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Abstract: Bacille Calmette–Guerin (BCG) vaccination is widely practiced around the world to
protect against the mycobacterial infection tuberculosis. BCG is also effective against the pathogenic
mycobacteria that cause leprosy and Buruli’s ulcer. BCG is part of the standard of care for bladder
cancer where, when given as an intravesicular irrigant, BCG acts as an immunomodulating agent
and lessens the risk of recurrence. Mycobacterium avium ss. paratuberculosis (MAP) causes a fatal
enteritis of ruminant animals and is the putative cause of Crohn’s disease of humans. MAP has
been associated with an increasingly long list of inflammatory/autoimmune diseases: Crohn's,
sarcoidosis, Blau syndrome, Hashimoto’s thyroiditis, autoimmune diabetes (T1D), multiple sclerosis
(MS), rheumatoid arthritis, lupus and Parkinson’s disease. Epidemiologic evidence points to BCG
providing a “heterologous” protective effect on assorted autoimmune diseases; studies using BCG
vaccination for T1D and MS have shown benefit in these diseases. This article proposes that the
positive response to BCG in T1D and MS is due to a mitigating action of BCG upon MAP. Other
autoimmune diseases, having a concomitant genetic risk for mycobacterial infection as well as
cross-reacting antibodies against mycobacterial heat shock protein 65 (HSP65), could reasonably be
considered to respond to BCG vaccination. The rare autoimmune disease, relapsing polychondritis, is
one such disease and is offered as an example. Recent studies suggesting a protective role for BCG in
Alzheimer’s disease are also explored. BCG-induced energy shift from oxidative phosphorylation to
aerobic glycolysis provides the immunomodulating boost to the immune response and also mitigates
mycobacterial infection—this cellular mechanism unifies the impact of BCG on the disparate diseases
of this article.
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1. Introduction

Bacille Calmette–Guerin (BCG) vaccination was developed nearly one hundred years ago and
remains the only vaccine to fight tuberculosis (TB), the result of infection by Mycobacterium tuberculosis.
BCG is the most widely used vaccine in human history with more than four billion doses given while
at the same time maintaining a strong safety record [1,2]. BCG is effective against other pathogenic
mycobacteria: Mycobacterium avium, Mycobacterium leprae and Mycobacterium ulcerans; the infectious
agents that respectively cause cervical lymphadenitis, leprosy and Buruli’s ulcer [3]. BCG use is
standard-of-care treatment for non-invasive bladder cancer; BCG as a bladder irrigant promotes an
immune response that lessens the recurrence of bladder cancer [4].
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Mycobacterium avium ss. paratuberculosis (MAP) is a zoonotic agent associated with a host of
inflammatory and autoimmune diseases including T1D and MS [5]. BCG has been shown to benefit
both T1D and MS a result that has been termed “heterologous” effects of BCG vaccination [6].

This paper will review the use of BCG in TB as well as examine BCG in mycobacterial infections
other than TB. It will discuss BCG use as an adjunct to bladder cancer treatment. Moreover, it will
discuss the heterologous effects of BCG vaccination particularly as it relates to autoimmune diseases T1D
and MS and propose that the benefit is due to MAP mitigation in these diseases. Lastly, this paper will
suggest a therapeutic role for BCG vaccination in the rare autoimmune disease, relapsing polychondritis
as well as explore its newfound therapeutic prospects in the very common Alzheimer’s disease.

2. BCG—The First Human Vaccinated

In 1931, Calmette recounts his research of three decades establishing that BCG was truly attenuated
and would not back-mutate to virulence. The article conveys the context and trepidation of living with
TB in the days before antibiotics, and the dangers to an infant being born into a tuberculous family.
It also conveys Calmette’s trepidation in treating the first human with BCG.

“ . . . when on July 1, 1921, Dr. Weill-Halle, who was then physician to the Infant Department
of the Charite Hospital in Paris, came to consult us on a subject, which well might excite the
conscientious scruples of the experimenter. He told us of a baby, born of a tuberculous mother,
who had died shortly after delivery. The baby was to be brought up by a grandmother, herself
tuberculous, and consequently its chances of survival were precarious. Could one risk on this
child a trial of the method which, in our hands, had been constantly inoffensive for calves,
monkeys, guinea-pigs and which had proved to be efficacious in preventing experimental
tuberculous infection in these animals? We considered it our duty to make the trial, and the
results were very fortunate, as the infant, having absorbed 6 mg. BCG in three doses per
os, has developed into a perfectly normal boy, without ever having presented the slightest
pathological lesion, notwithstanding constant exposure to infection during two years. When
we saw that this child developed normally during the six months following the vaccination,
we thought we need not wait any longer to try the method on other children.” [7]

3. BCG and Tuberculosis

Humans have been infected with M. tuberculosis (Mtb) for millennia; Mtb was discovered in 1882
by Robert Koch and is responsible for more deaths than any other human pathogen [8–10]. In the 1950’s
large clinical trials were conducted with BCG both in England and the United States. The Medical
Research Council of the United Kingdom tested a strain of BCG known as the Copenhagen strain,
which was found to be highly effective against TB, whereas the Tice strain tested in the United States
showed little benefit. Based upon these results, the respective public health agencies recommended
routine vaccination in the UK while use in the United States was limited to high-risk groups only.
The World Health Organization (WHO) followed the lead of the UK as did the majority of the world
and recommended routine vaccination while the US and the Netherlands based TB control upon
contact tracing and vaccinated only those at-risk [11].

These disparate results of BCG protection against TB were rationalized by two hypotheses: the
differences were due to variation between BCG strains as it is recognized that different strains had
different microbial properties [12]; alternatively, the US Public Health Service trial, implemented in
Alabama, Georgia and Puerto Rico, was conducted in populations known to have exposure to assorted
“environmental” mycobacteria. That exposure by itself could have provided some protection against
TB that BCG could not greatly improve upon [13].

Currently, 90% of children worldwide are vaccinated with BCG with 120 million doses given
annually [14]. According to the WHO an estimated one-third of the world’s population is latently
infected with M. tuberculosis and in 2018 ten million people became ill and 1.5 million died from
TB. This global trend will not achieve the WHO “End TB” goal of reducing clinical cases by 90% and
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fatalities by 95% by 2035 [15]. BCG very successfully protects children from extra-pulmonary TB, but
does not reliably prevent adult pulmonary TB; though it has an excellent safety record, BCG and can
cause disseminated disease (BCG-osis) in immunocompromised individuals [16].

4. BCG and Non-Tuberculous Mycobacteria

As an attenuated live vaccine, BCG shares epitopes with mycobacteria other than tuberculosis—
non-tuberculous mycobacteria (NTM)—plausibly providing cross-protection against NTM infections [3].
NTM are ubiquitous and can produce disease in susceptible individuals; notably, there has been an
increase in NTM disease in developed countries that have discontinued routine BCG vaccination [17–20].

Cervical lymphadenitis is mostly caused by M. avium intracellulare complex (MAC). This NTM
disease has increased significantly since the discontinuation of routine BCG vaccination in France [21],
Sweden [22], the Czech Republic [23] and Finland [24].

Also caused by an NTM is leprosy (Mycobacterium leprae). Though present for millennia, there
were more than 200,000 new leprosy cases registered in 2018 [25,26]. The protective effectiveness of
BCG vaccination against M. leprae is well recognized [27]; vaccination with BCG decreases the risk of
leprosy by 50% to 80%, and this benefit improves with BCG booster doses [28,29].

Buruli’s ulcer, caused by Mycobacterium ulcerans, is a necrotizing skin disease; behind tuberculosis
and leprosy it is the third most prevalent mycobacterial infection worldwide [30]. While first
described in the medical literature in 1948 in Australian patients [31], Buruli’s ulcer is primarily
found in impoverished areas of Africa; in the Congo [32] and Uganda [33] and increasingly in West
Africa [34–36]. BCG vaccination at birth protects children and adults from the serious osteomyelitis
associated with Buruli’s ulcer [37]. Prospective trials with BCG have shown that vaccination confers
rates of protection against Buruli’s ulcer ranging from 18% to 74%, with an overall protection rate of
47% [38,39].

5. Mycobacterium avium ss. paratuberculosis—MAP

MAP is another NTM. MAP causes a fatal infectious enteritis in ruminant animals called
paratuberculosis or Johne’s disease. Johne’s disease of ruminants and Crohn’s disease of humans are
increasingly regarded as the same disease: paratuberculosis [40–43]. Meta-analyses have shown that a
majority of studies associating MAP with Crohn’s demonstrate MAP infection in Crohn’s patients [44,45].
Beyond Crohn’s, human diseases associated with MAP have been pursued due to the identification
of genetic susceptibility risk that is shared for both the specific disease and for mycobacterial
infection. Searches for polymorphisms of the CARD15 (NOD2) [46–48], SLC11a1 (NRAMP1) [49–51],
LRRK2 [52,53], PTPN2/22 [54] and VDR [55] genes have been productive as they reveal susceptibilities
for infection by mycobacteria due to impaired pathogen recognition or failure of phagosome
maturation. Polymorphisms of these genes have been linked to MAP infection and concomitant
diseases: Crohn’s disease [46,50], multiple sclerosis [46,56], Blau syndrome [46], autoimmune
(Hashimoto’s) thyroiditis [57–59], Parkinson’s disease [52,60], rheumatoid arthritis [50,54,61], lupus [62]
and T1D [55,63]. A majority of MAP researchers consider it a zoonotic agent [64].

The USDA (United States Department of Agriculture) has reported that the herd prevalence of
MAP infection in United States dairy herds has increased from 21.6% in 1996 to 91.1% in 2007 [65].
MAP is present in pasteurized milk [66,67], infant formula made from pasteurized milk [68], surface
water [69–72] and soil [69].

Specific vaccination against paratuberculosis with the live attenuated vaccine has been shown to
prevent or reduce disease in ruminants but it also has severe side effects [73]. Interestingly, as BCG
is safe and there has been success with BCG transformants carrying foreign antigens, the known
“pathogenicity island” of MAP when added to BCG has been shown successful in an animal model [74].
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6. BCG-Heterologous Effects

BCG vaccination in adults is beneficial for a diverse group of diseases. Research over the past
10 years has investigated the therapeutic benefits of BCG for an array of autoimmune, allergic, and
induced adaptive immune responses to childhood infections [75–83]. The strong likelihood of an
infectious environmental trigger for both T1D and MS can be seen in the low concordance rates in
identical twins for these diseases: less than 40% for T1D and less than 30% for MS [84,85].

6.1. Non-Specific Effects of Vaccines

BCG vaccination induces two types of responses; not only the classic antigen-specific immune
response leading to protection against TB and NTM, but also an adaptive “trained” immunity-based
upon reprogramming of phagocytes that extends beyond protection against TB to other infections [86].
Recently, researchers Aaby and Benn reported on their forty-year campaign to demonstrate the
efficacy of the four living vaccines, MV (measles vaccine), BCG, oral polio vaccine and vaccinia
in reducing all-cause childhood mortality [87]. They introduced into the medical vernacular the
“non-specific-effects” of vaccines (NSEs), a phenomenon linked to innate immune training [88].

6.2. BCG and Cancer

In 1929, Pearl reviewed 1600 autopsies at Johns Hopkins Hospital; he found that lung carcinoma
was less common in patients who died of pulmonary TB than in those who died of other causes, and
went on to even suggest that “this formed sufficient evidence to support the treatment of cancer patients
with tuberculin” [89]. Since then, many reports have been published refuting and supporting the
causal relationship between TB and cancer both in animal studies and in humans. The studies included
the circumstances where exposure to mycobacteria was via BCG vaccination instead of TB [4]. The use
of BCG to treat stomach cancer was first reported in 1936 [90]. More recently, in 1970, Morton treated
patients with melanoma with BCG intra-lesion injection and reported complete lesion regression in 684
out of 754 lesions injected, with some patients showing regression of non-injected lesions that were
close to the injected lesions [91,92]. While BCG treatment of most cancers has not outperformed other
therapeutic modalities, it remains the standard of care for non-invasive bladder cancer [93,94].

6.3. BCG and Bladder Cancer

Morales’ study of BCG in 1976 led to BCG becoming the standard of care for non-invasive
bladder cancer [95]. Approximately 80% of patients with bladder cancer are initially diagnosed with
non-invasive stage (non-muscle invading) bladder cancer [96]. Recent meta-analysis confirms BCG use
after bladder tumor resection decreases the risk of recurrence and progression [97]. The mechanism of
action of BCG as an immunotherapeutic agent against bladder cancer involves both innate and adaptive
immune responses [98,99]. A systemic immune response arises after bladder BCG therapy; this is
manifest by increased lymphoproliferation, mycobacteria-specific humoral responses, conversion of the
PPD skin test from negative to positive and increased serum levels of cytokines and chemokines [100].

6.4. MAP, BCG and Autoimmune Diabetes

T1D is most often seen in childhood and in young adults and occurs with autoimmune-mediated
destruction of the insulin-producing cells of the pancreas [101]. T1D is increasing in the last part of
the 20th century [102]. Autoantibodies against the pancreatic enzyme glutamic acid decarboxylase
(GAD) are detected in newly diagnosed children with T1D; these are thought to result from molecular
mimicry in which a foreign bacterial antigen induces an immune response that cross-reacts with
a similar host protein [103–105]. The GAD enzyme shares amino acid sequence and conformation
with an immune-dominant mycobacterial protein, mycobacterial heat shock protein 65 (HSP65) [106].
All newly diagnosed T1D children in one study had an immune response against mycobacterial
HSP65 [107]. It has been proposed that MAP is the source of mycobacterial HSP65 and thus an
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environmental trigger for T1D. A large and increasing body of work has subsequently solidified the
association of MAP and T1D [83,108–121]. These studies have also confirmed genetic factors linking
risk for MAP and T1D [63]. Additional MAP peptides have been identified that are homologous with
pancreatic proteins [83,110,117] and the immune response to these MAP peptides cross-react with the
classic diabetes islet cell antibodies [118].

An example of concomitant genetic risk for mycobacterial infection and T1D (and MS) is
polymorphisms of the SLC11a1 (formerly NRAMP1) gene. The loss of function of this gene
associated with T1D and MS results in the failure of phagosome acidification when responding
to mycobacteria [56,63].

BCG is found to have benefits for chronic T1D patients. Strikingly, BCG vaccination of
long-standing T1D individuals, followed by a booster in 1 month, resulted in the control of blood sugar
(seen after a delay of three years). The effect was durable with normal blood sugars eight years after the
vaccination [122]. The beneficial effect is postulated to be due to a “reset” of the immune system [123].
An alternative explanation is that BCG vaccination results in mitigation against MAP [124].

6.5. MAP, BCG and Multiple Sclerosis

MS is a chronic, inflammatory demyelinating disease of the central nervous system clinically
characterized by a broad variety of neurological signs and symptoms. Although intense research
continues in the MS field, the etiology and exact pathogenic mechanisms remain poorly understood.
It is, however, thought to be a multifactorial disease caused by autoimmune processes [124]. Clinical
evidence suggests that an autoimmune response against myelin, stimulated by an infectious agent,
contributes to this disease [125].

Studies determining susceptibility for mycobacterial infections have identified host genetic factors
that increase risk for these infections; examples are polymorphisms in the major histocompatibility
complex, TLR, vitamin D receptor genes, genes encoding IFN-gamma signaling components and
SLC11A1 [56]. As with T1D, these genes have a central role in determining risk mycobacteria infection
and related autoimmune diseases, including MS [126].

There is a recognized association between MAP and MS. First studied on the island of Sardinia
where MAP is endemic [127], the association is also studied in Japan, where a seroprevalence study
confirmed the association between MAP and MS [128]. Supporting the association of MAP and MS
is the detection of MAP DNA in the peripheral blood of MS patients [129]. As with T1D, molecular
mimicry is felt to play a triggering role in MS; antibodies against MAP-specific protein MAP_2694295–303

and MAP pentapeptide (MAP_5p) are prevalent in the CSF and serum in MS [130]. These peptides
have homology with a component of myelin, the myelin basic protein (MBP) [131]. MBP is known as a
prime target of autoimmune demyelination [132].

First started twenty years ago, trials using BCG vaccination as an adjuvant therapy for MS
patients demonstrated beneficial effects. The crossover trial revealed that a single BCG vaccination
decreased magnetic resonance imaging-based disease activity in patients with MS [133]. More recent
trials showed that BCG vaccination reduces the characteristic magnetic resonance imaging activity in
patients with MS as well as clinically isolated syndrome (CIS) [134]. CIS is an initial clinical neurologic
episode that is suggestive of MS and may later manifest as MS.

7. Proposing BCG for Relapsing Polychondritis

Relapsing polychondritis (RP) is a rare but well-described autoimmune disease characterized
by repeated inflammatory attacks of cartilage. The main clinical features are auricular and nasal
chondritis, non-erosive seronegative arthritis, tracheobronchial inflammation, ocular inflammation,
audio–vestibular disease and systemic vasculitis [78,135]. RP likely results from a combination of a
genetic susceptibility, a triggering factor and a subsequent abnormal autoimmune reaction [136–140].
There is a concomitant genetic susceptibility between HLA-DR4 and RP [141,142]. This same RP genetic
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susceptibility also confers the risk of T1D [143,144]. Moreover, HLA-DR polymorphisms are associated
with the risk of non-tuberculous mycobacterial infection [145].

Antibodies from RP patients cross-react with both cartilage antigens and mycobacterial heat shock
protein [146]. MAP may be the source of the mycobacterial HSP, an immunodominant protein that
shares sequence and conformational elements with several human host proteins [49]. These findings in
RP, not unlike autoimmune diseases T1D and MS, both showing benefit from BCG vaccination, would
suggest a therapeutic consideration of BCG for RP.

8. BCG and Alzheimer’s Disease

While there has been laudatory success at reducing mortality from many chronic diseases such
as diabetes, HIV, heart disease, and most cancers in the past 15 years, mortality from Alzheimer’s
disease (AD) has grown by more than 123% [147]. Today, 1 in 10 individuals older than 65 years is
diagnosed with AD. This number doubles every 10 years until at the age of 85 years, nearly 50% will
have developed the disease [148]. Clearly, this is a public health emergency [149].

Studies show that BCG vaccination has a beneficial effect on neuroinflammation in an animal
model of AD [150,151]. The pathology of AD includes accumulated amyloid plaques, tau tangles
and persistent inflammation. The microglia, the immune representatives in the CNS, are activated by
amyloid and early in AD they clear the abnormal protein aggregates. As the disease progresses the
microglia are no longer able to remove amyloid; this results in sustained inflammation along with
more immune cell recruitment and pro-inflammatory cytokine production [152].

A recent population study found an inverse relationship between BCG vaccination and the
incidence of Alzheimer’s disease. The populations studied showed a lower prevalence of AD in
countries with high BCG coverage. The authors hypothesized that exposure to BCG decreases the
prevalence of AD due to a modulation of the immune system. They proposed testing their hypothesis
by evaluating bladder cancer patients who received BCG comparing them to bladder cancer patients
for whom BCG was not part of their recommended treatment [153]. They found that bladder cancer
patients treated with BCG were significantly less likely to develop AD compared to those not similarly
treated. The mean age at diagnosis of bladder cancer was 68 years. AD was diagnosed at a mean
age of 84 years. BCG dramatically reduced the risk of developing AD. Those treated with BCG had
four-fold less risk for developing AD compared to patients not treated with BCG. The authors state
that confirmation of their retrospective study would support prospective studies of BCG in AD [154].

This exciting prospect—the protective use of BCG in AD—still begs the question: what is being
prevented or treated? Does BCG overcome immunosenescence associated with “the twilight of
immunity” [155]? Or, with the success of BCG in treating tuberculosis, NTM infection and autoimmune
diseases associated with MAP, is there a suggestion of an infectious cause for AD or specifically for a
mycobacterial infection?

Infiltration of the brain by pathogens may trigger or act as co-factors for Alzheimer’s disease;
Herpes simplex virus type 1 (HHV-1), Chlamydia pneumoniae and Porphyromonas gingivalis are most
frequently implicated [156]. It may also be an aggregate burden of infection that leads to the
pathology of AD [157]. Cytomegalovirus (CMV) also a herpes virus (HHV-5) has been associated
with immunosenescence that may drive the pathology of AD [158]. P. gingivalis, found in the brain
of AD patients eludes microglial removal via a well-described virulence factor, gingipains [159].
There is also sporadic mention of mycobacteria in a causal role for AD [160,161]. Noteworthy is
the fact that an anti-mycobacterial antibiotic, rifampicin, inhibits the pathology of AD in an animal
model [162]. Moreover, rifampicin was found to have preventative effects on preclinical and prodromal
AD patients [163].

9. Discussion

In 2014 Netea summed up current thinking about the expanded therapeutic use of BCG:
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“ . . . despite the epidemiological evidence for heterologous protective effects of BCG
vaccination, the perceived lack of biological plausibility has been a major obstacle in
recognizing and in investigating these effects.” [164]

The missing biological plausibility may be found in BCG’s ability to produce a cellular energy
shift from mitochondrial oxidative phosphorylation to aerobic glycolysis. Aerobic glycolysis was
originally found in cancer (Warburg effect) [165,166]. In response to mycobacterial infection, there is
the activation of innate and adaptive immune response creating an immune remodeling that is fueled
by aerobic glycolysis. The ability of pathogenic mycobacteria to subvert the host antimicrobial response
may lie in its ability to interfere with the metabolic switch to aerobic glycolysis allowing mycobacterial
persistence and pathogenicity [167,168]. This shift to aerobic glycolysis and its associated macrophage
activation is seen in BCG’s effect in T1D [169], MS [170], AD [171] and bladder cancer [172] as well as
response to mycobacterial infection [173]. The “Old Friends” theory suggests that microbial exposure
at a young age assists the developmental regulation of the immune system. Consequently, rising
incidences of chronic inflammatory conditions (autoimmune diseases, allergic disorders, and some
types of cancer) seen in high-income countries may be attributable to dysfunctional immune regulation
promoted by the hygienic lifestyle that limits contact with the Old Friends [76].

In the past ten years, there have been several clinical trials that re-introduce non-pathogenic
BCG to stimulate immune remodeling against diverse infectious, autoimmune and allergic
diseases [75,76,82,134]. Understanding that aerobic glycolysis, as stimulated by BCG, decreases
amyloid-mediated neuronal death perhaps AD will soon be added to this list [154,169].

This article aimed to assign biological plausibility to the benefit of BCG vaccination, identifying
the role of aerobic glycolysis in anti-mycobacterial prevention and treatment for MAP-associated
autoimmune diseases as well as its role in immune bolstering to mitigate age-related immunosenescence.
With the complex and often confounding concomitant study of infection, autoimmunity and cancer,
BCG offers a parsimonious path: for those who had little exposure to the Old Friends, they may find a
friend in BCG.
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