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Abstract: Abiotic stresses, including low-temperature environments, adversely affect the structure,
composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physi-
ological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature
habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solu-
bilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their
physiological activities. The production of antifreeze proteins and expression of stress-induced
genes at low temperatures favors the survival of such organisms during cold stress. The ability to
facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one
of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress
conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end,
the use of psychrophilic PSB formulations has been found effective in yield optimization under
temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers
impacting plant growth under normal cultivation practices but little attention has been paid to the
plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environ-
ments. This scientific gap formed the basis of the present manuscript and explains the rationale for
the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism
of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering
of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of
extreme cold on the physiological activities of plants and how plants overcome such stresses is
discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate
biofertilizers and take advantage of their precious, fundamental, and economical but enormous
plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the
food demands of frighteningly growing human populations. The production and application of
cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.

Keywords: abiotic stress; psychrophiles; phosphate solubilizers; crop nutrition; plant growth regulators;
molecular engineering

1. Introduction

Globally, abiotic stresses, including extremely low temperatures, cause major losses
to the growth and productivity of food crops [1–3]. Indeed, low temperature is the most
vital environmental variable which adversely affects composition, diversity, community
structure, and microbial biomass, and decreases the soil nutrient pool [4–7]. Among soil
microbes, the phosphate-solubilizing activities of phosphate-solubilizing bacteria (PSB) are
negatively affected by many factors such as temperature, pH, salinity, and dissolved oxy-
gen [8–10]. Of these, the low temperature restricts the cellular activities of microbes, where
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a 10 ◦C decrease in the temperature has been found to bring a 2–4-fold reduction in micro-
bial enzyme activity [11]. Bacteria belonging to different genera, however, tolerate cold
temperatures by synthesizing ice-binding proteins such as antifreeze protein (AFPs) which
help them to survive and proliferate under freezing temperatures by regulating the forma-
tion and growth of ice crystals [12,13]. Literature in contrast also suggests that temperature,
apart from impacting various metabolic activities of bacteria, also affects the P-solubilizing
abilities of some psychrotolerant bacteria strains [14,15]. Due to this, attention in recent
times has been paid to discovering PSB which can reduce/replace the use of chemical phos-
phatic fertilizers while protecting the plants from abiotic stresses. Psychrophiles among
variously distributed microflora are the organisms that dwell in unpleasant conditions
such as low-temperature environments, which, in general, are disastrous for most living
organisms. Besides surviving extremely low temperatures, the “psychrophiles” also secrete
active biomolecules capable of stimulating plant growth in low-temperature ranges [16–18].
Besides microbes, low temperatures negatively affect the morpho-anatomical, chemical,
functional, and genetic composition of plants and, hence, decrease crop productivity [12,19].
The use of plant beneficial psychrophiles/psychrotolerant bacteria provides a sustainable
option for optimizing agriculture production and offsetting the undesirable impact of cold
temperatures [20,21]. The variations in plant growth-regulating abilities permit such organ-
isms to thrive in different ecological habitats. In this regard, psychrophiles/psychrotolerant
endowed with phosphate solubilizing ability, together with other plant growth-promoting
potentials [22], have received greater attention and have gained impetus due largely to
their ability to provide macro nutrients especially P to plants, ability to alleviate cold stress,
and ability to modulate phytohormones growing under extreme cold soils [23,24]. Apart
from providing P, psychrophilic PSB facilitate the growth of plants by providing phyto-
hormones [12] and siderophores [2], or through phytopathogenic control [25] by secreting
various cell wall degrading hydrolytic enzymes, for example, chitinases, proteases, and
cellulases [2]. A study by Yadav et al. [17] reported the secretion of cold-active (at 4 ◦C)
lytic enzymes such as amylase, β-glucosidase, pectinase, protease, cellulase, xylanase,
β-galactosidase, laccase, chitinase, and lipase by psychrophilic, psychrotrophic, or psychro-
tolerant bacteria such as Bacillus, Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus,
Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus, and Virgibacil-
lus. The complex physiological process of psychrophilic PSB is, however, influenced by
biotic or abiotic factors such as soil nutrient pool, soil pH, salt contents, temperature,
and humidity [26]. These bacteria, when applied, have been reported to accelerate crop
production under a low-temperature environment. For instance, the cold-tolerant PSB
Pseudomonas isolates (RT5RP2 and RT6RP) colonizing the rhizoplane of wild grass, growing
at 3100 and 3800 m above sea level, grew at a temperature that varied between 4 and 30 ◦C
and when applied with Udaipur rock phosphate (URP) the P uptake of lentil plants under
greenhouse conditions was significantly enhanced [27]. Considering these facts, attention
in research is growing to discover cold-adapted PSB which could successfully colonize
cold habitats and influence the processes of nutrient turnover at low temperatures. Thus,
cold-adapted bacteria can be used as biofertilizers, biocontrol agents, and bioremediation
for augmenting the growth and yield of crops growing at high altitudes [28]. The work
presented is mainly a review of the recent advances in the novel field of cold-tolerant
PSB which has direct relevance in crop optimization and yield stability under cold en-
vironments. This manuscript focuses on how cold temperatures affect the physiological
activities of plants and briefly explains how plants alleviate cold stress. The ability of
microorganisms to cope with the cold and to endure low temperatures, the mechanism of
solubilization/mineralization of insoluble phosphorus, and how cold-active phosphate
solubilizing bacteria promote plant growth under cold environments are discussed. Molec-
ular engineering of phosphate solubilizing/mineralizing bacteria to broaden the host range
is discussed. The work presented in this manuscript is likely to generate wide interest
within the scientific community concerned for psychrophiles, psychrophilic PSB, and food
production in cold regions.
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2. Psychrophiles and Psychrotrophs: An Overview
2.1. Definition, Ecological Habitats, and Agronomic Importance

The cold regions cover approximately 71% of the Earth’s surface and 90% of the ocean
volume is below 5 ◦C followed by snow, permafrost, sea ice, and glaciers [29]. Other cold
environments are cold-water lakes, cold soils, cold deserts, and caves. Interestingly, these cold
habitats are colonized by a variety of extremophiles including those possessing plant growth-
promoting activities [16,22]. Such cold adaptive microorganisms have been categorized into
two groups. (i) Psychrophiles: microbes which grow at or below 0, 15, and 20 ◦C (minimum,
optimum, and maximum, respectively) and that can thrive well under identical environmental
conditions [29,30]. Indeed, the psychrophily explains the capability of an organism to generate
higher biomass at 15 ◦C or below instead of demonstrating better growth rates at temperatures
over 20 ◦C [29]. (ii) Psychrotolerants or psychrotrophs: organisms capable of growing
sub-optimally at temperatures below 20 ◦C or even at 0 ◦C that repel the negative effect
forced by cold environments; such microbiota are recovered most frequently from cold
environments. Since both groups of microorganisms can colonize cold habitats, the term “cold-
active microorganisms” may be used at places in this manuscript to refer to both these groups.
Sadly, efforts to understand the behavior and functional properties of such microbiomes
under differing cold environments and the information available on their role in agronomic
production in cold agroecosystems have been poorly described. Among agronomically
potential organisms, cold-active phosphate solubilizing bacteria, for example, Pseudomonas,
have been recovered from glacial ice habitats [18] and other cold ecosystems worldwide
such as Andean mountain glaciers [31,32], polar environments [33,34], cold deserts [35,36],
Himalayan soils [27,37], and alpine soils [38,39]. Some notable plant growth-promoting
bacteria inhabiting the extreme cold environments are Pseudomonas [40,41], Serratia and
Staphylococcus [42], Exiguobacterium [43], Rahnella [44], Stenotrophomonas and Leucobacter [45],
and Flavobacterium [46]. Cold active microbes have prompted researchers to discover new cold-
tolerant bacterial species possessing plant growth-promoting abilities [17,43,47], to produce
cold-resistant enzymes [48,49] and mitigation of cold effects in plants in agroecosystem to
optimize crop production [45]. Although reports indicating the functional response of plant
growth-promoting rhizobacteria (PGPR) strains at low temperatures are available, studies on
the P dissolving activity of soil microbiome at low temperatures (≤10 ◦C) are scarce. Despite
this, Dolkar et al. [40] documented the potentiality of cold-tolerant P-solubilizing P. simiae,
recovered from the Seabuckthorn rhizosphere, in plant growth promotion at low-temperature
conditions. They observed a significant increase of 30% and 51% in shoot and root length in
P. simiae inoculated tomato grown in pots maintained in the greenhouse, and 9.8% and 19.8%
in open field conditions, respectively. The rhizobacterium P. putida GR12-2 recovered from the
plant rhizosphere of the Canadian high arctic grew well and enhanced root growth of spring
and winter canola at 5 ◦C at which very few bacteria could grow and function normally. Also,
the bacterium had one major protein (32–34 kDa) and several minor proteins which benefit
bacteria survival at −20 and −50 ◦C [50]. Similarly, psychrotolerant PSB Pseudomonas isolates
(RT5RP2 and RT6RP) collected from the rhizoplane of wild grass growing at 3100 and 3800 m
above sea level survived well between 4 to 30 ◦C and produced both IAA and siderophores at
4 ◦C. Under pot culture conditions, the psychrotolerant Pseudomonas strains in the presence of
Udaipur rock phosphate (URP) significantly enhanced the vegetative growth (root and shoot),
grain yield plant−1 by 20.9% and 13.8%, respectively, and P uptake by lentil plants relative to
the sole application of RP [27].

2.2. How Do Cold-Active Bacteria Survive under Cold Stress?

To thrive well under cold extremes and to protect themselves from cellular injuries
or to reduce the destructive effects of ice crystal formation, generally termed “Osmo-
protection”, microorganisms have developed various structural and functional modifica-
tions [51,52]. These adaptations include (i) variation in membrane fluidity [53]; (ii) confor-
mational flexibility; (iii) better enzyme activity associated with essential cellular processes
such as transcription and translation [54]; (iv) induction of cold-shock proteins [55]; (v) pro-
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duction of antifreeze proteins (AFPs) [56,57]; (vi) excretion of high amounts of exopolymeric
substances with cryoprotection activity [58–61]; (vii) synthesis and accumulation of various
other compatible solutes such as polyamines, sugars, polyols, amino acids, etc. [62,63]. To-
gether, the metabolic adaptation and the capability to grow widely determine the ecological
success of psychrophilic bacteria under cold environments [64].

At cold temperatures, the membrane of cold-active bacteria becomes significantly
more inflexible, which activates a membrane-bound sensor. The sensor so generated then
produce the signals in response to the regulator, which ultimately upregulates the expres-
sion of genes associated with membrane fluidity and eventually upregulates different
genes that assist bacteria to adapt to cold [65]. The presence of specific lipid constituents
in the cytoplasmic membranes of cold-active bacteria helps to sustain fluidity and allows
the transport of biomolecules through the membranes under low temperatures [66]. Also,
psychrophiles secrete enzymes that can be extremely active at low and moderate tem-
peratures compared to those produced by their mesophilic counterparts. The cold-active
enzymes, which are heat labile, preserve the proper movement of the active site even
at temperatures at which the molecular motions of mesophilic and thermophilic coun-
terparts are critically limited [67,68]. In addition, psychrophiles/psychrotrophs bacteria
enduringly synthesize one set of ice-binding proteins (AFP) at low temperatures whose
concentration increases with rising low temperatures [69,70]. The AFPs reduce the freez-
ing point of water without altering its melting point and eluding the formation of ice
crystals [69,71]. Conclusively, the AFPs and accumulation of other compatible solutes,
for example, glycine betaine as produced by Bacillus subtilis, prohibit ice-crystallization
and as an effective cold stress protectant, respectively, and therefore allow bacteria to
grow normally at growth-inhibiting temperatures [12,13,62]. Besides such stress alleviation
mechanisms, the cold-active bacteria also synthesize and secretes exopolymeric substances,
for example by Colwellia psychrerythraea 34H [60], which binds to bacterial cell surfaces
and facilitates the production of the biofilms, entraps the nutrients, facilitates biochemical
interaction, and guards the cells against hostile conditions [72]. The defense against reac-
tive oxygen species (ROS) is yet another pivotal means by which cold-adapted bacteria
thrive well at low temperatures since, if not protected, ROS can damage the bacterial
cell structures under cold ecosystems significantly. The psychrophilic strategies to avoid
the lethal impact of ROS include the generation of antioxidant enzymes such as catalase,
peroxidase, superoxide dismutases, dioxygen-consuming lipid desaturases, or the absence
of ROS-producing pathways [73–75]. Despite all of this, there is still a greater need to
uncover the cold adaptation strategies adopted by cold-active microbes, which of course
can be revealed through more and more metagenomic and proteomic technologies. These
techniques can decipher the finer details and may provide precious information on the
mechanisms of cold adaptation by the psychrophiles/psychrotrophs.

3. Low Temperature Effects on Plants: Physiological Changes and Stress Alleviation

With the consistently growing human populations, there is greater pressure on agrosys-
tems to fulfill human food demands, which, however, are under severe threat due to some
aggressive environmental conditions such as extreme low [76–78] and high [79–81] tem-
peratures, drought [82,83], and salinity [84]. Temperatures below 15 ◦C (chilling stress)
can have a detrimental impact on the growth and development of many food crops, in-
cluding cereals like rice [19,85], maize [86,87], wheat [88,89], vegetables [90–92], legume
crops [93,94], and many other plants [77,95]. At low temperatures, the cellular, physiologi-
cal, and metabolic processes of plants are perturbed due to the induction of morphological
and biochemical changes in plant tissues [78,96,97]. During the negative response, cold
initially impairs the germination of seeds and causes poor stand establishment [98]. Fol-
lowing this, the critical physiological processes of plants, such as water metabolism [99],
photosynthesis [100,101], nutrient metabolism [102,103], membrane lipids [104], proteins,
and nucleic acids [105,106], are adversely affected, leading to the death of cells. Mechanisti-
cally, the low temperatures damage the cell membranes by blocking the water movement
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by altering stomata and disrupting the balance of cells metabolism [107–109]. Also, low
temperatures reduce cellular respiration [110] and produce reactive oxygen species (ROS)
in plants [111]. The ROS so generated at low temperatures can destruct the lipid profile
of the membrane, proteins, and nucleic acid, which either alone or simultaneously leads
to cell death [112,113]. When the membrane is damaged due to osmotic imbalance, the
secretion of osmolytes, soluble proteins, and proline is enhanced, which eventually reduces
the ability of cells to obviate the cold stress [114] and may cause the death of the cells [115].
As an example, extreme temperatures have been found to negatively upset the growth
and many developmental processes of rice, such as germination, emergence and seedling
establishment, and reproductive and grain-filling stages. The low (cold) temperature
slowed down the vegetative growth; decreased the seedling vigor, number of seedlings,
and tillering; and eventually enhanced the chances of plant mortality [116,117]. These
results are supported by the findings of other researchers who also observed a similar
deleterious impact of low temperatures on many food crops (Table 1).

Table 1. Effect of low temperatures on biological and biochemical features of food crops.

Crops Scientific Name Growth
Conditions

Applied Low
Temperatures Crop Responses References

Soybean Glycine max Growth
chamber 25 ◦C to 10 ◦C

At 10 ◦C germination was completely inhibited; very slow
at 15 ◦C but germinated well at 25 ◦C; highest cell
membrane permeability at 10 ◦C and 15 ◦C; at 10 ◦C, the
dehydrogenase activity was highest but -α-amylase was
poor at 10 ◦C; photochemical efficiency was higher in
Malaga and Petrina plants germinating at 10 ◦C and 15 ◦C
than at 25 ◦C; at a lower temperature, dry weight and
number of pods reduced but the number of seeds was
higher at 10 ◦C compared to 15 ◦C and 25◦C; seed weight
did not differ among temperatures

[98]

Peas Pisum sativum Greenhouse 4 ◦C to −20 ◦C
Proline content and activities of antioxidant enzymes such
as APX, SOD, and CAT gradually increased at cold
acclimation

[118]

Chickpea Cicer arietinum

Field ≤10 ◦C

Vegetative growth was reduced and all the phenological
stages were delayed; caused vegetative aberrations like
chlorosis, necrosis of leaf tips and curling of the whole leaf;
damage to reproductive stage involved abscission of
juvenile buds and flowers and abortion of pods, pollen
development was suppressed and seed formation was
inhibited

[119]

Pots <20 ◦C/<10 ◦C
(day/night)

Decreased chlorophyll content, relative leaf water content,
dry weight, and yield features such as pods, seed number,
and seed yield; increased electrolyte leakage, reduced total
sugars, and starch, poor β-amylase, invertase and sucrose
synthase; greater oxidative stress, poor levels of enzymatic
antioxidants and reduction in proline and ascorbic acid

[120]

Greenhouse 11.7/2.3 ◦C
(day/night)

The chilling conditions increased electrolyte leakage,
inhibited chlorophyll formation, decreased sucrose content,
the water content in leaves, declined total plant weight,
reduced the rate and duration of the seed filling, seed size,
seed weight, pods per plant and harvest index, reduced the
accumulation of starch, proteins, fats, crude fiber, protein
fractions like albumins, globulins, prolamins, and glutelins;
also, chilling declined the level of sucrose and enzymes
such as starch synthase, sucrose synthase, and invertase
significantly in the seeds; minerals such as Ca, P and Fe
and amino acids were lowered significantly in the stressed
seeds

[121]
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Table 1. Cont.

Crops Scientific Name Growth
Conditions

Applied Low
Temperatures Crop Responses References

Wheat Triticum aestivum

Field air
temperature

control
system
(FATC)

5.3 ◦C to −7.0 ◦C
Low-temperature stress prolonged the growth period
significantly decreased net photosynthetic rate, plant
height, and biomass production, and reduced grain yield

[122]

Maize Zea mays Greenhouse 8 ◦C to 4 ◦C
Reduced germination, increased number of dead seeds,
reduced plumule dry weight and radicle, declined the rate
of metabolic activity

[123]

Rice
Oryza sativa Greenhouse 22 ◦C to 14 ◦C

Significantly reduced shoot and root growth, physiological
attributes, leaf chlorophyll fluorescence associated
parameters, and dry matter production

[19]

Field
conditions <15 ◦C

Increased the chlorophyll-a, chlorophyll-b, chlorophyll-a/b
ratio, and total chlorophyll, increased proline concentration
but decreased carotenoid content

[124]

Tomato Lycopersicon
esculentum Greenhouse 14.6 ◦C

Suppressed fruit yield, restricted fruit mass, increased
soluble carbohydrates, total amino acids, and guaiacol
peroxidase activity in roots, leaves, and fruit, and
superoxide dismutase in fruit but significantly lower
malondialdehyde content

[125]

Potato Solanum
tuberosum

Growth
chamber

4 ◦C/2 ◦C
(day/night)

Soluble protein, MDA, and proline enhanced with
low-temperature exposure duration but the chlorophyll
content decreased; protein spots (N = 52) identified in
proteomic studies were involved in defense response,
energy metabolism, photosynthesis, protein degradation,
ribosome formation, signal transduction, cell movement, N
metabolism, and other physiological processes

[126]

Cabbage Brassica oleracea

Pot trays
under

controlled
conditions

12 ± 1 ◦C

Low temperatures affected photosynthesis and fresh
weight; stomatal conductance and leaf water content were
significantly reduced; plants had smaller but thicker leaves;
chilling conditions did not show any reduction in the dry
matter

[127]

In order to alleviate cold stress, plants have evolved mechanisms such as the formation
of stress proteins [128], organic osmolytes, and phytohormones such as ABA, GA, brassinos-
teroids (BR), jasmonates (JA), auxin, cytokinin (CK), melatonin, and polyamines [74,129].
Also, they have antioxidant enzymes, for example, SOD, POD, CAT, and APX [130,131], and
temperature-induced non-enzymatic active biomolecules to circumvent the ROS-induced
damage, which is vital to maintain the redox balance of the cells [132–134]. Apart from
these, certain compatible solutes generally referred to as “osmotic protectors” secreted
under cold stress by plants is yet another imperative strategy adopted by plants to over-
come abiotic stress [135,136]. For instance, soluble proteins, proline, and total free amino
acids released by plants at low temperatures serve as osmotic protectors and guard plants
against stress [101,137]. Of these cold-induced phytocompounds, the function of proline in
cold management and its significance in shielding plants from cold stress has been well
investigated [138,139]. Physiologically, proline can serve as a rapidly available source of N
and C and assist plants during the phase of recovery from cold stress [140]. Proline may
also act as a metabolite and a signal molecule and therefore affects plant development.
Moreover, proline stimulates the secretion of some vital proteins and plays an important
role in maintaining the expansion of cells under stress conditions [141,142]. The impact
of temperature, i.e., both chilling (0–15 ◦C) and freezing (<0 ◦C), however, vary from
genotypes to genotypes of plants.

4. Importance of P and Rationale for Using Cold-Active Bacterial Phosphate
Biofertilizers in Low-Temperature Environments

Phosphorus is a vital nutrient that supports the growth and development of plants
dramatically but its deficiency limits the crop severely [143,144]. Following uptake by the
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root systems and translocation to various plant organs, soluble phosphorus influences root
morphogenesis, cellular growth, development of new tissues, macromolecular biosynthesis,
respiration, signal transduction, energy transfer, and photosynthesis [145–148]. Although
global soils have enough reserves of P (inorganic and organic P), very small amounts of the
total soil P are accessible for plants [149] because of its rapid fixation/complex formation
ability with Fe and Al in acid and alkaline soils, aggravating the nutrient problems of
colder agrosystems [150–152]. To balance the P availability and to support the growth
and development of plants, phosphatic fertilizers are repeatedly applied in agronomic
practices [153–155]. However, due to the cost of its production and unpredicted envi-
ronmental hazards like water eutrophication, sustainability of soil–plant systems, and
human health problems, the use of chemical P fertilizers are discouraged [156]. Soil micro-
biomes having P solubilizing/mineralizing activity—often termed phosphate solubilizing
microorganisms (PSM) in this context—have been suggested as a substitute to chemical
phosphatic fertilizer [157,158] that transform the locked P into soluble forms which are
taken up by plants [159,160]. To harness their potentials, phosphatic, nitrogenous, and
potassic biofertilizers [161–163] have been produced and are commercially sold worldwide
but their use in colder regions have been found to be grossly unproductive [164] due largely
to the lethal impact of low temperatures on the functional activity of mesophilic homologs.
As an example, the microbial enzyme activity decreases two to four times more when the
temperature of any environment drops by 10 ◦C [11]. In addition, the poor availability
of nutrients, low moisture and organic matter, minimal land, and harmful impact of low
temperatures on crops are the major constraints that further worsen crop production in
colder/high altitude agrosystem conditions that experience chilling temperatures. So,
realizing the colder region problems and pressure on the agroecosystems, there is an
imperative requirement to produce effective phosphate biofertilizers consisting of plant
beneficial psychrotolerant or psychrophiles. The usefulness of such bacterial strains in
cold-adapted agroecosystems (e.g., hill and mountain) seems huge due to the exceptional
crop-raising conditions and the environmental situations of the high altitude agricultural
systems [165,166]. The cold-adapted P biofertilizers could resist/tolerate the extremities of
cold and maintain their functional qualities even under cold environments [167]. Consider-
ing the vast and varied plant growth-promoting potentials, the application of indigenous
phosphate biofertilizers in cold soils can be a central approach to preserve soil fertility,
protect microbial diversity, and concomitantly optimize crop production more sustainably.

5. Mechanisms of P-Solubilization in Cold-Adapted Bacteria: An Overview

Generally, the phosphate-solubilizing bacteria including psychrophiles [2,20],
mesophiles [168,169], or thermophiles [156,170] convert the inaccessible complex P such
as Ca3(PO4)2, Fe3PO4, and Al3PO4 to plant-available forms by acidification, chelation,
exchange reactions, and polymeric substance formation [171,172]. On the other hand,
the organically bound P (e.g., phytin, phospholipids, nucleic acid, etc.) is transformed
into bioavailable forms by microbial enzymes, and, later on, the soluble P is absorbed
by plant roots [173–175]. Like the mesophilic counterparts, the organic acid (OA) theory
of P solubilization by cold-active bacteria is the most widely accepted mechanism of P
availability in soil (Table 2). For example, different cold-active bacteria like Pseudomonas sp.,
P. palleroniana, P. proteolytica, and P. azotoformans while growing at 15 ◦C and 25 ◦C released
mainly oxalic and malic acids, whereas the culture supernatants of these bacteria had a
poor quantity of lactic, citric, and succinic acids [20]. In general, the P solubilization by
psychrotolerant Pseudomonas sp. was maximal at 15 ◦C except for P. azotoformans, which
showed maximum P solubilization at 25 ◦C. Likewise, gluconic acid, acetic acid, oxalic
acid, quinic acid, and succinic acid are secreted by other PSB while growing under in vitro
conditions [176,177]. The membrane-bound enzyme, for example, glucose dehydrogenase
(gcd), mediates the synthesis of gluconic acid [178,179], an important organic acid causing
solubilization of insoluble P by such PSB. The OA so released diffuses through the mem-
brane and strongly acidifies the cell surroundings, leading eventually to the discharge of P
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ions from insoluble inorganic P sources by H+ substitution for Ca2+ [180,181]. The acidic
(lowering of pH) environment of the medium suggests the release of OA that occurs on the
outer face of the cytoplasmic membrane via the direct oxidation pathway. Many reports
have established a positive correlation between pH drop and soluble P concentration in
the liquid culture medium. Since the solubilization of inorganic P largely depends on the
membrane-bound enzymes, the low temperatures may intensely affect its efficacy under
a mesophilic environment. So, such conventional PSB requires urgent bioprospecting
especially for solubilizing enzymes so that they remain active and perform efficiently at
low temperatures, like those performed by cold-active PSB [167]. The OA secreted either by
cold-active PSB or conventional PSB into the culture supernatant can be detected by paper
or TLC [182] or by HPLC [20,183]. Besides OA, the release of H+, production of chelating
substances, and inorganic acids (sulfuric, nitric, and carbonic acids) have been suggested
as some other alternative mechanisms of P solubilization by PSB, as observed in the case of
P fixation in acidic soil [184]. To elaborate further, Illmer and Schinner [185] reported that 0
to 5000 µM of gluconic acid at pH 4 to 7 did not affect Ca-P solubility at pH > 6. Moreover,
the total amount of P solubilized under in vitro environments did not correlate with the
amounts of OA excreted into the supernatant suggesting the involvement of biomolecules
other than OA in P solubilization by PSB. The inorganic acids, for instance, hydrochloric
acid, can also solubilize insoluble P but in terms of solubilization, they have been poorly
effective relative to those solubilized by OA at the same pH [186].

Table 2. Organic acids secreted by cold-active phosphate solubilizing bacteria.

Cold-Active PSB Ecological Habitat Organic Acids References

Pseudomonas sp., Pseudomonas
palleroniana, Pseudomonas proteolytica,
Pseudomonas azotoformans

Soils from high altitudes in
Indian Himalayas

Oxalic, lactic, malic, citric, and
succinic acids [20]

Serratia plymuthica Soils Gluconic acid [187]

Bacillus, Burkholderia, Paenibacillus sp. Paddy field Gluconic oxalic, citric, tartaric,
succinic, formic and acetic acid [188]

Pantoea, Pseudomonas, Serratia, and
Enterobacter Wheat rhizosphere Oxalic, citric, gluconic succinic, and

fumaric acids [189]

Bacilli strains Wheat rhizospheres and rock
phosphate mine

Gluconic, lactic, citric, malic,
succinic and propionic acids [190]

Pseudomonas sp. strain AZ5, Bacillus sp.
strain AZ17 Chickpea rhizosphere Acetic, oxalic and gluconic acids,

acetic, citric, and lactic acids [191]

Pseudomonas Glacial ice samples Gluconic acid [18]

Rahnella sp. BIHB 783 Hippophae rhamnoides
rhizosphere Gluconic, citric, and isocitric acids [44]

Acinetobacter rhizosphaerae strain BIHB
723

Cold deserts of the
trans-Himalayas

Gluconic, oxalic, 2-keto gluconic,
lactic, malic, and formic acids [192]

Fluorescent Pseudomonas strains Cold deserts of the Himalayas

Gluconic acid, oxalic acid,
2-ketogluconic acid, lactic acid,
succinic acid, formic acid, citric acid
and malic acid

[193]

Pseudomonas corrugata (NRRL B-30409) Culture Collection Gluconic and 2-ketogluconic acids [194]

Enzymes like phosphatases, phytases [20,195], and phospholipases [196] produced
by many psychrotolerant/conventional PSB induce the release of P from phosphorus-
containing organic molecules (e.g., phospholipids, phytin, nucleic acid, etc.) through
mineralization process in the rhizosphere soil. As an example, the cold-tolerant Pseu-
domonas sp. produced maximal amounts of phytase at 15 ◦C, whereas P. azotoformans
excreted the highest quantity of phytase at 25 ◦C. The phytase so released by both the
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cold-tolerant PSB transformed the phytate (a natural soil organic P) into plant-available
orthophosphate through the mineralization process [20]. Similarly, the genetically engi-
neered root-associated mineral P solubilizing (mps) bacteria, P. simiae WCS417r, Ralstonia sp.
strain UNC404CL21Col, and P. putida KT2440 caused the release of plant-available P from
phytate [197]. Apart from this, the persistence of mineralizing activities of acid and alkaline
phosphatase further confirms the ability of bacterial cultures to release P from organically
bound P as also reported in Serratia sp. [198] and Pantoea sp. [173] by other workers.

6. Mechanisms Used by Cold-Adapted PSB to Facilitate Plant Growth

The concept of applying cold-adapted PSB among many cold-active PGPR makes
it clear that the cold temperatures and poor growing seasons influence both versatile
microbiomes and plants growing under cold/chilling temperatures. So, the discovery of
novel cold-active PSB, which maintains their plant growth-promoting traits even under
low-temperature environments and counterbalances the damaging effect of cold temper-
ature, is indeed essentially needed to optimize food production in colder areas of the
world. The mechanisms used by conventional PSM including bacteria, fungi, and actino-
mycetes to optimize crop production in different agroecosystems have been previously re-
viewed [172,199,200]. However, the mechanisms adopted by psychrophiles/psychrotrophs
PSB to ameliorate crop production in a low-temperature environment have perhaps not
been reviewed due largely to scanty literature on this aspect. Despite this, the literature
available here and there on cold-active PSB including rhizosphere bacteria, epiphytes, and
endophytes able to exhibit direct or indirect ameliorative effects on plants (Figure 1) are
reviewed and discussed.

6.1. Direct Mechanisms

Epiphytic, endophytic, and rhizospheric cold-active PSB bacteria promote plant
growth directly by the expedition of resource and nutrient acquisition, primarily the
solubilization and mineralization of inorganic and organic P, respectively [20], a mecha-
nism also employed by other mesophilic homologs PSM [175,201], fixation of atmospheric
N, solubilization of potassium and zinc, secretion of siderophores and phytohormones such
as cytokinin, auxin, and gibberellins [12,37,202,203]. The phyto-beneficial active molecules
identified in cold-active PSB supporting plant growth, however, differs from organism
to organism and from temperature to temperature (Table 3). Cold tolerant PSB, for ex-
ample P. fluorescens [204], P. lurida M2RH3 [205] and A. chroococcum [206], also produce
siderophores that solubilize and form a complex with iron in the rhizosphere and, there-
fore, offer a survival advantage to both plants and bacteria by removing phytopathogens
and other microbial competitors through iron limitation [2,43]. The secondary metabo-
lites released by psychrophilic PSB strains could therefore serve as attractive and useful
biotechnological tools in reducing the damage to plants caused by the attack of a variety of
pathogens [18].
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Figure 1. Cold active phosphate biofertilizers: isolation, characterization, P solubilization, and plant growth promotion in
the low-temperature environment.

Table 3. Plant growth-promoting active biomolecules released by psychrophilic/psychrotolerant phosphate solubilizing
bacteria.

PPSB Origin Media Used Plant Growth Enhancers Reference

Bacillus weihenstephanensis MF593886 Gentiana kurroo Royle
rhizosphere PVK Siderophore, HCN, ammonia, and

proteases [207]

Pseudomonas, Serratia, and
Flavobacterium

Rhizosphere and
phyllosphere of Andes
Mountains and
Patagonia of Chile

PVK IAA, ACC deaminase,
anti-phytopathogenic activities [12]

Pseudomonas Snow sample NBRIP Siderophores, cellulases, xylanases,
and chitinases [2]
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Table 3. Cont.

PPSB Origin Media Used Plant Growth Enhancers Reference

Pseudomonas koreensis P2 Sela Lake NBRIP IAA, siderophore, HCN, and iron
uptake [208]

Acinetobacter, Bacillus, Enterobacter,
Klebsiella, Proteus, Pseudomonas, and
Staphylococcus

Renuka Lake PVK Ammonia, HCN, Zn solubilization,
and hydrolytic enzymes [202]

Pseudomonas Antarctic soils NBRIP
IAA, siderophores, HCN,
microbial volatile organic
compounds (MVOCs)

[209]

Pseudomonas simiae PS2

Seabuckthorn
(Hippophae rhamnoides
L.) rhizospheric soil of
high altitude in
trans-Himalaya

PVK IAA, siderophore and HCN [40]

Pseudomonas, Bacillus, Paenibacillus,
Sporosarcina, Cupriavidus and
Paenarthrobacter

Lepidium meyenii Walp.
Rhizosphere NBRIP IAA [210]

Bacillus licheniformis, Bacillus muralis,
Desemzia incerta, Paenibacillus tylopili
and Sporosarcina globispora

Soil and water
samples PVK IAA, GA, siderophores, NH3,

HCN, ACC deaminase [211]

Pseudomonas koreensis and Arthrobacter
nitroguajacolicus strainYB4

Rainfed agriculture
field PVK IAA [212]

Pseudomonas

Rhizospheric soil NBRIP

IAA, siderophore, ACC deaminase,
ammonia, NF, and antifungal
compounds

[213]

Bacillus HCN, ammonia, and NF

Stenotrophomonas
IAA, GA, HCN, Siderophore, ACC
deaminase, ammonia, NF, and
antifungal compounds

Arthrobacter IAA, siderophore, ACC deaminase,
ammonia, and NF

Acinetobacter
IAA, GA, HCN, siderophore, ACC
deaminase, ammonia, NF, and
antifungal compounds

Exiguobacterium Siderophores, ammonia, and
antifungal compounds

Providencia IAA, GA, HCN, siderophore, ACC
deaminase, ammonia, and NF

Flavobacterium IAA, HCN, siderophore, ACC
deaminase, and ammonia

Kocuria IAA, GA, HCN, and siderophore

Pseudomonas Glacial ice NBRIP IAA, HCN, siderophore, proteases
amylases and galactosidases [18]

Rhizobia Pea nodules PVK IAA [22]

Azotobacter, Pseudomonas, Micrococcus,
and Bacillus

Pennisetum
clandestinum
rhizospheres

PVK IAA and siderophores [214]
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Table 3. Cont.

PPSB Origin Media Used Plant Growth Enhancers Reference

Pseudomonas spp.
High altitude of the
northwest Indian
Himalayas

NBRIP IAA, siderophore [27]

Pseudomonas sp. Deschampsia antarctica
rhizosphere PVK IAA and EPS [215]

Exiguobacterium acetylicum strain 1P High altitude soil NBRIP IAA, siderophore and HCN [216]

Pseudomonas fragi CS11RH1 High altitude garlic
rhizosphere NBRIP IAA and HCN [14]

Fluorescent Pseudomonas Garhwal Himalayas
region PVK Siderophores, antifungal activity [15]

PPSB, PVK, and NBRIP indicate psychrophilic/psychrotolerant phosphate solubilizing bacteria medium, Pikovskaya medium, and
National Botanical Research Institute Phosphate medium, respectively; IAA, HCN, GA, NF, and EPS represents indoleacetic acid, hydrogen
cyanide, gibberellic acid, nitrogen fixation, and exopolysaccharides, respectively.

Nitrogen-fixing microorganisms can transform the atmospheric N2 into ammonia
and provide it to plants. Like traditional N2 fixers, the uptake of nitrogen fixed by psy-
chrotolerant bacterial species of Arthrobacter, Bacillus, Bordetella, Providencia, Pseudomonas,
Acinetobacter, and Stenotrophomonas facilitates plant growth and increases the nutritional
value of crop plants [213]. In a similar study, Zhang et al. [217] reported that the rhizobia
recovered from the cooler climates of North America markedly affected symbiotic features,
such as N2 fixation and nodulation of soybean, relative to the rhizobia isolated from the
warmer southern climes. The production of stimulatory phytohormones by cold-active
PSB including IAA, cytokinin, gibberellin, abscisic acid, etc. [22,35,36] is yet another di-
rect mechanism of plant growth stimulation. Of these hormones, the IAA directly affects
morphogenesis including root primary growth, side root formation, and root hairs. Many
cold-tolerant PSB are capable of secreting IAA at low temperatures, including Pantoea
dispersa and Serratia marcescens SRM [218] and Pseudomonas jesenii strain MP1 [219], have
been isolated from cold environments. Similarly, the psychrotrophic PSB recovered from
the cold desert of the Himalayan region produced gibberellic acid (GA) [35,36]. However,
some cold-active PSB, for example, Stenotrophomonas, can produce more than one hor-
mone (e.g., IAA and GA) which either alone or simultaneously facilitates the development
of plants [213]. The combined effect of such valuable biomolecules on plants is usually
measured by evaluating the cumulative plant growth, nutrient uptake, and total biomass
production [220].

In addition to producing phytohormones, many cold-tolerant PSB, for instance, Pseu-
domonas, Serratia, and Flavobacterium, possess the enzyme ACC deaminase [12] which
can lower plant ethylene (C2H4 or H2C=CH2) levels [221]. Ethylene, a phytohormone
synthesized under biotic/abiotic stress [222] induces senescence, chlorosis, and abscis-
sion in plants, thereby aggravating the lethal impact of pathogens [223,224]. The enzyme
ACC deaminase cleaves ACC, a precursor of ethylene formation, into α-ketobutyrate and
NH3 [225] and, therefore, decreases the levels of ethylene. Once the plants have decreased
levels of ethylene, they grow normally under stress. As an example, ACC deaminase-
producing psychrotolerant bacterium P. putida UW4 facilitated the bio-performance of
canola plants growing at low temperatures [226]. Several studies have validated the effi-
cacy of the ACC deaminase enzyme produced by cold-active PSB to protect plants from
attack by the phytopathogens [35,43].

6.2. Indirect Mechanisms

Cold adapted PSB can also stimulate the growth of plants indirectly by restricting the
functioning and further multiplication of crop-damaging phytopathogens [203,207,227].
Due to this, the indirect mechanisms become of great practical significance because they
avoids the use of synthetic pesticides in agronomic practices. Currently, although the
technology for the large-scale production of biopesticides using mesophilic microbes is



Microorganisms 2021, 9, 2451 13 of 28

available, these biocides have not been active at low temperatures due to the destructive
effect of cold temperatures on biocontrol agents. Hence, there is great interest in identi-
fying the cold-active PSB possessing biocide activity for application in low-temperature
environments [2,228]. Sadly, the reports on such cold-active microbiomes with biocontrol
potentials are scanty. In this section, we review the current information available on the
antagonistic potentials of cold-active bacteria.

Cold-adapted PSB produce hydrolytic enzymes such as chitinases and proteinase,
which degrade the fungal cell walls and therefore protect the crop plants from attack by
pathogens, reducing the necessity of using environmentally hazardous chemicals to opti-
mize crop production [17,229,230]. For example, several psychrophilic Pseudomonas spp.
strains through lytic enzymes protease have been shown to inhibit the phytopathogens
P. ultimum, F. oxysporum, and P. infestans. Other hydrolytic enzymes such as chitinases and
cellulases degrade cellulose and chitin, respectively. As a result, the cold-active PSB able to
produce such enzymes improves colonization and protects plants from phytopathogens
like Phytophthora and Phytium species whose cell walls contain cellulose and other fungi
with a chitin cell wall [231]. Some other well-recognized phytopathogenic fungi include
the genera like Rhizoctonia, Alternaria, and Verticillium, which cause serious damage to
crops. So, the application of cold-adapted plant growth-promoting bacteria to prevent
the attack of phytopathogens and hence to limit the progression of the diseases is imper-
ative for the sustainability of agro-ecosystems [25]. In this context, four different strains
of psychrophilic Pseudomonas impeded the growth of fungal phytopathogens, Fusarium
sp., R. solani, A. solani, and P. capsica, by secreting chitinases and proteases [2]. Likewise,
a chitinase-producing Pseudomonas sp. recovered from marine sediments suppressed
the growth of two phytopathogenic fungi, V. dahlia and F. oxysporum f. sp. cucumer-
inum [232]. Production of cyanogenic compounds by cold-active PSB inhabiting various
low-temperature environments [18,35,213] is yet another special trait that aids in the man-
agement of phytopathogens, although it is harmful to certain plants because it interferes
with the cytochrome P450 system [233]. To counteract the cyanogen toxicity, plants pos-
sess a cyanide resistant respiratory pathway [234] but microbes do play a critical role in
avoiding cyanogenic toxicity. For instance, seed inoculation with HCN positive phosphate
solubilizing psychrotolerant P. fragi CS11RH1 had no damaging influence on germination
or growth of wheat plants [14]. The ability of the wheat plant to counterattack cyanide
action was due to cyanogenesis by P. fragi, which avoided cyanogenic toxicity, as also
reported for the take-all disease of wheat caused by the fungal pathogen Gaeumannomyces
graminis var. tritici [235]. Another indirect mechanism of growth stimulation by psy-
chrophilic and psychrotolerant bacteria involves the production of gluconic acid which
can control the populations of plant pathogens. Psychrophilic and psychrotolerant bacteria
mainly belonging to class actinobacteria and proteobacteria collected from Andean glaciers
produced high quantities of gluconic acid [31,32]. The majority of these cold-tolerant
bacterial strains limited the growth of phytopathogenic fungi, F. oxysporum and oomycetes,
P. infestans, and P. ultimum. Conclusively, the multifarious growth stimulatory activity
of cold-tolerant PSB represents one of the most important functional groups of bacteria,
which could be developed as suitable bacterial formulations able to endure at extremely
low temperatures while retaining their plant growth modulating traits for crops growing
in low-temperature environments.

7. Performance of Cold-Active P-Biofertilizers under the
Low-Temperature Environment

Plant–microbe interactions are influenced by changes in temperature [22,236] wherein
the low temperature among different abiotic stresses poses a major limitation on the
growth and reproductive stage of development and grain yield of plants [237]. In this
regard, cold-tolerant or low-temperature adapting plant growth-promoting P bacteria
have an advantage over their mesophilic counterparts to increase growth and productivity,
particularly in the areas perturbed by low temperatures. Also, the cold adaptive bacterial
formulations have a greater possibility of substituting agrochemicals used to optimize



Microorganisms 2021, 9, 2451 14 of 28

crop production in nutrient/cold stressed soils. Understanding the crosstalk between
cold-active bacteria and crops growing under cold regimes will, therefore, be needed to
develop microbial strategies to protect plants from cold stress vis-à-vis augmenting their
growth under low-temperature regions.

Psychrophilic and psychrotolerant bacteria recovered from cold environments [238,239]
have demonstrated plant growth-enhancing activity both in greenhouse and field conditions
that prompted the scientists to apply them in cold agricultural ecosystems also [27,240]. The
Antarctic Pseudomonas, a psychrotolerant strain (Da-bac Ti8) possessing plant-growth modi-
fying ability has previously been used as a psychrotolerant biofertilizer formulation and is
currently patented as well [215,241]. The bacterial preparation (inoculant) of psychrophilic
or psychrotolerant Pseudomonas spp. have demonstrated some promising results in many
food crops like mungbean [242], wheat [194,205,216,243], maize [244,245], rice [246], and
lentils [37,41]. In addition to the non P solubilizing cold-active plant beneficial bacteria, the
low-temperature tolerant PSB applied in P deficient soils of colder regions have been found
agronomically useful against many crops (Table 4). The use of cold-tolerant P-solubilizing
bacteria in stressed agrosystems is recommended due to reasons such as (i) inexpensive
production; (ii) the ability to tolerate other stressor molecules besides cold, without losing
functional traits; and (iii) being environment friendly. Some notable phosphate solubilizing
bacterial genera possessing stress tolerating ability include Cronobacter [247], Azotobacter [248],
Aerococcus, Pseudomonas and Pantoea sp. [173], Achromobacter [249], Bacillus sp. [250,251]. Psy-
chrotrophic PSB, P. jesenii MP1, and Acinetobacter sp. ST02 enhanced the germination of seeds
by 92% (MP1) and 85% (STO2) and significantly increased the agronomical and biochemical
parameters of chickpea grown under field conditions [252]. Of the two strains, strain MP1
applied with 40 kg P2O5 ha−1 had maximum impact on grain yield and harvesting index,
indicating that the use of PSB with a recommended dose of P fertilizers is greatly beneficial
for high altitude agriculture. Similarly, the cold-tolerant P. corrugata enhanced the yield of
maize grown in greenhouse and fields in rain-fed conditions [244]. Rondón et al. [16] in
yet another investigation observed that the Pseudomonas strains recovered from the Andean
glacier enhanced the biological performance of wheat plantlets at low temperatures. Con-
clusively, the use of cold-tolerant PSB, individually or as a mixture, has been found effective
in optimizing crop production under low-temperature regimes. Therefore, the cold-active
PSB–plant interactions have great agronomic potential and promise to be an efficient tool for
bioprospecting food production, even under cold stressed environments.

Table 4. Inoculation effect of psychrophilic/psychrotolerant phosphate biofertilizers on different crops.

Inoculated Crops Cold Active PSB Conditions Agronomical Traits References

Arabidopsis thaliana

Pseudomonas sp.,
Pseudomonas
proteolytica,
Pseudomonas
azotoformans

Growth Chamber
Promoted overall growth such as
rosette diameter, leaf area, and
biomass

[20]

Tomato

Mixture of
Pseudomonas sp.
TmR5a and
Curtobacterium sp.
BmP22c (BC3)

Pot assay
Promoted the germination by 90%
and significantly increased the root
lengths

[12]

Tomato Pseudomonas Greenhouse Increased germination and
plantlets [2]

Wheat Pseudomonas Paper Roll Towel Bioassay Significantly increased root and
shoot-lengths [209]

Tomato Pseudomonas simiae
Pot experiments in green
shade net and open field

conditions

Enhanced plant growth, increased
fruit yield by 9.8% (net house)
19.8% (open field)

[40]
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Table 4. Cont.

Inoculated Crops Cold Active PSB Conditions Agronomical Traits References

Chickpea, green gram, pea, and maize

Lysinibaccilus macroides
ST-30, P. palleroniana
N-26 and P. jessenii
MP-1

In vitro seed germination
assay

Significantly increased the
germination efficiency [253]

Red clover

Pseudomonas, Bacillus,
Paenibacillus,
Sporosarcina,
Cupriavidus and
Paenarthrobacter

Water agar plates Increased seed germination [210]

Rice

Pseudomonas koreensis
and Arthrobacter
nitroguajacolicus
strainYB4

Greenhouse Efficiently increased the biomass
and P uptake [212]

Lentil Pseudomonas spp. Temperature controlled
polyhouse

Significantly increased the plant
growth, grain yield, and P uptake [27]

Barley, chickpea, pea, and maize Rahnella sp. Greenhouse

Significantly increased growth of
all crops, microplot testing of the
PPSB inoculum also significantly
increased growth and yield of pea

[44]

Wheat

Pseudomonas fragi
CS11RH1 (MTCC
8984)

Greenhouse
Increased the percent germination,
rate of germination, biomass, and
nutrient uptake

[14]

Pseudomonas
vancouverensis Greenhouse Increased germination and root

and shoot length [254]

8. Molecular Engineering of Phosphate-Biofertilizers

Phosphate solubilizing bacteria surviving at mesophilic, thermophilic, or psychrophilic
temperatures release plant-available P from both inorganic and organic P stores. Therefore,
they may serve as sustainable and inexpensive alternatives to high-cost and environmen-
tally hazardous chemical P fertilizers. However, many plant growth-promoting bacteria
(PGPB) colonizing the root surface and thriving around the root systems do not release plant
accessible P from soil reserves because they lack the capacity to solubilize/mineralize the
soil P. Therefore, the effort is directed to develop a pool of P-solubilizing soil bacteria that
grow in the root region and could release plant accessible P. Recombinant technology in this
regard offers a viable option to engineer non-P-dissolving soil bacteria to improve their P
solubilizing/mineralizing ability that can be applied against wide-ranging crops [255,256].
Also, the engineered bacterial strains could be customized according to the crops and envi-
ronmental conditions. Considering this, different molecular approaches have been used to
genetically modify non-P-solubilizing plant beneficial bacteria to release plant-available
orthophosphate from different organic P. Molecular engineering of PSB by insertion and
over-expression of genes associated with soil P dissolution into non-solubilizer soil bac-
teria is indeed a promising approach for enhancing the capability of non-P-solubilizing
bacteria and host range to be used as PSB inoculant [257,258]. Furthermore, cloning and
transfer of P-solubilizing/mineralizing genes into non-PSB may avoid the need for mix-
ing two phylogenetically and physiologically contrast bacterial populations, for example,
nitrogen-fixers and P-solubilizers, as inoculants together, if the technology is successful.
Molecular engineering focuses on transferring especially mineral phosphate solubilization
(mps) genes or the enzyme encoding genes associated with the dissolution of organic P
from solubilizing/mineralizing to non-P-solubilizing/mineralizing PSB. Some of these
approaches are briefly discussed.

8.1. Development of mps Positive Bacterial Strains

Goldstein [259] suggested for the first time the existence of mps genes in a Gram-
negative epiphyte Erwinia herbicola, currently known as Pantoea agglomerans. Applying
the shotgun-cloning technique, Goldstein and Liu [260] cloned gene(s) associated with
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mps and demonstrated that the pyrroloquinoline quinone-linked glucose dehydrogenase
(PQQGDH) mediated dissimilatory bypass system catalyzes the oxidative transformation
of glucose to gluconic acid (GA) that occurred in the bacterial periplasmic space. The
resulting GA caused the solubilization of mineral P in E. herbicola. Further insertion and
subsequent expression of this mps gene into E. coli HB101 led to the synthesis of GA and
imparted P solubilizing potentials to the non-PSB to solubilize hydroxyapatite (MPS+

phenotype). The E. coli strains lacking mps (MPS−) can produce GDH (encoded by gcd) but
they cannot produce the PQQ—a cofactor encoded by the PQQ operon [261] for the GDH
and, hence, may not produce GA [262]. In a similar experiment, E. coli produced higher
amounts of GA and dissolved hydroxyapatite when the mps gene of Ranella aquatilis was
integrated into the non P solubilizing recipient bacterium [263]. However, both bacterial
species differed in the regulation of the mps genes. Similar efforts to increase the mps
ability in conventional mesophilic plant growth regulators, for example, B. cepacia and
P. aeruginosa strains through PQQ synthase genes obtained from E. herbicola, was done using
a broad-host-range vector pKT230 [264]. Using the tri-parental conjugation process, the
recombinant plasmid was allowed to express in E. coil, and thereafter it was inserted into
two recipients cells of B. cepacia and P. aeruginosa. Many of the resulting clones possessing
recombinant plasmids displayed a larger P solubilization zone on solid PVK medium
containing insoluble TCP. The production of clear halo around the bacterial conjugants
suggested a successful expression of mps activity of the E. herbicola mps gene in the non-P
solubilizer PGPR strains. Expression of the mps genes in a non-P solubilizer, however,
depends on the genetic composition of the recipient bacterial strains, the plasmid copy
number, and metabolic reactions.

8.2. Development of Enzyme Engineered Bacterial Strains
8.2.1. Development of Bacterial Strains with Phosphatase Activity

Besides inorganic phosphorus, the organically bound P [265] is mineralized to release
free orthophosphate by enzymes acid phosphatase (encoded by olpA), alkaline phosphatase
(phoD) [198], phytases (appA), phosphonatase (phnX), and C-P lyase (phnJ) [101,266–268].
Of these, phytases and phosphatases are the most common P mineralizing enzymes which
have been transferred to non-P mineralizing bacteria. For example, the PhoC acid phos-
phatase gene of Morganella morganii (phoC gene) cloned using a vector was transferred
through chromosomal integration into phoC negative PGPR strains of Azospirillum spp.
and B. cepacia [269]. Similarly, a gene expressing phosphatase activity was isolated from
B. cepacia. The napA phosphatase gene of M. morganii was integrated into B. cepacia IS-
16 using a broad-host-range vector (pRK293). The recombinant strain demonstrated a
considerable enhancement in phosphatase activity. In a similar study, the chromosomal
insertion of a heterologous gene encoding an acid phosphatase enzyme in a putative
PGPB is reported [270]. Briefly, The phoC gene of M. morganii that encodes for the acid
phosphatase was cloned in the pJMT6 mini-Tn5 derivative transposon vector and the
phoC gene was further integrated into the P. putida N-14 chromosome. The resulting
P. putida N-14::Tn5-phoC expressed high levels of the enzyme providing the superfluous
ability to the recombinant bacterium to mineralize P from organic compounds. However,
even after chromosomal integration, the P. putida N-14 strain retained their original PGP
potentials. The phosphatase activity of recombinant P. putida N-14 was also detected by
SDS-polyacrylamide gel electrophoresis (PAGE). Analysis by SDS-PAGE revealed a band
of approximately 25 kDa produced by P. putida N-14::Tn5- phoC, which was closely related
to those reported for M. morganii acid phosphatase PhoC [271]. However, no band and,
therefore, no phosphatase activity was detected in the native P. putida N-14 strain.

8.2.2. Development of Bacterial Strains with Phytase Activity

Phytate (myo-inositol 1,2,3,4,5,6-hexakisphosphate) among organic P derived from
plant, microbes and metazoan biomass predominates in soil [272]. Phosphate mineralizing
bacteria such as Advenella spp. and Cellulosimicrobium sp. PB-09 produce phytase and
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affect the mineralization of organic P [273] while some bacteria may colonize the root
surface or inhabit the rhizosphere regions but they can’t mineralize soil organic P and,
therefore, fail to supply soluble P to growing plants. Despite this, such bacteria can be
molecularly engineered to release P because they are more acquiescent to engineering and
can be applied against a range of crops. With these backgrounds, Shulse et al. [197] using
a combinatorial synthetic biology-based approach generated numerous plant-colonizing
bacteria that could hydrolyze phytate. Overall, they produced 82 biochemically differ-
ent phytase enzymes (encoded by phytase gene) and transferred them directly into the
genomes of P. simiae WCS417r, Ralstonia sp. strain UNC404CL21Col, and P. putida KT2440
using conjugation techniques and observed that the engineered bacterial strains hydrolyzed
the phytate very efficiently in liquid culture medium. Also, they released Pi from TCP
probably due to the secretion of OA (s). Furthermore, many of these phytases secreting
bacterial strains significantly promoted the growth of A. thaliana grown under Pi limited
soilless conditions (agar plate assays). In another set of experiments, Arabidopsis plants
bacterized with a total of 14 different host/gene combinations were grown using phytate
as the only P source. The growth of Arabidopsis in the presence of phytate but without
bacterial inoculum was consistently poor and plants showed deposition of anthocyanin.
The accumulation of anthocyanin resulted in a dark-colored leaf in Arabidopsis plants,
which suggested that the Arabidopsis did not take up sufficient Pi from phytate. In contrast,
Arabidopsis plants treated with engineered bacterial strains accumulated greater dry matter
and had bigger-sized rosettes relative to the uninoculated plants. The increment in the
measured biological properties of A. thaliana was due to the availability of P supplied by the
engineered bacteria which caused the enzymatic dissolution of phytate. Considering all of
this, molecular engineering provides a promising opportunity to produce bacterial strains
with enhanced P solubilization/mineralization ability and broader host range which could
serve as efficient microbial inoculants for furthering agricultural production in low P soils
under different environmental conditions including cold temperatures. Metagenomic and
genomic approaches can help understand the phenotypic features considered important
for their growth-promoting abilities at molecular levels [274]. Genomic and proteomic
strategies will further help to establish a meaningful correlation between important sec-
ondary metabolites such as organic acids, enzymes, and other growth enhancers with genes
and proteins that would reveal the overall plant growth modulating and low-temperature
meliorative behavior of cold-adapted phosphate biofertilizers.

9. Conclusions and Future Prospects

Cold active phosphate solubilizing bacteria involving different genera like Pseu-
domonas, Acinetobacter, Bacillus, Stenotrophomonas, etc. has huge potential for modifying
nutrient-deficient soils into nutrient sufficient soils under a low-temperature environ-
ment. The production of important food crops such as cereals, vegetables, and legumes
can be optimized in colder areas using such cold-adapted PSB strains, thereby reducing
the dependence on chemical fertilizers applied in the intensive agrosystems. Future re-
search is required to decipher the molecular basis of growth-enhancing mechanisms and
to understand how cold-active PSB strains retain their functional traits while thriving at
low temperatures. The development of environmentally friendly cold-active phosphate
biofertilizers opens up new horizons for enhancing crop production in colder regions.
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