainless steel with
16 mm × 16 mm × H45 mm was used as a base metal as well as a substrate to evaluate the
joint properties with the AM FSS 430 using the laser beam deposition.

Table 2. Deposition parameters of the LP-DED MSS 430.

Process Parameter Value

Laser power (W) 600
Scanning speed (mm/min) 1100

LP-DED Powder feed rate (g/min) 7
Hatch distance (mm) 0.5
Layer thickness (mm) 0.45

The laser deposition strategy was developed with bidirectional scanning, alternating
laser scanning path by 90◦ layer by layer to reduce the anisotropy associated with both the
microstructures and mechanical properties of the deposition planes, as seen in Figure 3.
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2.2. Post-Heat Treatment

The samples of the LP-DED FSS 430 (13 mm × 13 mm × H45 mm) deposits on the MSS
410 base metal (16 mm × 16 mm × H45 mm) underwent heat treatment to characterize their
microstructures, phase transformations, and mechanical properties and were compared
with as-built samples, as seen in Figure 4. Two kinds of heat treatments were applied. The
first one was solution heat treated at 815 ◦C for 1 h at a heating rate of 4.5 ◦C/min followed
by forced fan cooling down to 100 ◦C at cooling rate of 30 ◦C/min. The other was solution
heat treated at 980 ◦C for 1 h at a heating rate of 4.5 ◦C/min followed by forced fan cooling
down to 100 ◦C at cooling rate of 27 ◦C/min to relieve the residual stress after rapid cooling
from the LP-DED FSS 430 onto the MSS 410 base metal.
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2.3. Characterization of As-Built and Post-Heat-Treated Samples

Two kinds of samples were prepared for the characterization of the LP-DED FSS 430
on MSS 410 base metal, as seen in Figure 2. As-built and post-heat treatment samples were
mainly cut into 5 pieces for the tests of X-ray diffraction and microstructure, as seen in
Figure 5. X-ray diffraction (XRD) analyses of as-built and post-heat treatment specimens
were carried out using an in situ X-ray diffractometer (EMPYREAN, Malvern Panalytical
Co., Malvern, UK) with Cu Kα radiation. A continuous mode with step size of 0.013◦, a
scan rate 0.05◦/s, 2θ ranging from 30◦ to 90◦, and power of 30 mA at 40 kV were applied
to investigate phase transformation on planes perpendicular (XY) to the longitudinal
build direction (Z). The LP-DED samples were also cut into planes parallel (YZ) to the
longitudinal build direction (Z) for the microstructure observation at two interfaces between
AM FSS 430 and MSS 410 base metal, as seen in Figure 5c.

Micromachines 2025, 16, x FOR PEER REVIEW 5 of 16 
 

 

Figure 4. Post-heat treatment for the LP-DED FSS 430 on MSS 410 base metal [28]. 

2.3. Characterization of As-Built and Post-Heat-Treated Samples 

Two kinds of samples were prepared for the characterization of the LP-DED FSS 430 
on MSS 410 base metal, as seen in Figure 2. As-built and post-heat treatment samples were 
mainly cut into 5 pieces for the tests of X-ray diffraction and microstructure, as seen in 
Figure 5. X-ray diffraction (XRD) analyses of as-built and post-heat treatment specimens 
were carried out using an in situ X-ray diffractometer (EMPYREAN, Malvern Panalytical 
Co., Malvern, UK) with Cu Kα radiation. A continuous mode with step size of 0.013°, a 
scan rate 0.05°/s, 2θ ranging from 30° to 90°, and power of 30 mA at 40 kV were applied 
to investigate phase transformation on planes perpendicular (XY) to the longitudinal 
build direction (Z). The LP-DED samples were also cut into planes parallel (YZ) to the 
longitudinal build direction (Z) for the microstructure observation at two interfaces be-
tween AM FSS 430 and MSS 410 base metal, as seen in Figure 5c. 

 

Figure 5. Schematic of (a) deposit, (b) XRD specimen, and (c) metallographic observation. 

The metallographic samples for scanning electron microscopy (SEM) were prepared 
by polishing with a 1 µm diamond suspension and then etched with a Vilella’s reagent 
(Picric Acid 1 g + ethanol 100 mL + HCl 5 mL).  Subsequently, electrolytic polishing was 
conducted in a solution (Methyl alcohol 90 mL + perchloric acid 10 mL) at 28 volts for 90 
s to achieve a refined surface state for electron back scatter diffraction (EBSD) analysis. 
The microstructures were characterized by SEM and EBSD. Tensile tests for as-built and 
post-heat treatment specimens were performed at a crosshead speed of 0.125 mm/min and 
temperatures of 500 °C, respectively, in accordance with the specifications of round bar 
specimen in the ASTM E8 standard [40] using a universal test machine (Instron 5881). 

3. Results and Discussion 
3.1. Phase Analysis of the Deposit 

Figure 6 shows the binary Fe-C phase diagram of LP-DED FSS 430 with 17.3 wt.% Cr 
and 0.0159 wt.% C, which was composed by calculating using Thermo-Calc 2024a with 
the input chemical composition of the deposit shown in Table 1. 
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The metallographic samples for scanning electron microscopy (SEM) were prepared
by polishing with a 1 µm diamond suspension and then etched with a Vilella’s reagent
(Picric Acid 1 g + ethanol 100 mL + HCl 5 mL). Subsequently, electrolytic polishing was
conducted in a solution (Methyl alcohol 90 mL + perchloric acid 10 mL) at 28 volts for
90 s to achieve a refined surface state for electron back scatter diffraction (EBSD) analysis.
The microstructures were characterized by SEM and EBSD. Tensile tests for as-built and
post-heat treatment specimens were performed at a crosshead speed of 0.125 mm/min and
temperatures of 500 ◦C, respectively, in accordance with the specifications of round bar
specimen in the ASTM E8 standard [40] using a universal test machine (Instron 5881).

3. Results and Discussion
3.1. Phase Analysis of the Deposit

Figure 6 shows the binary Fe-C phase diagram of LP-DED FSS 430 with 17.3 wt.% Cr
and 0.0159 wt.% C, which was composed by calculating using Thermo-Calc 2024a with the
input chemical composition of the deposit shown in Table 1.

Although Alizadeh-Sh et al. [41] and Lu et al. [42] reported a phase diagram of AISI
430 with a composition of 16.9Cr-0.28Si-0.48Mn-0.05C, revealing the transformation of L
→ δ-ferrite → γ-austenite → α-ferrite + Cr23C6, the present phase diagram shows that the
LP-DED FSS 430 material began to transform in an instant to ferrite from the liquid state, as
the LP-DED FSS 430 deposit rapidly solidified to the temperature of approximately 882.6 ◦C
from above the liquidus temperature at a carbon content of 0.0159 wt.%. It highlights that
there is no austenite phase transformation like in the martensite stainless steel AISI 410 and
other ferritic stainless steels [26,43,44]. In the overall solidification, ferrite and metal carbide
are predominant. Metal carbides began to precipitate below temperatures of about 880 ◦C.
It seems that ferrite, metal carbide (Cr23C6), and sigma phases appeared and became stable
below 640 ◦C.



Micromachines 2025, 16, 494 6 of 15
Micromachines 2025, 16, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 6. Fe-17.3492Cr-0.1516Ni-0.8271Si-0.9302Mn-xC phase diagram: α-ferrite; γ-austenite; M23C6-
Cr23C6; σ-sigma. 

Although Alizadeh-Sh et al. [41] and Lu et al. [42] reported a phase diagram of AISI 
430 with a composition of 16.9Cr-0.28Si-0.48Mn-0.05C, revealing the transformation of L 
→ δ-ferrite → γ-austenite → α-ferrite + Cr23C6, the present phase diagram shows that the 
LP-DED FSS 430 material began to transform in an instant to ferrite from the liquid state, 
as the LP-DED FSS 430 deposit rapidly solidified to the temperature of approximately 
882.6 °C from above the liquidus temperature at a carbon content of 0.0159 wt.%. It high-
lights that there is no austenite phase transformation like in the martensite stainless steel 
AISI 410 and other ferritic stainless steels [26,43,44]. In the overall solidification, ferrite 
and metal carbide are predominant. Metal carbides began to precipitate below tempera-
tures of about 880 °C. It seems that ferrite, metal carbide (Cr23C6), and sigma phases ap-
peared and became stable below 640 °C. 

The XRD analyses of FSS 430 samples with powder, as-built, and heat-treated deposit 
at 980 °C for 1 h followed by forced fan cooling are shown in Figure 7. The three major 
ferrite peaks with BCC structures (110), (200), and (211) were observed in all of the sam-
ples. The FSS 430 feedstock powder has the isotropic peak intensities due to the rapid 
quenching from the typical vacuum induction gas atomization (VIGA) process, where ar-
gon gas blows the metal melt during the VIGA process. Compared to the peaks of the 
feedstock powder, strong α(110) diffraction peaks occurred due to preferred crystallo-
graphic orientation by directional solidification, and some α(200) and α(211) peaks ap-
peared due to texture evolution from thermal cycles for long deposition operation during 
the DED process. The lattice parameters of the BCC ferrite phase were calculated from the 
XRD data using the (110), (200), and (211) reflections, as shown in Table 3. 

Table 3. Peak data and lattice parameters. 

 Miller Indices 2θ (°) θ (°) d-Spacing (Å) a (Å) = d·√(h2 + k2 + l2) 

Before Heat 
Treatment 

(110) 44.6162 22.3081 2.03099 2.03099 × √2 = 2.872 Å 
(200) 64.8096 32.4048 1.43859 1.43859 × √4 = 2.877 Å 
(211) 82.1571 41.0786 1.17325 1.17325 × √6 = 2.872 Å 

Average Lattice Parameter (As-Built FSS 430) ≈2.874 Å 

After Heat 
Treatment 

(110) 44.5913 22.2957 2.03038 2.03038 × √2 = 2.871 Å 
(200) 64.7939 32.3970 1.43771 1.43771 × √4 = 2.877 Å 
(211) 82.0942 41.0471 1.17302 1.17302 × √6 = 2.872 Å 

Average Lattice Parameter (Heat-Treated at 980 
°C FSS 430) ≈2.873 Å 
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The XRD analyses of FSS 430 samples with powder, as-built, and heat-treated deposit
at 980 ◦C for 1 h followed by forced fan cooling are shown in Figure 7. The three major
ferrite peaks with BCC structures (110), (200), and (211) were observed in all of the samples.
The FSS 430 feedstock powder has the isotropic peak intensities due to the rapid quenching
from the typical vacuum induction gas atomization (VIGA) process, where argon gas blows
the metal melt during the VIGA process. Compared to the peaks of the feedstock powder,
strong α(110) diffraction peaks occurred due to preferred crystallographic orientation
by directional solidification, and some α(200) and α(211) peaks appeared due to texture
evolution from thermal cycles for long deposition operation during the DED process. The
lattice parameters of the BCC ferrite phase were calculated from the XRD data using the
(110), (200), and (211) reflections, as shown in Table 3.
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The as-built LP-DED FSS 430 sample exhibited an average lattice parameter of 2.874 Å,
whereas the sample heat-treated at 980 ◦C showed a slightly reduced value of 2.873 Å.
During heat treatment at 980 ◦C, Cr-rich carbides such as Cr23C6 are likely to precipitate
along grain boundaries, leading to chromium depletion from the ferrite matrix. This
reduction in chromium content results in a slight lattice contraction of the BCC ferrite
structure. Notably, a sigma phase (σ) was not detected, as shown in Figure 6, which led to
embrittlement, poor corrosion resistance, and difficulty in machining. This is because both
the as-built and solution heat treatment at 980 ◦C for 1 h followed by forced fan cooling
avoided the temperature range between 550 ◦C and 850 ◦C [44].
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Table 3. Peak data and lattice parameters.

Miller Indices 2θ (◦) θ (◦) d-Spacing (Å) a (Å) = d·
√

(h2 + k2 + l2)

Before Heat
Treatment

(110) 44.6162 22.3081 2.03099 2.03099 ×
√

2 = 2.872 Å

(200) 64.8096 32.4048 1.43859 1.43859 ×
√

4 = 2.877 Å

(211) 82.1571 41.0786 1.17325 1.17325 ×
√

6 = 2.872 Å

Average Lattice Parameter (As-Built FSS 430) ≈2.874 Å

After Heat
Treatment

(110) 44.5913 22.2957 2.03038 2.03038 ×
√

2 = 2.871 Å

(200) 64.7939 32.3970 1.43771 1.43771 ×
√

4 = 2.877 Å

(211) 82.0942 41.0471 1.17302 1.17302 ×
√

6 = 2.872 Å

Average Lattice Parameter (Heat-Treated at 980 ◦C FSS 430) ≈2.873 Å

3.2. Microstructure Behavior of Deposits with Respect to Post-Heat Treatment

Figure 8 shows the microstructural evolutions of LP-DED FSS 430 under various
post-heat treatments. For the as-built sample, irregular ferrite grains were observed as
the primary microstructure, as shown in Figure 8a, and many tiny chromium carbide
precipitates (Cr23C6) were seen throughout the matrix, as shown in Figure 8d. The larger
chromium carbide precipitates were intensively investigated at the grain boundaries, as
shown in Figure 8d,g. This implies that chromium with a body-centered cubic has limited
solubility in ferrite and segregates to the grain boundaries, precipitating chromium-rich
carbides due to its strong affinity for carbon rather than other elements during rapid
solidification driven from well-known additive manufacturing processes. Moreover, the
sequentially repeated heating and cooling cycles when operating multi-layer deposition
develop the chromium carbide coarsening [45,46]. Figure 8b,e show the microstructures of
solution heat-treated sample at 815 ◦C, depicting that the chromium carbide precipitates
(Cr23C6), as seen in Figure 8g, were partially dissolved into the ferrite matrix. Many small
Cr23C6 are observed in the grain along the grain boundaries, as shown in Figure 8h.
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Figure 8c depicts that the solution heat-treated specimen at 980 ◦C, which completely
dissolved the prior chromium carbides into the ferrite matrix, led to significant grain growth
and coarser chromium carbide re-precipitates or Ostwald ripening [47–49], along the grain
boundaries, as shown in Figure 8c,f,i. This was due to the high temperature exposure and
intermediate cooling rate compared to water cooling. It is noticed that Ostwald ripening is
a diffusion-driven coarsening process where larger particles (carbides or precipitates) glow
at the expense of smaller ones because smaller ones have a higher surface energy, becoming
thermodynamically less stable and over time, atoms diffuse from smaller ones to larger
ones, finally leading to coarsening of precipitates or Ostwald ripening.

Figure 9 provides insights into the interface evolutions between the LP-DED FSS 430
and MSS 410 base metal under various heat treatments. Fully ferrite microstructures
were observed throughout the matrix, as shown in Figure 9a–f. For the as-built sample,
the interface between the AM FSS 430 and heat-affected zone (HAZ) showed irregular
dendritic and columnar grain growth extending from the fusion boundary. Most chromium
carbides precipitated along the grain boundaries, and coarse dendritic and columnar ferrite
grains also occurred, as shown in Figure 9a,d. Fine ferrites were observed at the interface
between the HAZ and MSS 410 base metal for the as-built sample, as shown in Figure 9g,j.
Meanwhile, most carbides, illustrated by red arrows, were agglomerated and precipitated
within the martensite boundaries, as shown in Figure 9p.
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However, for the solution heat treatment at 815 ◦C, newly formed tiny linear dotted
line chromium carbide precipitates, illustrated by arrows (Figure 9e), appeared, and the
grain boundaries became more distinct after dissolving the prior chromium carbide precip-
itates. Figure 9k shows that finer chromium carbide precipitates, illustrated by red arrows,
appeared due to faster cooling compared to the interface between the AM FSS 430 and
HAZ (Figure 9a,d). Tempered martensite and somewhat homogeneous spherical chromium
carbide precipitates, illustrated by red arrows, were observed in the substrate (Figure 9q).

For the solution heat treatment at 980 ◦C, compared to Figure 9a,d, significant
chromium carbide coarsening or Ostwald ripening was preferentially developed along
the grain boundaries due to long exposure at the high temperature of 980 ◦C, depleting
chromium in the surrounding ferrite grains, as shown Figure 9c,f, which can lead to sen-
sitization, making the material more susceptible to intergranular corrosion [50]. Further
developed coarse chromium carbide precipitates or Ostwald ripenings, illustrated by the
red letter “A”, were observed, as shown in Figure 9l, which depleted chromium in the
ferrite matrix, reducing corrosion resistance. For the MSS 410 base metal at the solution
heat treatment at 980 ◦C, fully developed tempered martensite was observed (Figure 9i).

Figure 10 shows the EBSD phase maps: IQ maps, IPF maps, and KAM maps of
parallel (YZ) planes to the building direction of the LP-DED FSS 430 on the MSS 410 base
metal with the as-built, SHT-815, and SHT-980 samples. In the as-built interface, finer
ferrite grains with an average grain size of 155 µm were observed compared to the SHT-
815 and SHT 980 specimens seen in Figure 10d, and generally, the deposited material
phase was identified as ferrite alone, as shown in Figure 10g,h,i. However, the grain size
increased with solution heat treatments at 815 ◦C and 980 ◦C, respectively, due to the grain
growth and recrystallization at these temperature exposures. Numerous chromium carbides
precipitated unevenly along the grain boundaries for the solution treated at 980 ◦C for 1 h
followed by forced fan cooling because the solution heat treatment at 980 ◦C sufficiently
promoted significant diffusion of carbon and chromium elements. In addition, the KAM
value (Figure 10) increased with heat treatment due to more local misorientation in the
vicinity of grain boundaries occupied by chromium carbide precipitates compared to the
as-built sample (Figure 10j) and post-heat-treated one at 815 ◦C (Figure 10k). The highest
misorientation (KAM = 0.37◦) with the solution heat treatment at 980 ◦C is mostly attributed
to significant carbide coarsening. It seems that compared to furnace cooling, the forced fan
cooling was relatively faster and led to somewhat coarser carbide precipitation of Cr-rich
carbides (Cr23C6) at the grain boundaries and within grains, as shown in Figure 10c,f,i,
while it prevented the deleterious sigma phase formation, which could form if cooled too
slowly from the high temperature range of 600~900 ◦C.

Figure 11 shows the EBSD images of the interfaces for the LP-DED AM FSS 430 on MSS
410 base metal with various heat treatments. In general, diffusion-driven transition zones
with partial martensitic transformation, due to repeated thermal cycles followed by a high
cooling rate and chromium carbide precipitation, were observed, as shown in Figure 11a–f.
Compared to the AM FSS 430 deposit chemical composition in Table 1, MSS 410 contains
a higher carbon content ~0.15 wt.% and lower chromium content 11.5~13.4 wt.%. Thus,
chromium diffused into MSS 410, and carbon diffused into FSS 430 during the LP-DED
process, which built accumulated heat in the deposits. In the as-built interface, finer grains
of average grain size of 4.2 µm were observed, as shown in Figure 11d, compared to
the SHT-815 and SHT-980 specimens. Meanwhile, the grain size increased to 6.2 µm, and
chromium carbide precipitation intensively occurred near the interface for the solution heat-
treated at 815 ◦C for 1 h followed by forced fan cooling. However, compared to SHT-815,
the grain size decreased to 5.8 µm, and the chromium carbide precipitates grew into the
FSS 430 deposit more deeply for the solution heat-treated at 980 ◦C for 1 h followed by
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forced fan cooling, which implies that carbide precipitation causes the depletion of Cr in the
surrounding matrix to be susceptible to corrosion, especially for pitting and intergranular
corrosion. Generally, most strain occurred in the vicinity of joint interface between the AM
FSS 430 deposit and the MSS 410. For the as-built sample, more strain was concentrated
beneath the joint interface and heat-affected zone, resulting in a high KAM value of 0.97◦.
However, in the SHT-815 interface, most strain was concentrated along the interface, but
not in the HAZ due to the thermal gradient during forced fan cooling. The highest strain
was observed at the coarsened chromium carbides above the interface, beneath the joint
interface, and in the heat-affected zone. Regarding the KAM values, it must be noticed that
the chromium carbide precipitates (Cr23C6) are prone to exhibit a higher KAM value than
the ferrite matrix because these precipitates create localized lattice distortions. In addition,
the mismatch in crystal structure between the chromium carbide and the surrounding
ferrite matrix can introduce high internal stresses. It seems that chromium carbides act
as barriers to dislocation movement and cause dislocations to pile up at their interfaces.
As a result, the accumulation of the dislocations around carbide precipitates raises the
geometrically necessary dislocation density, resulting in higher KAM values.
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3.3. Hardness and Tensile Property with Respect to Post-Heat Treatment

Figure 12 shows the Vickers hardness profile of the LP-DED FSS 430 on MSS 410
base metal with various heat treatments. The red dashed line at 0 mm marks the interface
between the deposited FSS 430 and base metal MSS 410. In the as-built condition, hard-
ness on the MSS 410 side sharply increased near the interface, peaking at approximately
480 HV1.0, while the MSS 410 side exhibited a lower hardness of around 200 HV1.0. This
sharp transition indicates the presence of a heat-affected zone (HAZ) on the MSS 410 side,
resulting from rapid cooling during the additive manufacturing process. In the SHT-815
sample, the peak hardness near the interface was reduced, resulting in softening due to
stress relief and partial tempering. The hardness on the FSS 430 side remained relatively
unchanged. For the SHT-980 sample, the highest hardness of 480–500 HV1.0 was observed
in the MSS 410 region, which was attributed to chromium carbide precipitation followed
by phase transformation. However, the FSS 430 still showed a modest hardness variation
due to its ferritic nature, which did not harden significantly through heat treatment.
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Figure 12. Vickers hardness of LP-DED FSS 430 on MSS 410 base metal with various heat treatments.

Figure 13 shows the tensile properties at 500 ◦C for the LP-DED FSS 430 on MSS 410
base metal with various post-heat treatments. Although all samples showed similar tensile
behavior, the yield strength, tensile strength, and elongation of the as-built sample at the
scan speed of 1100 mm/min were 360 MPa, 545 MPa, and 19%, respectively. These as-built
tensile properties indicate slightly higher values compared to the laser-welded stainless
steel AISI 430 by Evin et al. [51]. Compared to the as-built sample, it reveals a modest
increase in tensile strength with 540 to 560 MPa depending on post-heat treatment tempera-
ture. Among the solution heat-treated samples, those heat-treated at 980 ◦C retained higher
tensile strength than those heat-treated 815 ◦C. This could be attributed to the grain refine-
ment from prior LP-DED microstructure and chromium carbide coarsening at higher heat
treatment, which can increase dislocation density and yield harder mechanical behavior, as
shown in Figures 10 and 11. In contrast, the SHT-815 may not have been heat-treated high
enough to trigger full recrystallization, leaving a less uniform and softer microstructure. It
is revealed that the higher tensile strength of the SHT-980 was closely correlated with its
higher Vickers hardness and microstructural evolution, including chromium carbide coars-
ening, which enhances dislocation pinning and suppresses plastic deformation, leading to
superior tensile performance.
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4. Conclusions
FSS 430 deposits on MSS 410 base metal were produced by laser powder-directed

energy deposition, and then the samples underwent various post-heat treatments. The
following conclusions can be drawn from this study:

(a) The three major ferrite peaks with BCC structures (110), (200), and (211) were observed
in all of the samples of as-built, SHT-815, and SHT-980.

(b) Irregular ferrite and tiny chromium carbides throughout the matrix of the as-built
sample were observed. The prior chromium carbide (Cr23C6) precipitates partially
dissolved into the ferrite matrix, and many small carbides remained in the grain and
at the grain boundaries in the samples of SHT-815. Meanwhile, the prior chromium
carbide precipitates were dissolved completely and precipitated to coarser chromium
carbides or Ostwald ripening along the grain boundaries in the samples of SHT-980.

(c) The highest misorientation (KAM = 0.37◦) with solution heat treatment at 980 ◦C is
mostly attributed to significant chromium carbide coarsening in the region of AM
FSS 430 deposits. Most strain intensively occurred in the vicinity of the joint interface
between the AM FSS 430 deposit and MSS 410. For the as-built sample, more strain
was concentrated beneath the joint interface and in the heat-affected zone. In the
SHT-815 interface, most strain was concentrated along the interface. The highest strain
was observed at the coarsened chromium carbides above the interface, beneath the
joint interface, and in the heat affected zone in the samples of SHT-980.

(d) The highest Vickers hardness of 480–500 HV1.0 was observed in the MSS 410 region,
which was attributed to chromium carbide precipitation followed by phase transfor-
mation. However, the FSS 430 still showed a modest hardness variation due to its
ferritic nature, which did not harden significantly through heat treatment.

(e) Compared to the as-built sample, the results reveal a modest increase in tensile
strength with 540 to 560 MPa depending on the post-heat treatment temperature.
Among the solution heat-treated samples, those heat-treated at 980 ◦C retained higher
tensile strength than those heat-treated at 815 ◦C.
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