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Abstract: Listeria monocytogenes is a foodborne pathogen able to persist in food industry and
is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in
environments is due to its capacity to form biofilms that are a sessile community of microorganisms
embedded in a self-produced matrix of extracellular polymeric substances (EPS’s). In this review, we
summarized recent efforts performed in order to better characterize the polymeric substances that
compose the extracellular matrix (ECM) of L. monocytogenes biofilms. EPS extraction and analysis led
to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the
listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective
strategies for the minimization of persistence of L. monocytogenes in food industry environments.

Keywords: Listeria monocytogenes; listeriosis; extracellular polymeric substances (EPS’s); biofilm;
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1. Introduction

Listeria monocytogenes is an ubiquitous bacterium isolated from soil, water, wastewater, animals,
humans, and raw or processed food [1]. It is a Gram-positive, facultative anaerobe, non-spore-forming,
foodborne pathogen. L. monocytogenes is able to grow and survive in different environmental conditions
due to its tolerance to low temperatures (4 ˝C–10 ˝C), high pH, and high salt concentrations [2], and the
presence of polar flagella confers to such a microorganism a tumbling motility at room temperature [3].

L. monocytogenes is the etiological agent of a severe infection called listeriosis [4]. Although the
disease is rare, listeriosis is an important public health problem because it is associated with high
hospitalization and mortality rates. According to European Food Security Authority (EFSA), 1300 cases
of listeriosis occur annually in the European Union (EU), whereas the Centers for Disease Control
and Prevention (CDC) estimates that approximately 1600 cases occur every year in the United States
of America (USA) [5–9], with a statistically significant increasing trend of listeriosis in the 2008–2014
period in the EU [10,11] (Figure 1).

Elderly, pregnant women, newborns, and adults with weakened immune systems are the most
affected by the disease, and septicemia, meningitis, miscarriage, and stillbirth are common clinical
presentations [12–14], although people without these risk factors can also be affected [15,16].

The principal route of transmission is the consumption of contaminated food due to the ability of
L. monocytogenes to survive and grow in acidic or salty conditions and to replicate at low
temperatures [17,18], and to colonize food processing environments, including equipment used in
food processing operations [19], representing a serious concern for human health [20]. L. monocytogenes
attach to a variety of surfaces, including stainless steel, polystyrene, and glass [21–23], and are able
to form biofilms. Microbial cells in biofilms are embedded in a self-produced matrix of extracellular
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material, composed by a conglomeration of different types of biopolymers known as extracellular
polymeric substances (EPS’s) [24]. EPS’s form the scaffold for a three-dimensional structure of the
biofilm and are responsible for the adhesion to surfaces and cohesion in the biofilm [25]. Several
features of a biofilm may vary depending on the production, the quantity, and the characteristics of the
individual components of EPS’s, such as cohesion, charge, concentration, and nature of molecules [26].
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formed by strains that persist in the industry are thicker than those formed by isolates found only 
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physiology from the planktonic ones, e.g., adherent cells change their shape from rod to coccoid as 
the population aged, grew more slowly [32], are more resistant to antibiotics and sanitizers, and 
harder to remove and destroy [33,34]. The ability to form biofilms has been reported to be different 
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The biofilm matrix can account for more than 90% of the dry mass of a biofilm [25].
Polysaccharides, proteins, and DNA compose the extracellular matrix of many biofilms [25]. These
molecules are involved in adhesion to surface, cohesion within the biofilm, and aggregation of bacterial
cells. Furthermore, retention of water (preventing desiccation), protection against antimicrobial agents
(acting as protective barrier), sorption of organic and inorganic compounds (acting as a reservoir of
energy), and enzymatic activity are some of the activities performed by EPS’s in bacterial biofilms [25].

Many studies have been carried out aiming to better understand the complexity of the biofilm
extracellular material in both Gram-positive and -negative microorganisms. Several molecules
have been identified and characterized, i.e., different exopolysaccharides, proteins and extracellular
DNA (eDNA), in the biofilm matrix of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa,
Vibrio cholerae, and others [27–30]. However, as for L. monocytogenes, information is so far not abundant.
In this review, we summarize the status of experimental efforts aimed at characterizing ECM of
L. monocytogenes biofilms.

2. Listeria monocytogenes and Biofilms

L. monocytogenes is able to persist in food environments, representing an important source of
contamination that can lead to food spoilage or transmission of disease [22]. Biofilm formation is
important for the survival of L. monocytogenes in the food industry, e.g., it was observed that biofilms
formed by strains that persist in the industry are thicker than those formed by isolates found only
sporadically [31]. Furthermore, listerial cells embedded in biofilms are different in structure and
physiology from the planktonic ones, e.g., adherent cells change their shape from rod to coccoid
as the population aged, grew more slowly [32], are more resistant to antibiotics and sanitizers, and
harder to remove and destroy [33,34]. The ability to form biofilms has been reported to be different
among different isolates, but it was not possible to establish a clear correlation with serovars or
lineages [35,36]. Many authors have agreed that L. monocytogenes biofilms are strongly influenced by
temperature [22,37,38], strain [35,39,40], incubation time [41], medium [37,38], and the nature of the
adhesion surface [42,43]. Moreover, the fatty acids profile of biofilm forming listerial cells was analyzed,
and an increase in the amount of certain fatty acids (iso-C14:0, anteiso-C15:0, and iso-C16:0) with an
increase in biofilm forming ability of the isolates was observed, possibly indicating a relationship
between total fatty acid composition of the biofilm and the biofilm-forming ability of a strain [44–46].
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A variety of structures of L. monocytogenes biofilms have been described, including a monolayer
of adherent cells, flat unstructured multilayers, and a knitted-chain network, depending on the strains
and experimental setup used [35,39,47–50]. Recently, Guilbaud et al. [51], using three-dimensional
reconstruction of confocal laser scanning microscopy (CLSM) images acquired by Leica SP2
AOBS Confocal Laser Scanning Microscope (Leica-Microsystems, Wetzlar, Germany), observed
L. monocytogenes intraspecies diversity in the ability to form biofilm. They analyzed biofilm architecture
formed by 96 isolates and observed that the majority of listerial strains formed honeycomb-like
structures consisting of layers of cohesive cells, heterogeneously distributed, decorated with hollow
voids with diameters ranging from 5 to 50 µm. Within the hollow voids, swimming bacteria were
observed, whereas an inner compact matrix was lacking. Biofilm staining with propidium iodide
revealed pockets formed by dead cells and eDNA. This spatial organization is common to various
microorganisms, since it has previously been described in staphylococcal species [28,52] and in
Enterococcus faecalis [53], and has been reported for L. monocytogenes by Marsh et al. [49].

In the end, it appears that a multitude of parameters influence the biofilm structure of
L. monocytogenes, such as the strain, the surface, and other environmental conditions, such as pH,
temperature, and medium [47].

3. The L. monocytogenes Biofilm Extracellular Matrix

Since the ability of L. monocytogenes to produce EPS’s has been controversial for a long time, several
studies have been done in order to demonstrate the extracellular matrix production by various listerial
strains. Staining with ruthenium red [35,54] and Congo red [55,56], fluorescein-conjugated lectin
binding [57], fluorescent dye-conjugated antibody binding [58], phenolic sulfuric acid analysis [59],
and fibril or matrix analysis via scanning electron microscope (SEM) [35,54,57,59] have been performed.
Extracellular matrix composition has been examined mainly by nuclear magnetic resonance (NMR,
Bruker, Billerica, Massachusetts, MA, USA) [60,61], gas chromatography-mass spectrometry (GC-MS,
Thermo Scientific, Waltham, Massachusetts, MA, USA) [60], and CLSM [51,62] analyses. Here, we
report the current knowledge about Listeria biofilm extracellular matrix, as summarized in Table 1.

3.1. Exopolysaccharides and Teichoic Acids

Exopolysaccharides are the major components of the extracellular matrix in many
microorganisms [63,64]. In mucoid strains of Pseudomonas aeruginosa, alginate is the principal
component of EPS’s [65], whereas poly-N-acetyl glucosamine (PNAG) and teichoic acids (TAs) were
found in the S. aureus biofilm matrix [66]. In the early 2000s, Borucki et al. [35] reported the presence
of carbohydrates in all L. monocytogenes strains tested in their work, with the highest biofilm formers
producing noticeably more polysaccharides [35]. Recent studies have deeply investigated the structure
of the carbohydrate component of the L. monocytogenes extracellular matrix.

As reported recently, Alonso et al. [67] performed a transposon mutagenesis library screen
using a Himar1 mariner transposon in order to investigate genetic elements involved in biofilm
formation. The authors identified a total of 38 genetic loci involved in the biofilm formation process. In
particular, they investigated further two of these loci, the D-alanylation pathway genes dltABCD and
the phosphate-sensing two-component system phoPR. The results, obtained by deletion of these loci,
indicated a significant reduction in biofilm formation by the mutant strains compared with wild-type
bacteria in a polyvinyl chloride (PVC) microtiter plate assay and by CLSM. The D-alanylation of
lipoteichoic acids (LTAs) and the phosphate-sensing phoPR two-component system both appear to
play critical roles for biofilm formation by L. monocytogenes.
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Table 1. Structural components of Listeria monocytogenes extracellular matrix. EPS’s characterized so far
and their role within biofilm matrix are listed here.

EPS Molecules Features References

Polysaccharides
poly-β-(1,4)-N-acetylmannosamine

(poly-NAM)
Teichoic Acids (WTA and LTA)

- Teichoic acids are the major component of
listerial biofilm matrix [60]

- dltABCD mutants present a reduction in
biofilm forming ability [67]

- Biosynthesis of poly-NAM is activated by
high levels of c-di-GMP [61]

Proteins

InlA
BapL
PlcA
FlaA
PBP

ActA
Lmo2504

- Proteinase K treatment impairs biofilm
development, suggesting protein involvement in
initial attachment

[68,69]

- Truncated proteins exhibited enhanced
biofilm forming ability [70]

- BapL can contribute to the attachment of
some L. monocytogenes strains [71]

- Flagellar motility has controversial role in
biofilm formation [32,51,72,73]

Extracellular
DNA

- DNAseI treatment inhibited or delayed
initial attachment of bacteria to surfaces,
suggesting eDNA involvement in initial
attachment

[69,74]

- Ensure structural integrity of biofilm in
cooperation with proteins and polysaccharides [62,74,75]

- Involved in Horizontal Gene Transfer [74]
- Serves as energy and nutrition source [51]
- eDNA is released by lysed bacteria [62,74]

NOTE: WTA: Wall Teichoic Acids; LTA: Lipoteichoic Acids; c-di-GMP: cyclic diguanosine monophosphate.

The importance of TAs within the L. monocytogenes biofilm matrix was confirmed by
Brauge et al. [60]. GC-MS (Thermo Scientific, Waltham, Massachusetts, MA, USA) and 13C- and
1H-NMR spectroscopy (Bruker, Billerica, Massachusetts, MA, USA) analyses of soluble carbohydrates
extracted from a 48-h biofilm extracellular matrix and culture supernatant of six strains of
L. monocytogenes led to the identification of TAs. Interestingly, such molecules were structurally
identical to TAs isolated from the cell wall. Furthermore, a mutant strain encoding TAs lacking
NAG glycosylation presented an extracellular carbohydrate fraction identical to the modified cell
wall molecules. These findings suggest that extracellular and cell wall TAs may have the same
origin, probably deriving from autolysis and the peeling of bacteria. Similar data were reported
by Savdovskaya et al. [76] who compared extracellular and cell wall TA structures of the reference
biofilm-positive strain S. epidermidis RP62A.

The extracellular TAs were the only carbohydrate polymers identified in the work of
Brauge et al. [60], whereas Köseoğlu et al. [61] recently reported the presence of an insoluble cell-bound
poly-β-(1,4)-N-acetylmannosamine decorated with terminal α-1,6-linked galactose (ManNAc-Gal)
identified in a constructed aggregate-forming mutant strain of EGD-e. These contrasting results may
be explained considering that the native ManNAc-Gal is completely insoluble, so the liquid-state
NMR analysis by Köseoğlu et al. [61] on the listerial EPS’s was conducted after the N-deacetylation
of such molecules. The biosynthesis of such EPS’s, produced by the pssA-E operon, is activated by
elevated levels of the second messenger c-di-GMP, as previously observed in proteobacteria [77]. This
molecule was found to be involved in biofilm formation and regulation in several bacterial species,
i.e., regulation of alginate [78] and the glucose rich matrix polysaccharide Pel [79] biosynthesis in
P. aeruginosa, and cellulose synthesis in many proteobacteria [80–82]. The c-di-GMP signaling networks
are likely very complex, as a large number of c-di-GMP signaling proteins has been predicted in
many bacterial species, and it is not clear how several input signals are integrated by microorganisms
to control bacterial behavior [83,84]. Generally, high levels of c-di-GMP are required for bacteria to
become sessile. The c-di-GMP-induced ManNAc-Gal of L. monocytogenes was found to be responsible
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for various phenotypic traits, i.e., cell aggregation, reduced motility in semi-solid media, moderate
decrease of invasiveness in mammalian cells, and a highly increased tolerance to disinfectants and
dehydration, aiding bacteria to persist in the environment.

3.2. Extracellular and Biofilm-Associated Surface Proteins

The role of surface or extracellular proteins in the initial attachment of L. monocytogenes to a surface
has been demonstrated in different studies [68,69,85]. In 2012, Combrouse et al. [59] firstly quantified
the extracellular components of the L. monocytogenes biofilm and reported that extracellular proteins
are the most abundant exopolymers within the listerial biofilm matrix. According to Longhi et al. [68],
the protease treatment of listerial biofilm is able to impair biofilm development or to induce dispersal
of the cells. Moreover, Nguyen et al. [69] recently observed the reduction of established biofilms to
undetectable levels after treatment with proteinase K. Treatment with proteinase K led to a noticeable
increase in planktonic cell density. According to other findings, the protease inhibitor α2-macroglobulin
severely impairs biofilm formation, suggesting that proteolytically processed proteins are more likely
to be part of the L. monocytogenes biofilms [70]. All these results suggest that proteins within the
biofilm matrix or on the cell surface are a key part of the EPS matrix. Nonetheless, there is a paucity of
information about the characterization of the proteic components of the listerial matrix.

L. monocytogenes is able to encode more than 130 surface proteins that can confer to this bacterium
the ability to survive in diverse environments [86,87]. Among these, Internalin A (InlA) is a
cell-wall-bound protein and is one of the major components involved in the adhesion to and invasion
of a host cell expressing a specific form of E-cadherin. Franciosa et al. [70] found that L. monocytogenes
strains encoding a truncated non-functional form of the InlA protein exhibited significantly enhanced
biofilm-forming ability compared with wild-type strains. Such a truncated molecule, fully released in
the extracellular medium, was hypothesized to be part of the biofilm matrix.

Biofilm-associated protein (Bap) is a surface protein involved in biofilm formation in different
bacterial species [88], such as S. aureus, Enterococcus faecalis, or the Gram-negative Salmonella enterica
sv typhimurium [89–92]. The high-molecular-weight Bap-related proteins present a core domain of
tandem repeats and are able to confer to bacteria the capacity to form a biofilm [88]. Concerning
L. monocytogenes, Jordan et al. [71] reported the presence of a protein similar to Bap, presenting Bap-like
structural features and thus designated BapL. Similar to some Bap-related proteins found in other
species, such a molecule is required for cell attachment to abiotic surfaces, while on the contrary, it is
not required for virulence [71]. BapL can contribute to the attachment of some L. monocytogenes strains,
but its role in biofilm development has not been clearly established: Renier et al. [47], in fact, showed
that some BapL-negative strains were able to adhere significantly better than BapL-positive strains,
whereas the attachment ability of other strains was weakened.

Comparison of exoproteome of L. monocytogenes from biofilm and planktonic state by
Lourenço et al. [73] led to the identification of proteins in higher abundance in the biofilm exoproteome.
Phospholipase PlcA, flagellin (FlaA), a putative penicillin-binding protein (PBP), an actin assembly
inducing protein (ActA), and a putative cell wall binding protein (Lmo2504) were among these
identified proteins. Flagellin is a monomer that polymerizes to form the flagella. Different groups
reported the importance of flagella during L. monocytogenes biofilm development [72,93], but their exact
role in the process remains unclear because of conflicting results. It is well-known that L. monocytogenes
has a temperature-dependent motility, since flagellin is expressed between 20 and 25 ˝C [94]. According
to Lourenço et al. [73] and Hefford et al. [57], the amount of flagellin within the proteome is higher
in biofilms than in planktonic bacteria, although Trémoulet et al. [32] reported contrasting findings.
Lemon et al. [72] found that flagellum-minus and paralyzed-flagellum mutants were defective in the
step of initial attachment to surface and in subsequent biofilm formation. According to their findings,
the importance of flagella in biofilm formation is related to their role in motility of cells, since the ability
to form a biofilm of different flagella mutant strains was restored by supplying surface-directed motility
exogenously via centrifugation. According to Zetzmann et al. [62], listerial flagella could have a role
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in biofilm formation under a static condition, whereas flagellar motility may have the opposite effect
when bacteria are in a flow chamber. SEM observations by Guilbaud et al. [51] recently revealed the
presence of extracellular fibrils in the L. monocytogenes biofilm honeycomb-like structures, putatively
identified as flagella since they were absent in biofilm produced by non-motile or flagella mutant
L. monocytogenes strains. Although biofilm formation was not prevented, the lack of such fibrils resulted
in a flat and unstructured architecture of biofilm, suggesting a structural role in the three-dimensional
architecture of listerial biofilms. It is still not clear whether either the flagella presence on its own or
the flagellar motility are involved in biofilm formation and development; nonetheless, all findings
suggest the importance of these structures during attachment to surface.

3.3. Extracellular DNA

Extracellular DNA is an important structural component of the EPS matrix of a wide range of
Gram-positive and -negative bacteria [75], where it cooperates with proteins and polysaccharides
ensuring structural integrity of the biofilm [95–99]. Concerning L. monocytogenes, Harmsen et al. [74]
found the presence of DNA in stationary-phase cultures grown in a brain–heart-infusion (BHI) medium.
They also showed that DNaseI treatment of the supernatant inhibited the initial attachment of bacteria
to glass (in cultures diluted in PBS) and the delayed biofilm formation of bacteria grown in a minimal
medium in polystyrene microtiter plates. Moreover, Zetzmann et al. [62] recently provided evidence
that eDNA serves as a structural component of the EPS matrix of L. monocytogenes EGD-e, serotype
1/2a, in a diluted BHI medium under both static and dynamic conditions, suggesting the targeting of
this molecule for preventing or dispersing biofilm formation of these microorganisms.

Different studies on eDNA of L. monocytogenes biofilms have been done for a better understanding
of the origin of the nucleic acids in the extracellular matrix [62,74,75,100]. It has been hypothesized
that, under environmental conditions, eDNA released by lysed bacteria (or present in the environment)
supports an initial attachment to surfaces. The lysis of bacteria cells already attached to the surface
could be increased by hypotonic conditions, and the released DNA may have a double role in the
biofilm: to constitute an anchoring site for dividing cells in microcolonies and to serve as a scavenger
for further planktonic cells recruiting [62]. The hypothesis that eDNA can take origin from lysed cells
was already supported by Harmsen et al., who demonstrated the chromosomal origin of eDNA by
polymerase chain reaction (PCR) amplification [74].

Besides its structural role, eDNA serves also as an energy and nutrition source. In the case
of L. monocytogenes, Guibaud et al. [51] observed the presence of DNA pockets in biofilms with
honeycomb-like structures, hypothesizing that this phenomenon could provide nutrients for the
starved surviving subpopulation. Furthermore, eDNA represents a repertoire of genes from which
naturally competent bacteria can derive genetic information through horizontal gene transfer (HGT), a
mechanism by which genetic information is passed from one bacterial genome to another [74].

4. Conclusions and Perspectives

L. monocytogenes is an important foodborne pathogen thanks to its ability to persist in the food
industry by the formation of biofilms. Several efforts have been made in order to better understand
L. monocytogenes biofilm composition. The extracellular matrix is the major component of the biofilms
and the most difficult to study due to the presence of a large range of biopolymers that are difficult to
analyze. For this reason, it has also been called “the dark matter of biofilm” [101].

The recent molecular and chemical studies focused on EPS matrix composition of L. monocytogenes
have expanded the knowledge about biofilm structure of this pathogen. Several molecules have been
characterized within the extracellular matrix, such as TAs, EPS’s, surface-associated proteins, flagella,
and eDNA (Figure 2). Different studies have contributed to determining the complexity and the
function of these components during biofilm formation and development, from the initial adhesion to
surface to the dispersal of cells to the planktonic state. However, more efforts and studies are required
for discovering and improving our understanding of the molecules and mechanisms involved in this
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process. A deeper knowledge of listerial biofilm composition and formation process is pivotal for
developing effective strategies aimed at minimizing L. monocytogenes persistence in the food industry
and therefore new foodborne outbreaks involving this pathogen.
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28. Schaudinn, C.; Stoodley, P.; Kainović, A.; O’Keeffe, T.; Costerton, B.; Robinson, D.; Baum, M.; Ehrlich, G.;
Webster, P. Bacterial biofilms, other structures seen as mainstream concepts. Microbe 2007, 2, 231–237.
[CrossRef]

29. Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 207–228. [PubMed]
30. Berk, V.; Fong, J.C.N.; Dempsey, G.T.; Develioglu, O.N.; Zhuang, X.; Liphardt, J.; Yildiz, F.H.; Chu, S.

Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 2012, 337, 236–239.
[CrossRef] [PubMed]

31. Lunden, J.M.; Miettinen, M.K.; Autio, T.J.; Korkeala, H.J. Persistent Listeria monocytogenes strains show
enhanced adherence to food contact surface after short contact times. J. Food Prot. 2000, 63, 1204–1207.
[PubMed]

32. Trémoulet, F.; Duché, O.; Namane, A.; Martinie, B.; Labadie, J.C. Comparison of protein patterns of Listeria
monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol. Lett. 2002,
210, 25–31. [CrossRef]

33. Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious
diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [CrossRef] [PubMed]

34. Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and
premises. Int. J. Food Microbiol. 2011, 145, 1–8. [CrossRef] [PubMed]

35. Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in biofilm formation among strains of
Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [CrossRef] [PubMed]

36. Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter plate assay for assessment of
Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. [CrossRef] [PubMed]

37. Mai, T.L.; Conner, D.E. Effect of temperature and growth media on the attachment of Listeria monocytogenes
to stainless steel. Int. J. Food Microbiol. 2007, 120, 282–286. [CrossRef] [PubMed]

38. Moltz, A.G.; Martin, S.E. Formation of biofilms by Listeria monocytogenes under various growth conditions.
J. Food Prot. 2005, 68, 92–97. [PubMed]

39. Chae, M.S.; Schraft, H. Comparative evaluation of adhesion and biofilm formation of different
Listeria monocytogenes strains. Int. J. Food Microbiol. 2000, 62, 103–111. [CrossRef]

40. Tresse, O.; Shannon, K.; Pinon, A.; Malle, P.; Vialette, M.; Midelet-Bourdin, G. Variable adhesion of
Listeria monocytogenes isolates from food-processing facilities and clinical cases to inert surfaces. J. Food Prot.
2007, 70, 1569–1578. [PubMed]

41. Harvey, J.; Keenan, K.P.; Gilmour, A. Assessing biofilm formation by Listeria monocytogenes strains.
Food Microbiol. 2007, 24, 380–392. [CrossRef] [PubMed]

42. Midelet, G.; Carpentier, B. Impact of cleaning and disinfection agents on biofilm structure and on microbial
transfer to a solid model food. J. Appl. Microbiol. 2004, 97, 262–270. [CrossRef] [PubMed]

43. Midelet, G.; Kobilinsky, A.; Carpentier, B. Construction and analysis of fractional multifactorial designs to
study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contact
with a solid model food. Appl. Environ. Microbiol. 2006, 72, 2313–2321. [CrossRef] [PubMed]

44. Chao, J.; Wolfaardt, G.M.; Arts, M.T. Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms
and batch planktonic cultures. Can. J. Microbiol. 2010, 56, 1028–1039. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1365-2672.2007.03688.x
http://www.ncbi.nlm.nih.gov/pubmed/18194252
http://www.ncbi.nlm.nih.gov/pubmed/1909854
http://www.ncbi.nlm.nih.gov/pubmed/11932229
http://dx.doi.org/10.1038/nrmicro2415
http://www.ncbi.nlm.nih.gov/pubmed/20676145
http://dx.doi.org/10.1016/S0966-842X(01)02012-1
http://dx.doi.org/10.1111/j.1462-2920.2012.02753.x
http://www.ncbi.nlm.nih.gov/pubmed/22513190
http://dx.doi.org/10.1128/microbe.2.231.1
http://www.ncbi.nlm.nih.gov/pubmed/18453278
http://dx.doi.org/10.1126/science.1222981
http://www.ncbi.nlm.nih.gov/pubmed/22798614
http://www.ncbi.nlm.nih.gov/pubmed/10983793
http://dx.doi.org/10.1016/S0378-1097(02)00571-2
http://dx.doi.org/10.1038/nrmicro821
http://www.ncbi.nlm.nih.gov/pubmed/15040259
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.005
http://www.ncbi.nlm.nih.gov/pubmed/21276634
http://dx.doi.org/10.1128/AEM.69.12.7336-7342.2003
http://www.ncbi.nlm.nih.gov/pubmed/14660383
http://dx.doi.org/10.1128/AEM.68.6.2950-2958.2002
http://www.ncbi.nlm.nih.gov/pubmed/12039754
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/17959265
http://www.ncbi.nlm.nih.gov/pubmed/15690808
http://dx.doi.org/10.1016/S0168-1605(00)00406-2
http://www.ncbi.nlm.nih.gov/pubmed/17685327
http://dx.doi.org/10.1016/j.fm.2006.06.006
http://www.ncbi.nlm.nih.gov/pubmed/17189764
http://dx.doi.org/10.1111/j.1365-2672.2004.02296.x
http://www.ncbi.nlm.nih.gov/pubmed/15239692
http://dx.doi.org/10.1128/AEM.72.4.2313-2321.2006
http://www.ncbi.nlm.nih.gov/pubmed/16597925
http://dx.doi.org/10.1139/W10-093
http://www.ncbi.nlm.nih.gov/pubmed/21164573


Microorganisms 2016, 4, 22 10 of 12

45. Chihib, N.E.; da Silva, M.R.; Delattre, G.; Laroche, M.; Federighi, M. Different cellular fatty acid pattern
behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and
salinity conditions. FEMS Microbiol. Lett. 2003, 218, 155–160. [CrossRef] [PubMed]

46. Perez, L.J.; Ng, W.L.; Marano, P.; Brook, K.; Bassler, B.L.; Semmelhack, M.F. Role of the CAI-1 fatty acid tail
in the Vibrio cholerae quorum sensing response. J. Med. Chem. 2012, 55, 9669–9681. [CrossRef] [PubMed]

47. Renier, S.; Hébraud, M.; Desvaux, M. Molecular biology of surface colonization by Listeria monocytogenes:
An additional facet of an opportunistic Gram-positive foodborne pathogen. Environ. Microbiol. 2011, 13,
835–850. [CrossRef] [PubMed]

48. Chavant, P.; Martinie, B.; Meylheuc, T.; Bellon-Fontaine, M.N.; Hebraud, M. Listeria monocytogenes LO28:
Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases.
Appl. Environ. Microbiol. 2002, 68, 728–737. [CrossRef] [PubMed]

49. Marsh, E.J.; Luo, H.; Wang, H. A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming
abilities. FEMS Microbiol. Lett. 2003, 228, 203–210. [CrossRef]

50. Rieu, A.; Briandet, R.; Habimana, O.; Garmyn, D.; Guzzo, J.; Piveteau, P. Listeria monocytogenes EGD-e
biofilms: No mushrooms but a network of knitted chains. Appl. Environ. Microbiol. 2008, 74, 4491–4497.
[CrossRef] [PubMed]

51. Guilbaud, M.; Piveteau, P.; Desvaux, M.; Brisse, S.; Briandet, R. Exploring the diversity of
Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and
the predominance of the honeycomb-like morphotype. Appl. Environ. Microbiol. 2015, 81, 1804–1810.
[CrossRef] [PubMed]

52. Bridier, A.; Dubois-Brissonnet, F.; Boubetra, A.; Thomas, V.; Briandet, R. The biofilm architecture of sixty
opportunistic pathogens deciphered using a high throughput CLSM method. J. Microbiol. Methods 2010, 82,
64–70. [CrossRef] [PubMed]

53. Hancock, L.E.; Perego, M. The enterococcus faecalis fsr two-component system controls biofilm development
through production of gelatinase. J. Bacteriol. 2004, 186, 5629–5639. [CrossRef] [PubMed]

54. Zameer, F.; Gopal, S.; Krohne, G.; Kreft, J. Development of a biofilm model for Listeria monocytogenes EGD-e.
World J. Microbiol. Biotechnol. 2010, 26, 1143–1147. [CrossRef]

55. Chen, L.H.; Köseoglu, V.K.; Guvener, Z.T.; Myers-Morales, T.; Reed, J.M.; D’Orazio, S.E.;
Miller, K.W.; Gomelsky, M. Cyclic di-GMP-dependent signaling pathways in the pathogenic firmicute
Listeria monocytogenes. PLoS Pathog. 2014, 10. [CrossRef] [PubMed]

56. Tiensuu, T.; Andersson, C.; Rydén, P.; Johansson, J. Cycles of light and dark co-ordinate reversible colony
differentiation in Listeria monocytogenes. Mol. Microbiol. 2013, 87, 909–924. [CrossRef] [PubMed]

57. Hefford, M.A.; D’Aoust, S.; Cyr, T.D.; Austin, J.W.; Sanders, G.; Kheradpir, E.; Kalmokoff, M.L. Proteomic
and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can. J. Microbiol. 2005, 51, 197–208.
[CrossRef] [PubMed]

58. Cywes-Bentley, C.; Skurnik, D.; Zaidi, T.; Roux, D.; DeOliveira, R.B.; Garrett, W.S.; Lu, X.; O’Malley, J.;
Kinzel, K.; Zaidi, T.; et al. Antibody to a conserved antigenic target is protective against diverse prokaryotic
and eukaryotic pathogens. Proc. Natl. Acad. Sci. USA 2013, 110, E2209–E2218. [CrossRef] [PubMed]

59. Combrouse, T.; Sadovskaya, I.; Faille, C.; Kol, O.; Guérardel, Y.; Midelet-Bourdin, G. Quantification of the
extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization
of culture conditions. J. Appl. Microbiol. 2013, 114, 1120–1131. [CrossRef] [PubMed]

60. Brauge, T.; Sadovskaya, I.; Faille, C.; Benezech, T.; Maes, E.; Guerardel, Y.; Midelet-Bourdin, G. Teichoic acid
is the major polysaccharide present in the Listeria monocytogenes biofilm matrix. FEMS Microbiol. Lett. 2016,
363. [CrossRef] [PubMed]

61. Koseoglu, V.K.; Heiss, C.; Azadi, P.; Topchiy, E.; Guvener, Z.T.; Lehmann, T.E.; Miller, K.W.; Gomelsky, M.
Listeria monocytogenes exopolysaccharide: Origin, structure, biosynthetic machinery and c-di-GMP-dependent
regulation. Mol. Microbiol. 2015, 96, 728–743. [CrossRef] [PubMed]

62. Zetzmann, M.; Okshevsky, M.; Endres, J.; Sedlag, A.; Caccia, N.; Auchter, M.; Waidmann, M.S.; Desvaux, M.;
Meyer, R.L.; Riedel, C.U. Dnase-sensitive and -resistant modes of biofilm formation by Listeria monocytogenes.
Front. Microbiol. 2015, 6, 1428. [CrossRef] [PubMed]

63. Wingender, J.; Strathmann, M.; Rode, A.; Leis, A.; Flemming, H.C. Isolation and biochemical characterization
of extracellular polymeric substances from Pseudomonas aeruginosa. Method Enzymol. 2001, 336, 302–314.

http://dx.doi.org/10.1111/j.1574-6968.2003.tb11512.x
http://www.ncbi.nlm.nih.gov/pubmed/12583912
http://dx.doi.org/10.1021/jm300908t
http://www.ncbi.nlm.nih.gov/pubmed/23092313
http://dx.doi.org/10.1111/j.1462-2920.2010.02378.x
http://www.ncbi.nlm.nih.gov/pubmed/21087384
http://dx.doi.org/10.1128/AEM.68.2.728-737.2002
http://www.ncbi.nlm.nih.gov/pubmed/11823213
http://dx.doi.org/10.1016/S0378-1097(03)00752-3
http://dx.doi.org/10.1128/AEM.00255-08
http://www.ncbi.nlm.nih.gov/pubmed/18502930
http://dx.doi.org/10.1128/AEM.03173-14
http://www.ncbi.nlm.nih.gov/pubmed/25548046
http://dx.doi.org/10.1016/j.mimet.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20433880
http://dx.doi.org/10.1128/JB.186.17.5629-5639.2004
http://www.ncbi.nlm.nih.gov/pubmed/15317767
http://dx.doi.org/10.1007/s11274-009-0271-4
http://dx.doi.org/10.1371/journal.ppat.1004301
http://www.ncbi.nlm.nih.gov/pubmed/25101646
http://dx.doi.org/10.1111/mmi.12140
http://www.ncbi.nlm.nih.gov/pubmed/23331346
http://dx.doi.org/10.1139/w04-129
http://www.ncbi.nlm.nih.gov/pubmed/15920617
http://dx.doi.org/10.1073/pnas.1303573110
http://www.ncbi.nlm.nih.gov/pubmed/23716675
http://dx.doi.org/10.1111/jam.12127
http://www.ncbi.nlm.nih.gov/pubmed/23317349
http://dx.doi.org/10.1093/femsle/fnv229
http://www.ncbi.nlm.nih.gov/pubmed/26626878
http://dx.doi.org/10.1111/mmi.12966
http://www.ncbi.nlm.nih.gov/pubmed/25662512
http://dx.doi.org/10.3389/fmicb.2015.01428
http://www.ncbi.nlm.nih.gov/pubmed/26733972


Microorganisms 2016, 4, 22 11 of 12

64. Frolund, B.; Palmgren, R.; Keiding, K.; Nielsen, P.H. Extraction of extracellular polymers from activated
sludge using a cation exchange resin. Water Res. 1996, 30, 1749–1758. [CrossRef]

65. Evans, L.R.; Linker, A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.
J. Bacteriol. 1973, 116, 915–924. [PubMed]

66. Sadovskaya, I.; Vinogradov, E.; Flahaut, S.; Kogan, G.; Jabbouri, S. Extracellular carbohydrate-containing
polymers of a model biofilm-producing strain, Staphylococcus epidermidis rp62a. Infect. Immun. 2005, 73,
3007–3017. [CrossRef] [PubMed]

67. Alonso, A.N.; Perry, K.J.; Regeimbal, J.M.; Regan, P.M.; Higgins, D.E. Identification of Listeria monocytogenes
determinants required for biofilm formation. PLoS ONE 2014, 9, e113696. [CrossRef] [PubMed]

68. Longhi, C.; Scoarughi, G.L.; Poggiali, F.; Cellini, A.; Carpentieri, A.; Seganti, L.; Pucci, P.; Amoresano, A.;
Cocconcelli, P.S.; Artini, M.; et al. Protease treatment affects both invasion ability and biofilm formation in
Listeria monocytogenes. Microb. Pathog. 2008, 45, 45–52. [CrossRef] [PubMed]

69. Nguyen, U.T.; Burrows, L.L. Dnase i and proteinase k impair Listeria monocytogenes biofilm formation and
induce dispersal of pre-existing biofilms. Int. J. Food Microbiol. 2014, 187, 26–32. [CrossRef] [PubMed]

70. Franciosa, G.; Maugliani, A.; Scalfaro, C.; Floridi, F.; Aureli, P. Expression of internalin a and biofilm
formation among Listeria monocytogenes clinical isolates. Int. J. Immunopathol. Pharmacol. 2009, 22, 183–193.
[PubMed]

71. Jordan, S.J.; Perni, S.; Glenn, S.; Fernandes, I.; Barbosa, M.; Sol, M.; Tenreiro, R.P.; Chambel, L.; Barata, B.;
Zilhao, I.; et al. Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment
of L. monocytogenes but is absent from many field isolates. Appl. Environ. Microbiol. 2008, 74, 5451–5456.
[CrossRef] [PubMed]

72. Lemon, K.P.; Higgins, D.E.; Kolter, R. Flagellar motility is critical for Listeria monocytogenes biofilm formation.
J. Bacteriol. 2007, 189, 4418–4424. [CrossRef] [PubMed]

73. Lourenco, A.; de Las Heras, A.; Scortti, M.; Vazquez-Boland, J.; Frank, J.F.; Brito, L. Comparison of
Listeria monocytogenes exoproteomes from biofilm and planktonic state: Lmo2504, a protein associated
with biofilms. Appl. Environ. Microbiol. 2013, 79, 6075–6082. [CrossRef] [PubMed]

74. Harmsen, M.; Lappann, M.; Knochel, S.; Molin, S. The role of extra-cellular DNA during biofilm formation
of Listeria monocytogenes. Appl. Environ. Microbiol. 2010, 76, 3625–3636. [CrossRef] [PubMed]

75. Okshevsky, M.; Meyer, R.L. The role of extracellular DNA in the establishment, maintenance and
perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 2015, 41, 341–352. [CrossRef] [PubMed]

76. Sadovskaya, I.; Vinogradov, E.; Li, J.; Jabbouri, S. Structural elucidation of the extracellular and cell-wall
teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr. Res. 2004,
339, 1467–1473. [CrossRef] [PubMed]

77. Whitney, J.C.; Howell, P.L. Synthase-dependent exopolysaccharide secretion in gram-negative bacteria. TIM
2013, 21, 63–72. [CrossRef] [PubMed]

78. Merighi, M.; Lee, V.T.; Hyodo, M.; Hayakawa, Y.; Lory, S. The second messenger bis-(31-51)-cyclic-GMP and
its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa.
Mol. Microbiol. 2007, 65, 876–895. [CrossRef] [PubMed]

79. Lee, V.T.; Matewish, J.M.; Kessler, J.L.; Hyodo, M.; Hayakawa, Y.; Lory, S. A cyclic-di-GMP receptor required
for bacterial exopolysaccharide production. Mol. Microbiol. 2007, 65, 1474–1484. [CrossRef] [PubMed]

80. Ross, P.; Weinhouse, H.; Aloni, Y. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic
acid. Nature 1987, 325, 279–281. [CrossRef] [PubMed]

81. Ryjenkov, D.A.; Simm, R.; Römling, U.; Gomelsky, M. The pilz domain is a receptor for the second messenger
c-di-GMP: The PilZ domain protein ycgr controls motility in enterobacteria. J. Biol. Chem. 2006, 281,
30310–30314. [CrossRef] [PubMed]

82. Morgan, J.L.W.; Strumillo, J.; Zimmer, J. Crystallographic snapshot of cellulose synthesis and membrane
translocation. Nature 2013, 493, 181–186. [CrossRef] [PubMed]

83. Romling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The first 25 years of a universal bacterial second
messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [CrossRef] [PubMed]

84. Shanahan, C.A.; Strobel, S.A. The bacterial second messenger c-di-GMP: Probing interactions with protein
and RNA binding partners using cyclic dinucleotide analogs. Org. Biomol. Chem. 2012, 10, 9113–9129.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/0043-1354(95)00323-1
http://www.ncbi.nlm.nih.gov/pubmed/4200860
http://dx.doi.org/10.1128/IAI.73.5.3007-3017.2005
http://www.ncbi.nlm.nih.gov/pubmed/15845508
http://dx.doi.org/10.1371/journal.pone.0113696
http://www.ncbi.nlm.nih.gov/pubmed/25517120
http://dx.doi.org/10.1016/j.micpath.2008.01.007
http://www.ncbi.nlm.nih.gov/pubmed/18479885
http://dx.doi.org/10.1016/j.ijfoodmicro.2014.06.025
http://www.ncbi.nlm.nih.gov/pubmed/25043896
http://www.ncbi.nlm.nih.gov/pubmed/19309566
http://dx.doi.org/10.1128/AEM.02419-07
http://www.ncbi.nlm.nih.gov/pubmed/18515491
http://dx.doi.org/10.1128/JB.01967-06
http://www.ncbi.nlm.nih.gov/pubmed/17416647
http://dx.doi.org/10.1128/AEM.01592-13
http://www.ncbi.nlm.nih.gov/pubmed/23892746
http://dx.doi.org/10.1128/AEM.02361-09
http://www.ncbi.nlm.nih.gov/pubmed/20139319
http://dx.doi.org/10.3109/1040841X.2013.841639
http://www.ncbi.nlm.nih.gov/pubmed/24303798
http://dx.doi.org/10.1016/j.carres.2004.03.017
http://www.ncbi.nlm.nih.gov/pubmed/15178389
http://dx.doi.org/10.1016/j.tim.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23117123
http://dx.doi.org/10.1111/j.1365-2958.2007.05817.x
http://www.ncbi.nlm.nih.gov/pubmed/17645452
http://dx.doi.org/10.1111/j.1365-2958.2007.05879.x
http://www.ncbi.nlm.nih.gov/pubmed/17824927
http://dx.doi.org/10.1038/325279a0
http://www.ncbi.nlm.nih.gov/pubmed/18990795
http://dx.doi.org/10.1074/jbc.C600179200
http://www.ncbi.nlm.nih.gov/pubmed/16920715
http://dx.doi.org/10.1038/nature11744
http://www.ncbi.nlm.nih.gov/pubmed/23222542
http://dx.doi.org/10.1128/MMBR.00043-12
http://www.ncbi.nlm.nih.gov/pubmed/23471616
http://dx.doi.org/10.1039/c2ob26724a
http://www.ncbi.nlm.nih.gov/pubmed/23108253


Microorganisms 2016, 4, 22 12 of 12

85. Smoot, L.M.; Pierson, M.D. Influence of environmental stress on the kinetics and strength of attachment
of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel. J. Food Prot. 1998, 61, 1286–1292.
[PubMed]

86. Desvaux, M.; Dumas, E.; Chafsey, I.; Chambon, C.; Hébraud, M. Comprehensive appraisal of the extracellular
proteins from a monoderm bacterium: Theoretical and empirical exoproteomes of Listeria monocytogenes
egd-e by secretomics. J. Proteome Res. 2010, 9, 5076–5092. [CrossRef] [PubMed]

87. Bierne, H.; Cossart, P. Listeria monocytogenes surface proteins: From genome predictions to function.
Microbiol. Mol. Biol. Rev. 2007, 71, 377–397. [CrossRef] [PubMed]

88. Lasa, I. Towards the identification of the common features of bacterial biofilm development. Int. Microbiol.
2006, 9, 21–28. [PubMed]

89. Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, Í.; Penadés, J.R. Bap, a Staphylococcus aureus surface
protein involved in biofilm formation. J. Bacteriol. 2001, 183, 2888–2896. [CrossRef] [PubMed]

90. Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.;
Penades, J.R.; Lasa, I. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm
formation. Appl. Environ. Microbiol. 2001, 67, 4538–4545. [CrossRef] [PubMed]

91. Latasa, C.; Roux, A.; Toledo-Arana, A.; Ghigo, J.M.; Gamazo, C.; Penades, J.R.; Lasa, I. Bapa, a large
secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar enteritidis.
Mol. Microbiol. 2005, 58, 1322–1339. [CrossRef] [PubMed]

92. Hinsa, S.M.; Espinosa-Urgel, M.; Ramos, J.L.; O’Toole, G.A. Transition from reversible to irreversible
attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a
large secreted protein. Mol. Microbiol. 2003, 49, 905–918. [CrossRef] [PubMed]

93. Todhanakasem, T.; Young, G.M. Loss of flagellum-based motility by Listeria monocytogenes results in formation
of hyperbiofilms. J. Bacteriol. 2008, 190, 6030–6034. [CrossRef] [PubMed]

94. Peel, M.; Donachie, W.; Shaw, A. Temperature-dependent expression of flagella of Listeria monocytogenes
studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol. 1988, 134, 2171–2178.
[PubMed]

95. Hall-Stoodley, L.; Nistico, L.; Sambanthamoorthy, K.; Dice, B.; Nguyen, D.; Mershon, W.J.; Johnson, C.;
Ze Hu, F.; Stoodley, P.; Ehrlich, G.D.; et al. Characterization of biofilm matrix, degradation by dnase treatment
and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 2008, 8.
[CrossRef] [PubMed]

96. Izano, E.A.; Amarante, M.A.; Kher, W.B.; Kaplan, J.B. Differential roles of poly-N-acetylglucosamine surface
polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms.
Appl. Environ. Microbiol. 2008, 74, 470–476. [CrossRef] [PubMed]

97. Mann, E.E.; Rice, K.C.; Boles, B.R.; Endres, J.L.; Ranjit, D.; Chandramohan, L.; Tsang, L.H.; Smeltzer, M.S.;
Horswill, A.R.; Bayles, K.W. Modulation of eDNA release and degradation affects Staphylococcus aureus
biofilm maturation. PLoS ONE 2009, 4, e5822. [CrossRef] [PubMed]

98. Seper, A.; Fengler, V.H.I.; Roier, S.; Wolinski, H.; Kohlwein, S.D.; Bishop, A.L.; Camilli, A.; Reidl, J.; Schild, S.
Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation.
Mol. Microbiol. 2011, 82, 1015–1037. [CrossRef] [PubMed]

99. Liao, S.; Klein, M.I.; Heim, K.P.; Fan, Y.; Bitoun, J.P.; Ahn, S.J.; Burne, R.A.; Koo, H.; Brady, L.J.; Wen, Z.T.
Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via
membrane vesicles, and influenced by components of the protein secretion machinery. J. Bacteriol. 2014, 196,
2355–2366. [CrossRef] [PubMed]

100. Kadam, S.R.; den Besten, H.M.W.; van der Veen, S.; Zwietering, M.H.; Moezelaar, R.; Abee, T. Diversity
assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain
origin. Int. J. Food Microbiol. 2013, 165, 259–264. [CrossRef] [PubMed]

101. Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol. 2007, 189,
7945–7947. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/9798143
http://dx.doi.org/10.1021/pr1003642
http://www.ncbi.nlm.nih.gov/pubmed/20839850
http://dx.doi.org/10.1128/MMBR.00039-06
http://www.ncbi.nlm.nih.gov/pubmed/17554049
http://www.ncbi.nlm.nih.gov/pubmed/16636986
http://dx.doi.org/10.1128/JB.183.9.2888-2896.2001
http://www.ncbi.nlm.nih.gov/pubmed/11292810
http://dx.doi.org/10.1128/AEM.67.10.4538-4545.2001
http://www.ncbi.nlm.nih.gov/pubmed/11571153
http://dx.doi.org/10.1111/j.1365-2958.2005.04907.x
http://www.ncbi.nlm.nih.gov/pubmed/16313619
http://dx.doi.org/10.1046/j.1365-2958.2003.03615.x
http://www.ncbi.nlm.nih.gov/pubmed/12890017
http://dx.doi.org/10.1128/JB.00155-08
http://www.ncbi.nlm.nih.gov/pubmed/18586947
http://www.ncbi.nlm.nih.gov/pubmed/3150978
http://dx.doi.org/10.1186/1471-2180-8-173
http://www.ncbi.nlm.nih.gov/pubmed/18842140
http://dx.doi.org/10.1128/AEM.02073-07
http://www.ncbi.nlm.nih.gov/pubmed/18039822
http://dx.doi.org/10.1371/journal.pone.0005822
http://www.ncbi.nlm.nih.gov/pubmed/19513119
http://dx.doi.org/10.1111/j.1365-2958.2011.07867.x
http://www.ncbi.nlm.nih.gov/pubmed/22032623
http://dx.doi.org/10.1128/JB.01493-14
http://www.ncbi.nlm.nih.gov/pubmed/24748612
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.05.025
http://www.ncbi.nlm.nih.gov/pubmed/23800738
http://dx.doi.org/10.1128/JB.00858-07
http://www.ncbi.nlm.nih.gov/pubmed/17675377
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Listeria monocytogenes and Biofilms 
	The L. monocytogenes Biofilm Extracellular Matrix 
	Exopolysaccharides and Teichoic Acids 
	Extracellular and Biofilm-Associated Surface Proteins 
	Extracellular DNA 

	Conclusions and Perspectives 

