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Abstract: Plant-associated endophytes define an important symbiotic association in nature and
are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal
tissues of a plant without causing any disease symptoms or apparent changes. Recently, there
has been a growing interest in endophytes because of their beneficial effects on the production of
novel metabolites of pharmacological significance. Studies have highlighted the socio-economic
implications of endophytic fungi in agriculture, medicine, and the environment, with considerable
success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from
Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium
oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol
was a landmark in endophyte biology/research and established new paradigms for the metabolic
potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential
prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively
studied as a “production platform” of novel pharmacological metabolites, the molecular mechanisms
of plant–endophyte dynamics remain less understood/explored for their efficient utilization in
drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive
metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing
challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery
forms the underlying theme of this article.

Keywords: anti-infectives; bioactive metabolites; biosynthetic gene clusters (BCG); drug discovery;
endophytic fungi; fungal pharmacology; production platforms

1. Introduction

Endophytes represent biological reservoirs of novel natural products, opening new
avenues in the frontiers of drug discovery. Plant-associated microorganisms that colo-
nize the internal tissues of all plant species are gaining momentum as key targets for
bio-prospection in the search for novel chemical entities [1,2]. The discovery of the ac-
claimed anticancer drug paclitaxel accelerated research on endophytic biology and yielded
prospective “drug candidates” with antimicrobial, immunosuppressant, antioxidant, and
anti-neurodegenerative functions [1–3]. Currently, the impact of natural products in clinical
applications cannot be underestimated [4], with the pharmaceutical sector adopting high-
throughput approaches to screen plant secondary metabolites as potential lead molecules.
According to a study by Newman and Cragg [5], among the 1562 drugs approved by the
FDA, 141 comprised botanical drugs, 64,320 drugs were derivatives of natural products,
while 61 drugs were synthesized based on natural pharmacophore [5].

With the emerging threat of drug-resistant microbes and antimicrobial resistance
(AMR), it has become essential to discover novel antimicrobials to counter AMR. However,
the low pace of discovery and indiscriminate use of the existing antibiotics have further
necessitated the exploration of novel antimicrobial entities to compensate for the drying
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drug pipeline [2,6–8]. The rich yet less-explored diversity of endophytic entities and
their considerable potential to impact the pharmaceutical industry have facilitated the
discovery of secondary metabolites of therapeutic significance (Figure 1. Bio-prospection
of endophytes and discovery of novel, high-value metabolites of commercial significance,
including hinnuliquinone, a potent inhibitor of the HIV-1 protease [9]; cytonic acids A and B,
human cytomegalovirus protease inhibitors [10]; pestacin and isopestacin, antioxidants [11];
paclitaxel, antineoplastic agents [12]; and lariatins A and B, anti-HIV agents [13]. The
discovery and commercial production of paclitaxel from different endophytic species
revolutionized the pharmaceutical industry (with FDA approval in 1992), and the diterpene
natural product garnered commercial sales of over $3 billion in 2004 [14].
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cial significance.

With increasing research on the discovery of natural products from biological species,
endophytes are increasingly being explored as production platforms for bioactive metabo-
lites with diverse chemical structures. The discovery of taxol from the endophytic fungus
Taxomyces andreanae in 1993 [15], and subsequently from other endophytic species, led to
renewed research on pharmacological metabolites from endophytic sources. Furthermore,
studies have established that endophytes mimic host metabolism and can produce, induce,
and modify the metabolic chemical entities within hosts [16,17]. Endophytic fungi are
one of the most promising candidates for endophyte-mediated natural product discovery.
Diverse bioactive metabolites produced by endophytic fungi have demonstrated socio-
economic importance and found applications in agriculture (as biofertilizers/biostimulants)
and the environment (bioremediation), as biofuels/biocatalysts, in addition to their phar-
macological attributes. Table 1 provides an overview of endophytic fungi in the environ-
ment, including multifaceted applications, key examples, and translational outcomes. As
useful metabolites with multifaceted environmental implications are increasingly being
discovered, different strains of endophytic fungi are being investigated and the associated
limitations are being addressed for maximum use/multifaceted applications.
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Table 1. Endophytic fungi in environment: significant multi-faceted applications, key examples, and
translational outcomes.

Biological Application Endophytic Fungi Plant Species Outcome Reference

Plant growth promotion and agriculture

Plant growth
promotion (PGP)

Penicillium sp. 21

Camellia sinensis
Mineral-solubilizing function (Ca3(PO4)2

and rock phosphate) [18,19]Penicillium sp. 2

Aspergillus sp. MNF

Trichoderma gamsii
(NFCCI 2177) Lens esculenta Solubilization of Tricalcium phosphate [20]

Trichoderma peudokoningi

Solanum lycopersicum Siderophore production, HCN and
ammonia production [21]Chaetomium globosum

Fusarium oxysporum

Ophiosphaerella sp.
Triticum aestivum PGP activities [22]

Cochliobolus sp.

Cladosporium
sphaerospermum Glycine max Solubilize calcium phosphate [23]

Fusarium tricinctum
RSF-4L S. nigrum Production of phytohormones (gibberellins) [24]

Alternaria alternata RSF-6L

Endophytic fungi Hordeum murinum
subsp. murinum

IAA production, PGP activities
Plant yield increase [25]

Biofertilizers/biostimulants
for crops

Aspergillus sp.

S. officinarum Phosphorous solubilization [26]Penicillium sp. 1

Penicillium sp. 2

Cochliobolus sp.
T. aestivum Phosphorous solubilization [26]

Curvularia sp.

Fusarium equiseti Pisum sativum Phosphorous solubilization [27]

Coniothyrium aleuritis
isolate 42

Lycopersicon esculentum Plant biomass increase, fruit yield [28]

Pichia guilliermondii
isolate F15

Fusarium oxysporum
strain NSF2

Fusarium proliferatum
strain AF04

Aspergillus nidulans
strain FH5

Trichoderma spirale
strain YIMPH30310

Biocontrol function

Fusarium verticillioides Zea mays Restrict Ustilago maydis growth [29]

Penicillium sp.

Cucumis sativus Biocontrol of Fusarium oxysporum f.
sp. cucumerinum

[30]

Guignardia mangiferae

Hypocrea sp.

Neurospora sp.

Eupenicillium javanicum

Lasiodiplodia theobromae

Biotic/abiotic
stress tolerance

Piriformospora indica Hordeum vulgare Drought stress tolerance [31]

P. indica Brassica rapa Drought stress tolerance [32]

P. indica H. vulgare Biotic/abiotic stress tolerance [25]
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Table 1. Cont.

Biological Application Endophytic Fungi Plant Species Outcome Reference

Bioremediation

Mucor sp. MHR-7 Brassica campestris Metal toxicity reduction [33]

Rhizopus sp. CUC23

Lactuca sativa Chromium detoxification [34]A. fumigatus ML43

Penicillum radicum PL17

Endophytic fungi Agrostis stolonifera Bioremediation of lead [35]

Neotyphodium coenophialum Festuca arundinacea,
Festuca pratensis

Bioaugmentation, total petroleum
hydrocarbons (TPH) and polycyclic aromatic
hydrocarbons (PAHs) removal from the soil

[36]
N. uncinatum

Verticillium sp.
Xylaria sp.

Plants from
Ecuadorian Amazon Degradation of Petroleum hydrocarbon [37]

Endophytic fungi - Bioremediation of synthetic plastic polymers [38]

Curvularia sp.
Mangrove sp. Heavy metal biosorption [39]

Neusartorya sp.

Bjerkandera adusta SWUSI4 Sinosenecio oldhamianus Detoxification of triphenylmethane dyes [40]

Lasiodiplodia theobromae Boswellia ovalifoliolata Heavy metal tolerance [41]

Lindgomycetaceae P87
Aspergillus sp. A31 Aeschynomene fluminensis Heavy metal resistance, bioremediation [42]

Bioactive metabolites for industrial and pharmacological applications

Paclitaxel Taxomyces andreanae
T. brevifolia Pacific yew Anticancer [15]

Azadirachtin A and B Eupenicillium parvum Azadirachta indica Insecticidal [43]

Subglutinol A Fusarium subglutinans Tripterygium wilfordii Immuno-suppressant [44]

Isopestacin Pestalotiopsis microspora Terminalia morobensis Antifungal, Antioxidant [11]

Podophyllotoxin Trametes hirsuta Podophyllum hexandrum Antiviral, Radio-protective [45]

Forskolin Rhizoctonia bataticola Coleus forskohlii Anti-HIV, Antitumor [46]

Sanguinarine Fusarium proliferatum Macleaya cordata Antihelmintic [47]

Digoxin Alternaria sp. Digitalis lanata Cardiotonic [48]

Quinine Phomopsis sp. Cinchona ledgeriana Antimalarial [49]

Capsaicin Alternaria alternata Capsicum annuum Cardio-protective [50]

Although plant-associated endophytes serve as “biosynthetic platforms” of phar-
maceutically important secondary metabolites, challenges exist in terms of the limited
knowledge of endophyte biology and decreased production of secondary metabolites due
to repeated sub-culturing of endophytic strains, projecting a need to adopt a more inte-
grated and systematic approach towards the exploitation of endophytes in drug discovery
and research. In this direction, a comprehensive insight into plant–endophyte associations
and their dynamics is necessary to understand how and why endophytes biosynthesize
secondary metabolites [51]. Another prospective strategy is to develop strain improve-
ment methods using genetic engineering, optimization of culture conditions/media for
cultivation, and co-culturing of different endophytic strains. Recent advances in high-
throughput technologies and the “genomic revolution” have contributed considerably to
natural product research and the discovery of biosynthetic gene clusters (BGCs) [52,53].
Genetic engineering of endophytes is still in its infancy and is often regarded as a progenitor
of system biology and functional genomics strategies [54] with the potential for long-term
translational success. Endophytes mimic their host plant in independent biosynthesis of
secondary metabolites, thus acting as a prospective platform for genetic manipulation [14].
Studies have suggested the inclusion of metabolic pathways and genes in endophytes via
genetic recombination between plant hosts and endophytes [55,56]. In addition, horizontal
gene transfer, an evolutionary mechanism, has been suggested as an adaptive mechanism
for endophytes, and it confers novel traits to the associated microbes [56].
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Moreover, approaches in metagenomics, whole-genome sequencing, and omics biol-
ogy have further enabled access to the less explored natural product reservoirs of plant-
associated endophytes. The existing and emerging trends in endophytic fungi-mediated
biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabo-
lites, strategies to overcome the existing/forthcoming challenges in endophytic biology, and
future directions/outcomes in endophytic fungi-based drug discovery form the underlying
theme of this article.

2. Bioactive Metabolites from Endophytic Fungi as Novel Drug Candidates

Plants possessing pharmacological properties and bioactive metabolites are used
to treat ailments in modern healthcare [57]. The small molecule drugs approved from
1981–2014 comprise more than 51% of natural products [58]. However, the indiscriminate
use of natural products has threatened natural resources, specifically plant species, and
led to a shortage of novel bioactive metabolites. Thus, it is imperative to explore other
eco-friendly alternatives to produce high-value phytochemicals and plant-associated en-
dophytes, which are emerging as a highly attractive source. The emerging significance of
secondary metabolites from endophytes is largely attributed to their multifaceted applica-
tions, ranging from pharmaceutical drugs and immune suppressants to agriculture and
industrial uses. The majority (38%) of the bioactive metabolites, including antibiotics, were
isolated from fungi out of 22,500 microbe-derived compounds [59]. Recently, the slow pace
of antibiotic discovery and rising AMR have hampered the drug discovery process.

Plant-associated endophytes comprise bacterial and fungal species that colonize in-
ternal plant tissues and complete their partial or entire life cycle inside the host plant.
Showing universal occurrence and inhabiting almost all vascular plant species, endophytes
demonstrate multifaceted advantages to the host plant by promoting growth, conferring
tolerance to biotic/abiotic stresses [29], and biosynthesizing bioactive secondary metabo-
lites [43]. Recent investigations into the ecological perspective of secondary metabolite
production include protection against pathogens [60,61], mitigation of abiotic stress in
plants [62], and herbivore deterrence [63]. An investigation into the natural product chem-
istry of endophytes highlighted the remarkable potential of endophytes in the production
of phytochemicals and emerging platforms for the fabrication of novel antimicrobial en-
tities [64]. Table 2 presents current state of knowledge on the production of endophytic
fungi-mediated secondary metabolites and their pharmacological significance. It is im-
perative to understand plant–endophyte dynamics and how endophytes are a key source
of phytochemicals. Endophytes influence their host and induce favorable responses in
different ways, including elicitation of novel phytochemicals, plant growth augmentation,
and conferring stress (abiotic/biotic) tolerance to the host plant [64].
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Table 2. Production of endophytic fungi-mediated secondary metabolites and their pharmacological significance.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Pestalotiopsis foedan Coelomycetes Bruguiera sexangula Antifungal

(3R,4R,6R,7S)-7-hydroxyl-3,7-
dimethyl-oxabicyclo [3.3.1]

nonan-2-one Monoterpene lactone

3.1 µg/mL (MIC)
Botrytis cinerea

Phytophthora nicotianae

[65]

(3R,4R)-3-(7-methylcyclohexenyl)-
propanoic acid 6.3 µg/mL [66]

Pestalotiopsis sp. DO14 Coelomycetes Dendrobium officinale Antifungal, Cytotoxic

(4S,6S)-6-[(1S,2R)-1,2-
dihydroxybutyl]-4-hydroxy-4-

methoxytetrahydro-2H-pyran-2-one Monoterpenoid ≤25 µg/mL (MIC)

Candida albicans
Cryptococcus neoformans

Trichophyton rubrum
Aspergillus fumigatus

[67]
(6S,2E)-6-hydroxy-3-methoxy-5-

oxodec-2-enoic acid

Diaporthe maritima Coelomycetes Picea sp. Antifungal

Phomopsolide A

Dihydropyrones

25 µM (MIC)

Microbotryum violaceum [68]Phomopsolide B 250 µM

Phomopsolide C 250 µM

Scleroderma
UFSM Sc1

Basidiomycetes Eucalyptus grandis Antifungal, Insecticidal

Sclerodol A

Lanostane-type triterpenes

50 µg/mL (MIC)
50 µg/mL

12.5 µg/mL
25 µg/mL

C. albicans
C. tropicalis

C. crusei
C. parapsilosis

[69]

Sclerodol B

25 µg/mL
25 µg/mL

6.25 µg/mL
12.5 µg/mL

Fusarium fujikuroi
(WF5)

Hyphomycetes Eleusine coracana Antifungal
5-hydroxy 2(3H)-benzofuranone Furanone 31.25 µg/mL (MIC)

F. graminearum [70]
Harpagoside Iridoide glycoside 31.25 µg/mL

Trichoderma
koningiopsis

YIM PH30002
Hyphomycetes Panax notoginseng Antifungal Koningiopisin C Polyketides

32 µg/mL (MIC)
64 µg/mL
32 µg/mL
16 µg/mL

F. oxysporum
A. panax
F. solani

P. cucumerina

[71]

Trichoderma
brevicompactum 0248 Hyphomycetes Allium sativum Antifungal Trichodermin Sesquiterpene

EC50 of 0.25 µg/mL
2.02 µg/mL

25.60 µg/mL

R. solani
B. cinerea

C. lindemuthianum
[72]

Aspergillus sp. Hyphomycetes Gloriosa superba Antimicrobial,
Cytotoxic

6-methyl-1,2,3-trihydroxy-7,8-
cyclohepta-9,12-diene-11-one-5,6,7,8-

tetralene-7-acetamide (KL-4)
Tetralene derivative

25 µg/mL (MIC)
12.5 µg/mL
50 µg/mL

S. cerevisiae
C. albicans
C. gastricus

[73]
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Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Penicillium sp. R22 Hyphomycetes Nerium indicum Antifungal

3-O-methylviridicatin

Isoquinolone alkaloid

31.2 µg/mL (MIC)
A. brassicae
B. cinerea

V. mali

[74]Viridicatol 31.2 µg/mL
A. brassicae
A. alternata
B. cinerea

5-hydroxy-8-methoxy-4-
phenylisoquinolin-1(2H)-one 31.2 µg/mL

A. brassicae
A. alternata

V. mali

Trichoderma sp. 09 Hyphomycetes Myoporum bontioides Antifungal
Dichlorodiaportin

Isocoumarin 6.25–150 µg/mL(MIC) C. musae
Rhizoctonia solani

[75]
Dichlorodiaportinolide

Fusarium
chlamydosporium Hyphomycetes Anvillea garcinii Antimicrobial, Cytotoxic Fusarithioamide A Benzamide derivative

3.1 µg mL−1 (MIC)
4.4 µg mL−1

6.9 µg mL−1

B. cereus
S. aureus

E. coli
[76]

Curvularia sp.,
strain M12

Hyphomycetes Murraya koenigii Antifungal

Murranofuran A Dihydrofurans 0.5 µg/mL

Phytophthora capsici [77]
Murranolide A Oxygenated polyketide IC50 50–100 µg/mL

Murranopyrone Dihydropyrones 50–100 µg/mL

Murranoic acid A Dienoic acid 50–100 µg/mL

Fusarium sp. Hyphomycetes Mentha
longifolia

Antimalarial
Antifungal Fusaripeptide A Cyclodepsipeptide IC50 0.24 µM

0.11 µM
C. glabrata
C. albicans [78]

Trichothecium sp. Hyphomycetes Phyllanthus
amarus

Anticancer,
Antimetastatic,

Antifungal
Trichothecinol A Trichothecenes 20 µg/mL (MIC)

Cryptococcus albidus
HeLa and B16F10 cells

MDA-MB-231 cells
[79]

Phoma sp. Coelomycetes Fucus serratus Antimicrobial

Phomafuranol
(3R)-5-hydroxymellein
Phomalacton Emodin

Dihydrofuran
derivative

NR

M. violaceum [80](3R)-5-hydroxymellein 5 mm ZOI

Phomalacton 6 mm

Emodin 5 mm

Rhizopycnis vagum
Nitaf 22 Coelomycetes Nicotiana tabacum Antimicrobial, Cytotoxic Rhizopycnin D Dibenzo-α-pyrone

derivatives IC50 9.9 µg/mL M. oryzae [81]

Colletotrichum sp. Coelomycetes Gomera
Antibacterial,

Antifungal, Antialgal

Seimatoric acid Oxobutanoic acid
derivative NR Microbotryum violaceum

[82]
Colletonoic acid Benzoic acid derivative 7 mm ZOI B. megaterium

C. fusca
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Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Xylaria sp. XC-16 Ascomycetes Toona sinensis Cytotoxic, Fungicidal Cytochalasin Z28 Cytochalasins 12.5 µM (MIC) G. saubinetti [83]

Penicillium
chrysogenum Hyphomycetes Cistanche deserticola Neuroprotective

Chrysogenamide A

Macfortine alkaloids IC50 1 × 10−4 µM SH-SY5Y cells [84]

Circumdatin G

Benzamide

2′ ,3′-dihydrosorbicillin(9Z,12Z)-2,3-
dihydroxypropyloctadeca-

9,12-dienoate

Chaetomium
globosum CDW7 Ascomycetes Ginkgo biloba Antifungal

Chaetoglobosin A
Chaetoglobosins

IC50 0.35 µg/mL
S. sclerotiorum [85]

Chaetoglobosin D 0.62 µg/mL

Coniothyrium sp. Coelomycetes Salsola oppostifolia Antimicrobial

Coniothyrinones A

Hydroxyanthraquinone

7.5 mm ZOI

Microbotryum violaceum [86]
Coniothyrinones B 6 mm

Coniothyrinones C 8 mm

Coniothyrinones D 7.5 mm

Pestalotiopsis fici Coelomycetes Camellia sinensis Antifungal Ficipyrone A α-pyrones IC50 15.9 µM Gibberella zeae [87]

Xylaria sp.
strain F0010

Ascomycetes Abies holophylla
Garcinia hombroniana Antioxidant Griseofulvin Indanones

IC50 18.0 µg/mL A. mali

[88,89]

5.0 µg/mL B. cinerea

1.7 µg/mL Colletotrichum
gloeosporioides

11.0 µg/mL Corticium sasaki

30.0 µg/mL F. oxysporum

1.7 µg/mL M. grisea

Phaeoacremonium sp. Hyphomycetes Senna spectabilis Antifungal

Isoaigialone B
Isoaigialone C

Lactone derivatives

5 µg
>5 µg

Cladosporium
cladosporioides

C. sphaerospermum
[90]

Aigialone 5 µg

Aspergillus terreus Hyphomycetes Carthamus lanatus
Anti-microbial,
Anti-malarial,

Anti-leishmanial

(22E,24R)-stigmasta-
5,7,22-trien-3-β-ol Butyrolactones

IC50 4.38 µg/mL
C. neoformans [91]

Aspernolides F 5.19 µg/mL

Penicillium
raciborskii Hyphomycetes Rhododendron

tomentosum Antifungal Outovirin C
Bridged

epipolythiodiket-
opiperazines

0.38 µM (MIC)
F. oxysporum

B. cinerea
V. dahlia

[92]



Microorganisms 2022, 10, 360 9 of 43

Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Mycosphaerella sp. Ascomycetes Eugenia bimarginata Antifungal

2-amino-3,4-dihydroxy-2-25-
(hydroxymethyl)-14-oxo-6,12-

eicosenoic acid Eicosanoic acids
1.3 to 2.50 µg/mL (MIC) C. neoformans

C. gattii [93]

Myriocin 0.5 µg/mL

Guignardia sp. Ascomycetes Euphorbia sieboldiana Antifungal Guignardone N Meroterpenes and
dioxolanone
derivatives

FIC 0.23
C. albicans [94]

Guignardic acid 0.19

Hyalodendriella sp. Ascomycetes Populus deltoides
Marsh × P. nigra L. Antimicrobial

Hyalodendriol C

Dibenzo-α-pyrones

19.22–98.47 µg/mL (MIC)
Bacillus subtilis

Pseudomonas lachrymans
Ralstonia solanacearum

Xanthomonas vesicatoria
Magnaporthe oryzae

[95,96]

Palmariol B 16.18–92.21 µg/mL

TMC-264 16.24–85.46 µg/mL

Penicilliumolide B 17.81–86.32 µg/mL

Alternariol 9-methyl ether 107.19–123.19 µg/mL

Fusarium sp. Hyphomycetes Ficus carica Antifungal

Helvolic acid methyl ester

Helvolic acid derivative 12.5–25 µg/mL (MIC)

B. cinerea C. gloeosporioides F.
oxysporum f. sp. niveum
Fusarium graminearum

Phytophthora capsici

[97]Helvolic acid

Hydrohelvolic acid

Lopherdermium nitens
DAOM 250027

Ascomycetes Pinus strobus Antifungal
Six phenolic bisabolane-type

sesquiterpenoids

Phenolic
bisabolane-type

sesquiterpenoids
50 µM (MIC) Microbotryum violaceum [98]

Pyrenophorin Macrolide 5 µM Saccharomyces cerevisiae

Epicoccum sp. Ascomycetes Theobroma cacao Antimicrobial, Antifungal

Epicolactone
Polyoxygenated

polyketides
20–80 µg per paper

disc (MIC)

Pythium ultimum
Aphanomyces cochlioides

Rhizoctonia solani

[99]
Epicoccolide A

Epicoccolide B

Botryosphaeria
dothidea KJ-1

Ascomycetes Melia azedarach
Antifungal,

Antibacterial,
Antioxidant Cytotoxic

Stemphyperylenol

α-pyridone derivative
Ceramide derivative

1.57 µM (MIC)

Alternaria solani [100]

Pycnophorin

6.25–25 µM

Chaetoglobosin C

Djalonensone

Alternariol

β-sitosterol glucoside

5-hydroxymethylfurfural
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Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Botryosphaeria sp. P483 Ascomycetes Huperzia serrata Antifungal,
Nematicidal

Botryosphaerin H
Tetranorlabdane

diterpenoids

ZOI 9, 7, 7, 8, 8 mm Gaeumannomyces graminis
Fusarium solani

Pyricularia oryzae Fusarium
moniliforme F. oxysporum

[101]
13,14,15,16-tetranorlabd-7-en-

19,6β:12,17-diolide 12, 10, 10, 11, 13 mm

Colletotrichum
gloeosporioides Coelomycetes Michelia

champaca Antifungal

2-phenylethyl 1H-indol-3-yl-acetate

—-

5 µg
25 µg (MIC)

Cladosporium
cladosporioides

C. sphaerospermum
[102]

Uracil

Cyclo-(S*-Pro-S*-Tyr)
Cyclo-(S*-Pro-S*-Val)

2(2-aminophenyl) acetic acid

4-hydroxy-benzamide

2(2-hydroxyphenyl) acetic acid

Phoma sp. WF4 Coelomycetes Eleusine coracana Antifungal

Viridicatol Viridicatol alkaloid ZOI 1.8 mm

Fusarium graminearum [103]
Tenuazonic acid Tenuazonic acid 2 mm

Alternariol Alternariol 1.5 mm

Alternariol monomethyl ether Ether derivative 1.5 mm

Chaetomium cupreum
ZJWCF079 Ascomycetes Macleaya cordata Antifungal Ergosta-5,7,22-trien-3beta-ol NR EC50 125 µg/mL

190 µg/mL
Sclerotinia sclerotiorum

B. cinerea [104]

Microsphaeropsis sp.
Coelomycetes Salsola oppositifolia Antifungal

Microsphaerol Polychlorinated
triphenyl diether ZOI 9 and 5 mm

9 and 7 mm
8 and 3 mm

Microbotryum violaceum
B. megaterium

E. coli
[105]

Seimatosporium sp. Seimatorone Naphthalene
derivative

Mycosphaerella sp. Ascomycetes Eugenia
bimarginata DC. Antifungal

2-amino-3,4-dihydroxy-2-25-
(hydroxymethyl)-14-oxo-

6,12-eicosenoic acid Eicosanoic acid
1.3–2.50 µg/mL (MIC) C. neoformans

C. gattii
[93]

Myriocin 0.5 µg/mL

Pezicula sp. Ascomycetes Forsythia viridissima Antifungal Mellein NR

EC50 48.63 µg/mL B. cinerea

[106]

150.90 µg/mL Colletotrichum orbiculare

163.37 µg/mL Verticillium dahliae

159.09 µg/mL Fusarium oxysporium f. sp.

118.83 µg/mL Cucumerinum

161.04 µg/mL Pyricularia oryzae

125.36 µg/mL Pestalotia diospyri

205.01 µg/mL Pythium ultimum

45.98 µg/mL Sclerotinia sclerotiorum
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Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Nodulisporium sp. A21 Ascomycetes Ginkgo biloba Anti-phytopathogenic,
Antifungal Sporothriolide NR EC50 3.04 µg/mL

200 µg/mL
Rhizoctonia solani

Magnaporthe oryzae [107]

Echinacea purpurea Ascomycetes Biscogniauxia mediterranea
EPU38CA

Antifungal

(−)-5-methylmellein NR
300 µM (MIC) P. obscurans

[108]

—- P. viticola

(−)-(3R)-8-hydroxy-6-methoxy-3,5-
dimethyl-3,4-dihydroisocoumarin Coumarin

—- B. cinerea

300µM P. viticola

—- P. obscurans

Phialophora mustea Ascomycetes Crocus sativus Antimicrobial, Cytotoxic
Phialomustin C

Azaphilone derivative
IC50 14.3 µM

Candida albicans [109]
Phialomustin D 73.6 µM

Plectophomella sp.
Physalospora sp. Ascomycetes NR Antifungal,

Antibacterial, Herbicidal

(−)-Mycorrhizin A Mycorrhizin — Ustilago violacea
Eurotium repens

[110]Cytochalasins E
Cytochalasins — E. repens

Mycotypha microsporeCytochalasins K

Radicinin Dihydropyranone — E. repens
M. microspore

Berkleasmium sp. Ascomycetes Dioscorea zingiberensis Antifungal

Diepoxin ζ

Spirobisnaphthalenes IC50 9.1–124.5 µg/mL M. oryzae [111]

Palmarumycin C11

Palmarumycin C12

Cladospirone B

Palmarumycin C6

1,4,7β-trihydroxy-8-(spirodioxy-1′ ,8′-
naphthyl)-7,8-dihydronaphthalene

Palmarumycin C8

Diaporthe melonis Ascomycetes Annona squamosa Antimicrobial

Diaporthemins A

Dihydroanthracenone
atropodiastereomers

NA

S. aureus 25697
S. aureus ATCC 29213

S. pneumoniae
ATCC 49619

[112]
Diaporthemins B NA

S. aureus 25697
S. aureus ATCC 29213

S. pneumoniae
ATCC 49619

Flavomannin-6,6′-di-O-methyl ether
32 µg/mL (MIC) Staphylococcus

aureus 25697

32 µg/mL S. aureus ATCC 29213
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Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

2 µg/mL Streptococcus pneumoniae
ATCC 49619

Cryptosporiopsis quercina Ascomycetes Tripterigium wilfordii Antifungal Cryptocandin Lipopeptide MIC 0.03–0.07 µg/mL

C. albicans,
Trichophyton

mentagrophytes,
Trichophyton rubrum

[113]

Colletotrichum
gloeosporioides Ascomycetes Artemesia

mongolica Antifungal Colletotric acid Benzoic acid derivative

MIC 25 µg/mL Bacillus subtilis

[114]
50 µg/mL Staphylococcus aureus

50 µg/mL Sarcina lutea

50 µg/mL Helminthosporium sativum

Alternaria sp. Ascomycetes Trixis vauthieri Anti-trypanosomiasis,
Anti-leishmaniasis Altenusin Biphenyl fungal

metabolite IC50 4.3 µM Trypanothione reductase
(TR) inhibitory activity [115]

Aspergillus sp. strain
CY725

Hyphomycetes NR Antibacterial

Helvolic acid
Helvolic acid

8.0 µg/mL (MIC)

H. pylori [116]
Monomethylsulochrin 10.0 µg/mL

Ergosterol
Sterols

20.0 µg/mL

3b-hydroxy-5a, 8a-epidioxy-ergosta-6,
22-diene 30.0 µg/mL

Fusarium sp. IFB-121 Hyphomycetes Quercus variabilis Antibacterial

Fusaruside

Cerebrosides

3.9 µg/mL (MIC) B. subtilis

[117]

3.9 µg/mL E. coli

1.9 µg/mL P. fluorescens

(2S,2′R,3R,3′E,4E,8E)-1-O-beta-D-
glucopyranosyl-2-N-(2′-hydroxy-3′-
octadecenoyl)-3-hydroxy-9-methyl-

4,8-sphingadienine

7.8 µg/mL B. subtilis

3.9 µg/mL E. coli

7.8 µg/mL P. fluorescens

Periconia sp. Ascomycetes Taxus cuspidata Antibacterial
Periconicins A

Fusicoccane diterpenes
3.12 µg/mL (MIC)

Klebsiella pneumoniae [118]
Periconicins B 25 µg/mL

F. oxysporum Hyphomycetes Lycopersicum
esculentum Nematicidal 3-hydroxypropionic acid Propionic acid LD50 12.5–15 µg/mL M. incognita [119]

Chaetomium sp. Ascomycetes Nerium oleander Antioxidant NR NR IC50 109.8 µg/mL Inhibited xanthine
oxidase activity [120]

Cladosporium
cladosporioides Ascomycetes Huperzia serrata Prevent

neurodegeneration Huperzine A NR 10 µg/mL Acetylcholinesterase
inhibition activity [121]

Edenia sp. Ascomycetes Petrea volubilis Antiparasitic
Palmarumycin CP17

NR
IC50 1.34 µM

Leishmania donovani [122]
Palmarumycin CP18 0.62 µM
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Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Nodulisporium sp. Ascomycetes Erica arborea Antifungal, Antialgal

Nodulisporins D

Naphthalene-Chroman
Coupling products

ZOI 8 mm B. megatarium

[123]

7 mm M. violaceum

8 mm C. fusca

Nodulisporins E

7 mm B. megatarium

7 mm M. violaceum

5 mm C. fusca

Nodulisporins F

8 mm B. megatarium

10 mm M. violaceum

8 mm C. fusca

(3S,4S,5R)-2,4,6-trimethyloct-6-ene-
3,5-diol

0 mm B. megatarium

8 mm M. violaceum

6 mm C. fusca

5-hydroxy-2-hydroxymethyl-4H-
chromen-4-one

0 mm B. megatarium

6 mm M. violaceum

6 mm C. fusca

3-(2,3-dihydroxyphenoxy)-
butanoic acid

0 mm B. megatarium

6 mm M. violaceum

7 mm C. fusca

Chalara sp. Ascomycetes Artemisia vulgaris Antibacterial

Isofusidienol A

Chromone-3-oxepines

ZOI 23 mm

B. subtilis [124]
Isofusidienol B 22 mm

Isofusidienol C 9 mm

Isofusidienol D 8 mm

Ampelomyces sp. Ascomycetes Urospermum picroides Cytotoxic

6-O-methylalaternin

NR

41.7 µM (MIC) S. aureus
S. epidermidis

Enterococcus faecalis
[125]

Altersolanol A 37.2–74.4µM

Alternaria sp. Ascomycetes Sonneratia alba Antibiotic
Xanalteric acid I

Phenolic compounds 343.40–686.81 µM S. aureus [126]
Xanalteric acid II

Pestalotiopsis theae Coelomycetes — Anti-HIV

Pestalotheol A

NR

NR

HIV-1LAI replication
in C8166 cells

[127]
Pestalotheol B NR

Pestalotheol C EC50 16.1 µM

Pestalotheol D NR
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Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Stemphylium
globuliferum Ascomycetes Mentha pulegium Cytotoxic

Alterporriol G and H (mixture)

NR EC50 2.7 µM L5178Y
lymphoma cells [128]Altersolanol K

Altersolanol L

Stemphypyrone

Chaetomium sp. Ascomycetes Otanthus maritimus Cytotoxic

Aureonitolic acid

Tetrahydrofuran
derivative

NA

L5178Y mouse
lymphoma cells [129]

Cochliodinol EC50 7.0 µg/mL

Isocochliodinol —

Iindole-3-carboxylic acid —

Cyclo(alanyltryptophane) —

Orsellinic acid 2.7 µg/mL

Chaetomium sp. Ascomycetes Eucalyptus exserta

Antibacterial

Mollicellin O

Depsidones

IC50 79.44 µg/mL S. aureus
ATCC29213

[130]

76.35 µg/mL S. aureus N50

Mollicellin H 5.14 µg/mL S. aureus
ATCC29213

6.21 µg/mL S. aureus N50

Mollicellin I
70.14 µg/mL S. aureus

ATCC29213

63.15 µg/mL S. aureus N50

Cytotoxic

Mollicellin G
19.64 µg/mL HepG2 cell line

13.97 µg/mL Hela cell line

Mollicellin H
6.83 µg/mL HepG2 cell line

— Hela cell line

Antioxidant

Mollicellin I
— HepG2 cell line

21.35 µg/mL Hela cell line

Mollicellin O 71.92 µg/mL DPPH free radical
scavenging assay
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Table 2. Cont.

Endophytic Fungi Fungi and
Fungus-Like Taxa Plant Association Bioactivity Secondary Metabolite Class of Compound Active Concentration Pathogen(s) Reference

Alternaria sp. Ascomycetes Polygonum senegalense Cytotoxic

Alternariol

Sulfated derivatives of
alternariol and its

monomethyl ethers

EC50 1.7 µg/mL

L5178Y lymphoma cells [131]

Alternariol 5-O-sulfate 4.5 µg/mL

Alternariol 5-O-methyl ether
Altenusin Desmethylaltenusin 7.8 µg/mL

2,5dimethyl-7-hydroxychromone
Tenuazonic acid 6.8 µg/mL

Altertoxin I 6.2 µg/mL

3′-hydroxyalternariol 5-O-methyl
ether —

Alterlactone —

Alternaric acid —

Talaroflavone —

Altenuene —

4′-epialtenuene —

Phyllosticta spinarum Ascomycetes Platycladus orientalis Cytotoxic

Tauranin(+)-(5 S,10
S)-4′-hydroxymethylcyclozonarone

Sesquiterpene quinones

EC50 4.3 µM
NCI-H460 cell lines

MCF-7 cell lines
SF-268 cell lines
PC-3 M cell lines

MIA Pa Ca-2
cancer cell lines

[132]

3-ketotauranin 1.5 µM

3alpha-hydroxytauranin 1.8 µM

12-hydroxytauranin 3.5 µM

Phyllospinarone 2.8 µM

Eupenicillium sp. Ascomycetes Glochidion ferdinandi Cytotoxic Trichodermamide C A modified dipeptide

IC50 1.5 µM
Human colorectal
carcinoma cell line

HCT116 [133]

9.3 µM Human lung
carcinoma cell line A549

Pestalotiopsis sp. Coelomycetes Rhizophora mucronata Cytotoxic Pestalotiopsone F Pestalasins chromones EC50 26.89 µM Murine cancer cell
line L5178Y [134,135]

Abbreviations: ZOI, Zone of Inhibition; MIC, Minimum Inhibitory Concentration; IC50, Inhibitory Concentration T 50%; EC50, Effective Concentration at 50%; LD50, Lethal Dose
Concentration at 50%; FIC, Fractional Inhibitory Concentration; NR, Not Reported; NA, Not Active.
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Endophytic fungi produce diverse kinds of bioactive metabolites and are categorized
as terpenoids, indole alkaloids, polyketides, and non-ribosomal peptides [136] biosynthe-
sized via different routes. Terpenoids (composed of multiple isoprene units) are biosyn-
thesized via the mevalonate pathway by terpene cyclases, biosynthesis of cyclic terpenes
by diterpene cyclase and sesquiterpene cyclases, indole diterpenes by prenyl transferases,
and carotenoid formation by phytoene synthases [137]. While indole alkaloids are biosyn-
thesized via the shikimic pathway, polyketides by polyketide synthases from acetyl-CoA
and malonyl-CoA units, and nonribosomal are formed independently of ribosomes func-
tion by NRPS enzymes, different categories of fungal metabolites originate via different
biosynthetic routes [137]. The different categories of metabolites are further classified as
flavonoids, coumarins, xanthones, quinones, lignans, and others and demonstrate multi-
faceted applications. The plethora of bioactive compounds and their analogs have displayed
potential pharmacological activities in animal models and as herbal medicines against sev-
eral human ailments. With scientific breakthroughs in high-throughput technologies and
whole-genome sequencing, natural products from endophytes have been explored as alter-
native sources of novel drug-like candidates, among the 1562 FDA approved drugs, there
were 64 original natural products, and 320 drugs were derivatives of natural products [5].
In addition, the development of new technologies has substantially contributed to the
re-establishment of drying pipelines for novel candidates in drug discovery programs. The
availability of complete genomes of endophytes and the enormous amount of informa-
tion on different endophyte strains have provided remarkable insights into the molecular
mechanisms of endophyte colonization and interaction with the host plant.

The bio-prospection of endophytic fungi suggests that very few fungal strains have
been studied in-depth, with others highlighting the potential for the existence of enormous
novel candidates. The dominant taxonomic categories for the synthesis of chemical enti-
ties are from the orders Ascomycota (~97%), Basidiomycota (~2%), and Mucoromycota
(~1%), and the key metabolite-rich strains include Fusarium, Aspergillus, Penicillium, and
Alternaria [59,138]. The presence of high-value (anticancer) compounds in endophytic fungi
includes novel chemical entities such as terpenoids and steroids (integracides), polyketides
(phomones), nitrogen-containing heterocycles (penicisulfuranols), and ester quinones [138].
Other studies have reviewed and reported the presence of metabolites for tropical dis-
eases (including altenusin, viridiol, and cochlioquinone) [139], metabolites mimicking
plant secondary metabolites (antioxidant resveratrol), antidiabetics (rohitukine), anticancer
(taxol), antihypercholesteromics (lovastatin), and others [140,141]. Several other metabo-
lites of socio-economic importance were identified from endophytic fungi between 2010
and 2017 [141,142]. Among the diverse metabolites, a few significant ones produced from
endophytic fungi include saponins as nutraceuticals [143], loline alkaloids as bioinsecti-
cides [144], chitosan as a food additive [145], taxol as a pharmaceutical [146], fatty acids
as ingredients in cosmetics [145], and ascotoxin as bioherbicides [147], among others. In
a remarkable study, Harpar et al. [148] predicted the relative stereochemistry of ambuic
acid, isolated from the endophytic fungi, Pestalotiopsis microspora. The novel solid-state
NMR approach led to structural elucidation and a dimeric structure was suggested for
ambuic acid, consisting of a hydrogen-bonded adjacent carboxyl group, including the
lattice structure details, an excellent study performed for the first time on a natural product.

Furthermore, the quorum-sensing activity of ambuic acid in Gram-positive bacteria
suggested its development as a potent antipathogenic drug for targeting the virulence
expression of Gram-positive bacteria. The compound, ambuic acid, inhibited quorum sens-
ing in bacteria via the inhibition of gelatinase biosynthesis-activating pheromone (GBAP)
biosynthesis [149]. Another interesting area in bioactive metabolites from Muscodor spp.
has gained momentum in multi-faceted applications. Diverse types of volatile organic
compounds (VOCs) are produced by Muscodor spp. and comprise aldehydes, aromatics,
esters, alcohols, terpenoids, and nitrosamides, among others [150]. The endophytic genus
highlights multi-faceted attributes in industrial and agricultural applications, followed by
food and healthcare, projecting direct and indirect applications. The diverse application
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of VOCs, isolated from Muscodor spp., includes agricultural applications (antimicrobial
agents, for soil fumigation, biofumigation, etc.), food preservation, the perfume industry,
and bioactive compounds in healthcare [150]. In addition, non-ribosomal peptides (NRP)
and Penicillin (antibiotic) were isolated from a mangrove endophytic fungus, Penicillium
chrysogenum MTCC 5108 [151]. Similarly, a polyketide synthase I (PKS I)-based screening
method led to the discovery of a new polyketide, penicitriketo from endophytic fungi [152].

Plant-associated endophytes have gained significant momentum in bio-prospection
and isolation of bioactive metabolites with multi-faceted attributes. In this direction, liter-
ature reviews have provided key insights into the existing and emerging significance of
endophytes in drug discovery and research—a few articles worth mentioning include Dis-
cussion on biodiversity of endophytes and its exploitation in drug discovery [1], Bioactive
metabolites, and their pharmaceutical design in drug development [2], Emerging roles and
applications of actinomycetes endophytes [13], Chemical ecology of endophytes and its
role in bioactive metabolite production [43], The process of horizontal gene transfer and
its implications in the transfer of novel traits in production of bioactive metabolites [56],
and comprehensive insight on the diverse metabolites produced by fungal endophytes
and their biological functions, among others. The present review on fungal endophytes
provides a detailed insight into the existing and emerging prospects of fungal endophytes
as “novel candidates” in drug discovery and research and how the different yield enhance-
ment strategies can be adopted to address the associated bottlenecks and enhance bioactive
metabolite production.

3. Molecular Mechanisms of Plant–Endophytic Fungi Interactions

Evolutionary studies have suggested an important role of fungal partners in plant
adaptation/colonization in terrestrial systems [153]. Several studies have documented
the beneficial role of plant-associated endophytic fungi [29,154]; however, biological and
chemical barriers need to be addressed to establish plant–fungal associations [43]. The
theory of “balanced antagonism” ensures a balanced equilibrium between the adverse
effects of endophyte association with plant hosts and the defense response exerted by
the plants [155]. To ensure survival within plant hosts, endophytes secrete secondary
metabolites that neutralize the toxic effects of plant host defense. Moreover, the invasion of
endophytes into plants activates the plant defense system, limiting endophyte development
and disease symptoms, if any. Asymptomatic colonization by endophytes is mediated by
metabolite production, which counters host defense via multipartite symbiosis [155,156].
The phenomenon of “balanced antagonism” with the competent existing microbes is further
adopted by endophytic fungi, balancing plant defense and virulence of endophytic fungi.
However, if the plant host defense is overcome by endophytic fungi, it will lead to plant
disease via plant–pathogen interactions [157]. A key example of this phenomenon is the
production of taxol by Paraconiothyrium SSM001 to tackle host pathogens [61]. Further-
more, the coevolution of endophytes and plant hosts has resulted in the development of
sophisticated mechanisms by endophytes to modify plant immune responses [158], such as
the suppression of β-glucan-triggered immunity by endophytes in multiple plants [159]. In
terms of plant hosts, the evolution of defense mechanisms, including secondary metabolite
production to counter pathogens, constitutes an integral host mechanism. In response to
this, pathogens have developed resistance mechanisms and undergone structural modifica-
tions in some cases to counter plant defense responses [157]. An interesting mechanism
displayed by endophytes within plants is promoting plant immunity by monitoring the
vascular system; for example, in Pacific yew, known for taxol production by endophytic
fungi, the pathogens enter the vascular system through air pockets and cracks in the bark,
and the endophytes release taxol as a defense barrier to pathogens [61].

Recent advances in scientific interventions and whole-genome sequencing have con-
tributed substantially to the bio-prospection of endophytic fungi to produce pharmacologi-
cal metabolites. Endophytic fungi and their metabolic pathways are key targets for research.
Although the metabolic pathway has defined a genetic framework to produce a specific
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metabolite, gene clusters mostly remain silent under laboratory conditions [3]. Moreover,
strategies to activate silent gene clusters through co-cultivation of different endophytic
fungal strains, mutagenesis, and genetic engineering have been adopted to improve the
biosynthetic potential of different endophytic strains, with limited success. Moreover, the
bioactive metabolites isolated from endophytic fungi are classified into different categories,
including phenolics, flavonoids, saponins, alkaloids, terpenes, and xanthones [160], demon-
strating multiple pharmacological properties. However, the decreased production due to
repeated sub-culturing of the microbial strains leads to an unstable yield in axenic cultures,
which accounts for the few existing challenges in endophyte biology and research. Different
researchers have proposed parallel hypotheses on the genetic origin of metabolites (both
in endophytes and plants), including the presence of parallel biosynthetic pathways for
metabolite production in plants and endophytes. However, examples of taxol gene clusters
showed low similarities between plants and microbes [161], suggesting an independent
evolution of biosynthetic pathways in different organisms [162]. Another key example is
camptothecin (CPT) production by Fusarium solani utilizing the host enzyme strictosidine
synthase for CPT biosynthesis, suggesting the horizontal transfer of gene clusters between
endophytic fungi and host plants in an evolutionary course [163]. Both endophytic fungi
and plants possess resistance mechanisms against CPT and taxol, respectively. Another
independent hypothesis claims that host mimicking by endophytic fungi leads to the pro-
duction of bioactive compounds, such as plant hosts, questioning the actual biosynthesis
by endophytic fungi [43]. However, limited knowledge about the molecular mechanisms
of plant–associated endophytic fungi is a major challenge in the large-scale commercial
production of bioactive metabolites from endophytic fungi.

4. Scientific Approaches for Natural Product-Based Drug Discovery

Key strides have been made in the discovery and characterization of valuable bioactive
metabolites from natural sources. Substantial efforts to identify novel bioactive metabolites
have opened new avenues in natural product-based drug discovery from endophytic
fungi. The increasing importance of natural products in pharmacological applications
has greatly impacted the large-scale production of high-value metabolites. Plant–microbe
associations, particularly endophytic fungi, continue to intrigue researchers worldwide
with a considerable potential to impact the pharmaceutical industry [164,165]. With the
alarming rise in AMR and declining drug pipelines, novel metabolites from natural sources
are increasingly being studied for their therapeutic potential. In this direction, advances
in high-throughput technologies and scientific interventions have provided firm grounds
as “discovery platforms” in natural product-based drug discovery programs. In addition,
the emerging revolution in interdisciplinary strategies comprising computational methods
and multi-omics strategies has redefined natural product discovery from plant–endophytic
associations [166]. Figure 2 provides a schematic overview of the traditional and emerging
scientific approaches for endophyte-based drug discovery.Microorganisms 2022, 10, 360 21 of 48 
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5. Traditional Scientific Methods

Recently, there has been an increased exploration of plant–endophytic associations
for the discovery of high-value metabolites with potential pharmacological applications.
Deep learning methods have defined an interesting platform for the bio-prospection of
endophytes, regulatory networks, and the prediction of novel chemical entities [166]. As
discussed earlier, plant-associated endophytes have defined an attractive “biosynthetic
platform” for the synthesis of novel bioactive metabolites; however, several challenges
exist in harnessing these biological sources in drug discovery. For example, most of the
secondary metabolite pathways are silenced, and the knowledge of metabolic networks
and mechanisms needs to be understood in detail. Furthermore, in silico approaches
predict the existence of a wide array of metabolites that remain silent/inactive under
native conditions (in planta) [167,168]. In recent decades, natural product discovery from
endophytes relied on powerful, low-throughput methods [3], essentially including culture-
based methods, plant-based extraction methods, biochemical screening/isolation using
HPLC, NMR, and MS, and bioactivity-guided isolation [169], with existing limitations.
Toward addressing the existing challenges, sophisticated methods, namely the “one strain-
many compounds” (OSMAC) approach, engineering ribosomes, heterologous expression
of genes, and promoter studies have been widely explored [170]. The OSMAC method
is based on studying a particular strain and its growth under different culture conditions
to produce a diverse array of metabolites [168]. These promising tools enhance gene
expression in endophytes via biotic/abiotic triggering mechanisms.

Another interesting strategy is the co-cultivation of different endophytic fungal strains
to elicit gene expression in silent gene clusters [171]. For example, gene expression for taxol
production was reclaimed in Aspergillus terreus when co-cultivated with Podocarpus gracilior
leaves [172]. Furthermore, genetic methods have been successful in activating silent BGCs
and include inducible/constitutive promoters [173], host ribosome engineering [174], and
mutant selection [175]. In addition, for culturable endophytic bacteria, some important high-
throughput techniques used include high-throughput elicitor screening with imaging mass
spectrometry, with the potential to induce silent gene clusters [176], and most techniques
were effective for culturable microbes only.

6. Deep Learning Approaches

One of the key approaches for analyzing large data comprises artificial intelligence,
further classified as deep learning and machine learning. These methods predict the
distribution pattern of the plant microbiome (environmental niches) and may accurately
predict the biosynthesis of bioactive metabolites from endophytes [177], highlighting a
potential approach to replace challenging global, comprehensive estimation. In this ap-
proach, the initial dataset could be obtained from the increasing multi-omics and genomics
combined with plant metabolomics data. The targeted region can then be analyzed through
multi-omics methods, further co-integrated with metabolic pathway analysis [178–180].
Currently, multiple deep learning and machine learning strategies are employed to improve
drug discovery from natural products. The software DeepBGC relies on a word2vec-like
word embedding skip-gram neural network and bidirectional long short-term memory
(BiLSTM) neural network, subject to a large dataset from microbial communities [181].
Furthermore, bio-prospection of endophytes for bioactive metabolites may be performed
by integrating genome metabolic models and deep learning methods. Similarly, for the
diversity prediction of chemical entities, deep learning chemi-informatics methods may be
employed for efficient prediction. In addition, computational biology methods emphasize
the analysis of chemical entities and metabolomics strategies, targeting a predictive model
of plant microbiome and associated biochemical changes. In keeping with the target goal,
the abovementioned deep learning methods may be suitably altered; for example, the
objective may be to find chemical novelty or a target function (antimicrobial) or elucidation
of complex structures [166]. The established genome mining tools aim to understand
metabolic flux and pathway regulation, regulatory processes, and metabolite interactions.
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With the enormous amount of data generated from high-throughput experiments, the OS-
MAC tool, co-integrated with metabolomics information, forms a basis for computational
analysis. These novel computational pipelines project revolutionary landmarks in natural
product-mediated drug discovery from endophytes.

7. High-Throughput Strategies

Advances in computational biology and whole-genome sequencing have been in-
strumental in defining new avenues for endophyte-mediated natural product discovery.
Comparative genomics aims to understand the diversity of chemical entities from microbes
because of the conserved BGCs across species, associated with regulatory genes, uptake,
and product transport [166]. Moreover, BGCs, which are specific, are mostly silent/lowly
expressed under laboratory conditions, making functional gene prediction difficult. An ef-
fective approach toward the discovery of natural products begins with in silico predictions
through genome information and proceeds to experimental validation via activation of
the biosynthetic pathways [178]. The ongoing efforts in the development and upgradation
of computational resources have greatly refined research on natural product-mediated
drug discovery. Databases such as the Database of BIoSynthesis clusters CUrated and
InTegrated (DoBISCUIT) [182], and ClustScan software [183], and ClusterMine 360 [184]
have facilitated the discovery/identification of novel gene clusters. Moreover, the dis-
covery of BGCs via phylogenetic analysis was performed through a useful database, The
Minimum Information on Biosynthetic Gene clusters (MIBiG) [185]. Other bioinformat-
ics databases promoting the annotation of BGCs include Reconstruction, Analysis and
Visualization of Metabolic Networks’ RAVEN 2.0 software [186], antibiotics and secondary
metabolite analysis shell (antiSMASH) [187], and Metaflux [188], and the genome-wide
identification and profiling of gene clusters of natural products have become attainable. In
addition, bioinformatics software (based on the network algorithm) improves predictions
of genome mining methods [189] and may be co-integrated with metabolic modeling ap-
proaches [190]. The predictive strategies further extend the understanding of metabolic
interactions in microbial cultures [191], bio-kinetic models for the estimation of interspecific
interactions among microbes [192], single-cell analysis for endophyte metabolism [192] and
transcriptome approaches for comprehensive understanding [193].

8. Pharmacological Metabolites: Case Studies, Mechanism of Action, and
Commercial Success

Medicinal plants form the backbone of the traditional system of medicine and are a
rich source of pharmacological metabolites for the treatment of diseases and prospects as
modern medicines [56]. Since the initial reports of taxol production from the endophyte
Taxomyces andreanae, similar to its plant host (Taxus brevifolia) in 1993, endophytes have
been increasingly explored for the production of high-value metabolites. Plant-associated
endophytes, particularly endophytic fungi, have emerged as production platforms for
pharmacological metabolites with diverse therapeutic applications [2]. There has been an
upsurge in the production and marketing of pharmacological metabolites worldwide, and
a few remarkable examples and their success stories in the pharmaceutical sector have been
discussed. Table 3 presents key examples of commercially available drugs from endophytic
fungi: key examples, pharmacological functions, bottlenecks, and success stories.
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Table 3. Commercially available drugs from Endophytic fungi: key examples, pharmacological function, bottlenecks, and success stories.
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9. Taxol Production

The anticancer drug taxol is one of the most successful drugs marketed globally for
its anticancer activity. Taxol was isolated from the medicinal plant Taxus brevifolia, but its
concentration was too low (0.001–0.05%) in most species. Therefore, 1 g of taxol production
requires 15 kg of tree bark, while the anticancer dose amounts to 2.5 g [208]. To increase
taxol production, alternative sources have been investigated to meet the rising therapeutic
demands. The bioactive metabolite, taxol was first isolated from the endophytic fungi
Taxomyces andreanae [209], and subsequently from other endophyte species. The discovery
(in 1960), structural elucidation (1971), and FDA approval (1992) of taxol defined new
paradigms in global commercial success, projecting a global market of USD 78.77 million in
2017. In chemotherapies for cancer treatment, paclitaxel is a mitosis inhibitor and is widely
used for the treatment of cancers such as cervical, ovarian, and breast cancers. The global
consumption trends indicated a market share of 53% (2017), with Europe accounting for
19% of global market trends [210].

Taxol and its derivatives represent a popular class of anticancer drugs produced by
different endophytes. The mechanism of action includes inhibition of mitosis and pro-
motion of tubulin depolymerization during cell division [211]. After several research
attempts, the taxol-producing endophyte T. andreanae was discovered in Taxus brevifolia,
detected via electrospray mass spectroscopy [212] and compared with the standard pacli-
taxel. The identification of taxol and its anticancer potential was bright, but the existing
crisis and the low content in the plant projected major concerns to increase supply. Subse-
quently, paclitaxel-producing endophytes have been reported (taxol-producing endophytes
from Taxus baccata L.), characterized, and validated using HPLC-MS [213]. The five taxol-
producing endophytic fungi were Fusarium redolens, Gibberella avenacea, Fusarium tricinctum,
Paraconiothyrium brasiliense, and Microdiplodia sp. G16A, with the highest taxol yield of
66.25 µg/L by Fusarium redolens [214]. The diterpenoid metabolite was further isolated
from several endophytes belonging to the Ascomycota, Basidiomycota, Deuteromycota,
and Zygomycota classes [215,216]. However, successful translational research towards
industrial production faces certain challenges currently, including decreased production
because of repeated sub-culturing and low concentration in biological species. Compre-
hensive knowledge of endophyte biology and dynamics is essential for improving the
commercial production of important bioactive metabolites [2,217].

Presently, considering the global market for anticancer drugs, research efforts have
been made for large-scale production of taxol from endophytic fungi [218–220]. Fermenta-
tion methods have been optimized for taxol production by supplementing nitrogen/carbon
sources, precursors, and elicitors [221] and defined conditions related to temperature, pH
of culture, and dissolved oxygen [222]. Moreover, inhibition of the metabolic pathway
of sterols (ergosterol) by triadimefon (inhibitor) is effective in enhancing the production
of paclitaxel [223]. However, taxol production in endophytic fungal cultures leads to the
reprogramming of fungal physiology and the regulatory loss of metabolite production [141].
Co-cultivation of Paraconiothyrium sp. with Alternaria sp., and Phomopsis sp. enhanced taxol
production eightfold [224]. Genetic transformation of endophytic fungi is an emerging
method for increasing the production of targeted metabolites [220]. Protoplast-mediated
transformation [225], Agrobacterium-mediated transformation [226], electroporation [227],
and genome editing via CRISPR-Cas [228] are some other scientific approaches employed
to enhance taxol production by endophytic fungi.

10. CPT Production

CPT is a monoterpene indole alkaloid that is commercially marketed as an anticancer
drug. Initially, it was isolated from the stem and bark of Camptotheca acuminata, a native
Chinese tree. CPT has a pentacyclic structure and is a topoisomerase inhibitor that binds to
topoisomerase I and DNA complex and stabilizes it, leading to DNA damage and apoptosis
(https://en.wikipedia.org/wiki/Camptothecin, accessed on 23 July 2021). In clinical
trials, CPT showed anticancer activity against colon, lung, breast, and stomach cancers. The

https://en.wikipedia.org/wiki/Camptothecin
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commercial success of CPT is attributed to its applications in cancer chemotherapies, and its
derivatives are marketed with the name belotecan, topotecan, irinotecan, and trastuzumab
deruxtecan [229,230]. CPT was commercially isolated from Nothapodytes nimmoniana and
C. acuminata and has a high global demand for cancer treatment [231]. Although some
CPT derivatives are commercially marketed (irinotecan, belotecan, and topotecan), others
such as diflomotecan, tenifatecan, genz-644282, chimmitecan, exatecan, lipotecan, silatecan,
cositecan, and simmitecan are under clinical trials [232,233]. The increasing demand for
CPT has led to indiscriminate use/overharvesting of the two plants, making them an
endangered species [234]. To produce 1 ton of CPT, approximately 1000–1500 tons of plant
wood chips are required [235], leading to excessive exploitation of the plant species.

The emerging popularity of endophytes as production platforms for high-value
metabolites necessitates the potential bio-prospection of endophytes for natural prod-
uct drug discovery. CPT-producing endophytes have been discovered, including Tri-
choderma atroviride LY357 [236], Fusarium solani strain ATLOY-8 [237], and Neurospora
sp. [238]. However, the variable/inconsistent production, yield loss because of sub-
culturing, and low concentrations are the major bottlenecks in the commercial-scale produc-
tion. Mohinudeen et al. [239] reported the presence of a high-CPT-producing endophyte
Alternaria sp. from N. nimmoniana. The endophyte produced up to ~200 µg/g of CPT
in axenic cultures and demonstrated cytotoxic activity against cancer cell lines [239]. Re-
garding the molecular pathways in CPT production, strictosidine synthase, tryptophan
decarboxylase, secologanin synthase, and geraniol 10-hydroxylase are some of the key en-
zymes identified to date. Kusari et al. [43] identified tryptophan decarboxylase, secologanin
synthase, and geraniol 10-hydroxylase in endophytic fungi. The absence of the strictosidine
synthase gene in endophytes has led to the presumption of the involvement of host genes
in CPT biosynthesis. Decreased CPT yield due to sub-culturing was explained by the
absence of selection pressure, leading to the degradation of biosynthetic pathways in the
endophytic fungi [41], limiting CPT biosynthesis. Recent advances employing endophytes
as production platforms for CPT have focused on isolation/fermentation of CPT-producing
endophytes, extraction, and detection via different methods, and employing fermentation
culture to improve CPT yield [240].

11. Vinca Alkaloids (Vincristine/Vinblastine) Production

Vinca alkaloids are pharmacological metabolites isolated from Madagascar periwin-
kle (Catharanthus roseus) and are listed on the World Health Organization’s List of Es-
sential Medicines [241]. Vinca alkaloids are used as effective medications for the treat-
ment of different types of cancers, including bladder cancer, melanoma, and lung cancers
(https://en.wikipedia.org/wiki/ accessed on 23 July 2021). Vinblastine is an analog of vin-
cristine, and its anticancer mechanism is defined by binding to tubulin, thereby inhibiting
microtubule assembly and formation, and is regarded as an effective chemotherapeutic
agent. Two of the most successful commercial drugs—vinblastine and vincristine—are
present at very low concentrations in plants. Moreover, the estimated global demand for
bioactive metabolites (0.3 tons annually) and global market of USD 200 million projects
additional requirements from alternative natural resources [242]. According to Balandrin
and Klocke [243], 500 g of C. roseus leaves is required to produce 1 g of pure vincristine.
Although vinca alkaloids differ slightly in their chemical structure and mechanisms, their
clinical activity and toxicity vary. The commercial success and importance of vinca alkaloids
have led to studies on endophytes from C. roseus. Several endophytic fungi were isolated
and screened to produce vincristine/vinblastine, and a few key examples are Aspergillus,
Alternaria, and Cladosporium sp. Moreover, the endophytic fungus Talaromyces radicus (from
C. roseus) produced vincristine in substantial amounts (670 µg/L) in modified M2 medium
and vinblastine in PDB medium (70 µg/L). Furthermore, vincristine was purified, and it
demonstrated cytotoxic activity against cancer cell lines [244].

https://en.wikipedia.org/wiki/
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12. Podophyllotoxin Production

Another prospective pharmacologically important metabolite podophyllotoxin, an
aryl tetralin lignin, is widely present in angiosperms and gymnosperms [245]. Podophyl-
lotoxins are emerging as pharmacological metabolites because of their antiviral and cyto-
toxic activities [246,247]. Some semisynthetic derivatives of podophyllotoxin, teniposide,
and etoposide have been approved for the treatment of leukemia and different types of
cancers [248]. Because of its low concentration in plants, etoposide was developed and
approved by the FDA in 1983. Other analogs were chemically synthesized but had a low
yield. Research efforts to enhance the production of podophyllotoxin and its analogs from
different species have been conducted. The plant tissue culture method is a reliable and
sustainable approach to produce bioactive metabolites from natural sources [249]. The
mechanism of action of teniposide and etoposide is marked by interaction with topoiso-
merase II [250] by two mechanisms: it exerts its action by enhancing topoisomerase II DNA
covalent complex levels or the removal of topoisomerase II catalytic function [251]. More-
over, DNA breaks induced by enzymes promote sister chromatid exchange, recombination,
translocation, and insertions/deletions [252].

Different strains of endophytic fungi have been studied for their potential to biosyn-
thesize podophyllotoxin, and Phialocephala fortinii, endophytic fungi from Podophyllum
peltatum, produced podophyllotoxin in the range of 189 and 0.5 µg/L. Furthermore, the
cytotoxic potential of the endophytic fungi was evaluated, and the LD50 values were
2–3 µg/mL [200]. Another species, Fusarium oxysporum, isolated from Juniperus recurva,
produced 28 µg/g of dry mass of the metabolite [253]. The bioactive metabolite has been
detected/produced by several species of endophytic fungi, a few prominent ones comprise
Aspergillus fumigatus from Juniperus communis [248], Trametes hirsuta from Podophyllum hexan-
drum [45], and Mucor fragilis [254]. The ongoing bio-prospection of different endophytic
species for pharmacological metabolites highlights its existing and emerging importance in
natural product-mediated drug discovery.

13. Existing/Potential Bottlenecks in Biotechnological Applications

Endophytic fungi have great potential to impact the pharmaceutical industry, subject
to the bio-prospection of novel pharmacological metabolites with multifaceted implications.
However, little is known about plant–endophyte dynamics, low yield, and loss of yield
because sub-culturing and scaling-up cultures constitute some key bottlenecks. An emerg-
ing demand and constant supply of novel, high-value metabolites define global trends,
considering the drying pipeline of antibiotic arsenals. Although the plant–endophyte
interaction remains poorly understood, less information on endophytic interactions with
other microbes further hampers endophyte applications. Genetic instability in plant tissue
culture, slow fungal growth, and maintenance issues have decreased the use of tissue cul-
ture methods [255]. In this regard, fermentation technologies are an attractive platform to
produce high-value metabolites from fungal cultures. These methods offer distinct benefits
in terms of less expense, rapid growth, and optimization of culture conditions for effective
production of the targeted metabolite, and sustainable production is achieved. The factors
in scale-up processes, namely, oxygen solubility, viscosity of the medium, temperature, time
of cultivation, pH, and others, and their optimization, make the process cumbersome. The
culture conditions need to be optimized and regulated properly for the large-scale targeted
production of metabolite of interest [168]. Genetic engineering approaches for the activation
of BCGs for enhanced production hold potential; however, with very few reported studies
on endophyte chassis, the genetic manipulation methods need to be further optimized. The
combinational synthesis for complex metabolites highlights associated problems and may
be resolved by employing elicitors for increased production of metabolites in a particular
metabolic pathway. Other challenges include the complex structure of metabolites and
undesired pathway intermediates, resulting in the inhibition of enzyme function. The
existing areas of concern include the adverse effects of endophytic fungi in the control of
pathogens. For example, endophytes of Crocus sativus may be pathogenic to host plant
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and result in infection, as endophytes are considered latent pathogens capable of causing
diseases [256]. A deep understanding of the associated risk factors with endophytes is
necessary to avoid adverse effects and benefit biocontrol applications.

14. Strategies for Yield Enhancement of Pharmacologically Important Metabolites

Substantial efforts to isolate and screen endophytes for high-value metabolites re-
sulted in undesirable/low yields of the target metabolite. Although novel chemical entities
such as CPT, paclitaxel, podophyllotoxin, and huperzine A were isolated from endophytic
fungi, bottlenecks with large-scale production and commercialization remains a major
concern. As the field of endophytes is gaining popularity in multifaceted environmental
applications, scientific tools and approaches are aimed at delineating the dynamics of plant–
endophyte interactions and enhancing the yield of pharmacologically important metabo-
lites. Co-integration of bioprocess techniques and genetic/metabolomics approaches may
be employed to effectively target and produce high yields of the desired metabolites.

15. Metabolic Engineering of Endophytic Fungi

Studies on the engineering of endophytes are preliminary and investigate endophyte
chassis to improve the yields of targeted metabolites through genetic strategies. Genetic
manipulation of endophytes defines potential future outcomes by introducing key pathway
genes via genetic transformation for yield enhancement of high-value metabolites in axenic
cultures. Studies on the genetic transformation of taxol-biosynthesizing endophytes include
the overexpression of genes and genome rearrangement with mutagenesis for enhanced
metabolite production [257,258]. Random mutagenesis approaches for genetic modification
of the endophyte genome and induction of metabolites and mutant screening have been
adopted [258]. Taxol production was increased (endophyte strain HDF-68) through proto-
plast fusion of two strains—UL50-6 and UV40-19—leading to a 20–25% increase in taxol
yield [259]. Wang et al. [260] showed that the endophytic fungus Phomopsis sp. produces
deacetylmycoepoxydiene (DAM) (antitumor metabolite), and genome shuffling of eight
parental protoplasts resulted in a high-yielding strain (produced >200-fold DAM) in the
transgenic endophytic strain [260]. Similarly, previous studies on Pestalotiopsis microspores
(endophytic fungi) aimed to decode the taxol biosynthetic pathway via protoplast transfor-
mation [261]. These unexpected results led to the detection of extrachromosomal DNA in
the transformants, suggesting a key role in development and adaptation. The translational
success and marketing of taxol, led to extensive investigations on taxol-producing endo-
phytes: with the application of genetic engineering defining a key platform in endophyte
chassis; some important examples include, restriction enzyme-mediated integration in
Ozonium sp. strain BT2 (taxol-producing fungi) [262]; Agrobacterium-mediated genetic
transformation in Ozonium sp. EFY21, with enhanced efficiency of transformation [263]
and PEG-mediated transformation of Ozonium sp. EFY-21 [264]. In this direction, multiple
approaches for genome modification/shuffling of endophytes have been attempted to
increase the metabolic flux, either by limiting competitive pathways or by reorientation of
precursor supply, strain improvement methods leading to yield enhancement of targeted
metabolites. In an interesting study of pathway reconstitution, the taxadiene-biosynthetic
cluster was expressed in Escherichia coli and transformed into Alternaria alternata TPF6 for
taxadiene production. This study was able to address the challenges associated with the
first step of taxadiene production, and a consistent supply of taxadiene in A. alternata TPF6
(61.9 ± 6.3 µg/L) was obtained [265]. The inactivation of the sterol biosynthesis pathway
improved the taxol yield dramatically, suggesting the prospects of genetic engineering as a
means of yield enhancement of metabolites. Genome editing of filamentous fungi using
the CRISPR-Cas system promises to revolutionize the production of natural products. The
CRISPR-Cas9 tool aims at Cas9 gene delivery and guides DNA in cassettes and formation
of active Cas9/guide RNA complex and requires markers, shuttle vectors, and promoter
sequences for efficient expression. The validation of BGCs and targeted metabolite produc-
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tion may be improved by employing the CRISPR-Cas genome editing approach for the
transformation of endophytic fungi.

16. Mutagenesis of Endophytic Fungi

To exploit endophytes on a commercial scale, it is imperative to understand and tap
into the biosynthetic potential of endophytes to enhance the yield of high-value metabo-
lites. To address the concern toward low-yielding endophyte strains, strain improvement
strategies may be employed to enhance yield and other characteristics, including utilization
of nitrogen/carbon sources, changes in morphology, and reduction in undesired metabo-
lites [266]. In addition to genetic manipulations, mutagenesis of endophytes by protoplast
fusion or random screening offers distinct advantages and prospects in this direction. The
genetic framework of microbial strains is altered by employing mutagens and comprises ei-
ther chemical (nitrosoguanidine, diethyl sulfate, ethyl methyl sulfonate) or physical (X-ray,
γ-rays, microwave, etc.) mutagens. Moreover, mutant strains were analyzed using random
methods to identify mutants with a particular genotype of interest [267]. Mutations are
also induced by using two or more mutagens or one repeatedly [220]. Mutagenesis of
endophytic fungi leads to regulatory gene alterations, causing phenotypic changes and
enhanced secondary metabolite production, although the process needs to be defined [268].
A key example by Kai et al. [269] discussed the mutagenesis of endophytes and the selec-
tion of hygromycin-resistant strains for enhanced taxol production. In endophytic fungi,
mutagenesis is attempted by employing mycelia, spores, or protoplasts and applied to
taxol-producing endophytes with remarkable success [242]. Although mutagenesis of-
fers a prospective approach, mutation of endophyte mycelium highlights the demerits
of genetic divergence in the offspring, and the optimization of conditions for endophyte
spore mutagenesis is difficult, suggesting that protoplast fusion is the best way to induce
mutagenesis [269]. Studies on mutagenesis of endophytes for strain improvement/yield
enhancement focused on optimal conditions for protoplast preparation, optimizing factors
such as time, pH, temperature, enzymes, medium, and culture conditions [270–272]. A few
reports have discussed the yield enhancement of the targeted metabolite via protoplast
mutagenesis [269,273] highlighting its beneficial outcomes. Zhao et al. [271] reported the
generation of an improved taxol-producing strain (HDF-68) through the fusion of two
mutant protoplasts of Nodulisporium sylviforme. The taxol production in the mutant strain in-
creased to 468.62 µg/L compared to the parent endophyte strains, suggesting mutagenesis
as a powerful approach for yield enhancement, with some considerations.

17. Co-Culture of Different Endophyte Strains

With the discovery of many endophytes and bio-prospection of their respective strains,
the compatibility of endophytes to produce a target metabolite has been explored [153].
The individual endophyte strains are maintained or preserved as monocultures and cul-
tured to produce high-value metabolites; however, the standard culture may not hold the
potential to activate the expression of BCGs in endophytic fungi, leading to a decrease in
the discovery of novel metabolites. Sequencing of whole genomes showed that multiple
genes encoding bacterial/fungal enzymes surpassed the secondary metabolites in these mi-
crobes [274]. Moreover, the metabolic processes in microbes are significantly changed with
little fluctuation in culture conditions, specifically in endophytes with host-balanced interac-
tions and multipartite interactions [242]. The co-cultivation of different endophytic strains
aims to activate some silent BGCs in the presence of compatible microbes and enhances
the production of targeted metabolites of interest. This is relevant in the case of antibi-
otic production when competition governs the biosynthesis of a product in cultures [157].
Corynespora cassiicola SUK2 and Colletotrichum fructicola SUK1 (endophytic fungi), isolated
from Nothapodytes nimmoniana (Grah.) Mabb. (Ghanera), demonstrated host-independent
biosynthesis of CPT under fermentation conditions, with a significantly higher yield (>1.4-
fold) than that of monocultures [275]. Ahamed and Ahring [257] co-cultivated E. coli with
Gliocadium roseum (endophytic fungi) and increased hydrocarbon production by 100-fold,
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compared to pure cultures of G. roseum. Other key examples, namely co-cultivation of Pho-
mopsis and Alternaria, led to an eightfold increase in taxol production [224], and Alternaria
and Paraconiothyrium SSM001 co-cultures led to a threefold increase in taxol production,
and other examples suggest that co-culturing of compatible endophyte strains highlights
an attractive alternative for yield enhancement of high-value metabolites.

18. Optimization of Culture Conditions

Although the production of diverse chemical entities by endophytic fungi is prospec-
tive in addressing natural product-mediated drug discovery, the multiple factors that
govern production remain poorly understood. The cultural factors that play a key role in
metabolite production include temperature, pH, cultivation time, nutrients, and aeration in
the medium [276]. The term OSMAC was coined by Bode et al. [277] to show that a single
microbial strain may biosynthesize multiple compounds by changing culture conditions,
leading to the discovery of high-value metabolites [104]. Optimization can be achieved
by considering a one-factor change or multiple-factor variations for fermentation and
medium optimization. In addition, the statistical design provides reliable information for
experiments by enabling the analysis of experimental variables and making an accurate
prediction [278]. Wang et al. [279] discussed the importance of optimization of factors (such
as carbon source, pH, and temperature) for Neurospora intermedia DP8-1 (diuron-degrading
endophyte) from sugarcane and reported effective biodegradation of up to 99% of the
diuron present. In the endophytic fungi F. solani from Ferocactus latispinus, the pH value
and nitrogen/carbon ratio were found to affect polyketide production and were optimized,
resulting in a higher yield (476 µmol/L) [280]. In addition, a bioreactor was developed to
monitor the consistent production of metabolites [281]. The colonization of plant internal
tissues by fungal endophytes (dark condition) showed that light treatment decreased taxol
production in Paraconiothyrium SSM001 and decreased the level of gene expression [282].

19. Epigenetic Modifiers

The BCGs in fungi are present in the heterochromatin state and are controlled by
epigenetic processes, including DNA methylation and histone deacetylation [283]. Gene
expression/silencing in fungi is regulated by chromatin modification via DNA methy-
lation/histone deacetylation. Epigenetic modifiers such as histone deacetylase (HDAC)
inhibitors have the potential to initiate remodeling of chromatin to activate BGCs [284]. In
addition, 5-aza-20-deoxycytidine and 5-azacytidine (DNA methyltransferase) inhibitors are
another important class of epigenetic modifiers used for the discovery of natural products.
However, an in-depth understanding of secondary metabolite biosynthesis and regulation
is essential for the development of new techniques for the isolation of secondary metabolites
from fungi [242]. Prospective approaches for discovery/isolation of high-value metabolites
include BCG-specific transcription factor overexpression, promoter exchange, or employing
inducible promoters for gene activation, and applied to endophytic fungi to alter secondary
metabolite networks.

20. Translational Success and Outcome of Endophyte Research

The discovery and commercial production of taxol was a landmark in endophyte
biology and research and marked the bio-prospection of endophytes in natural product-
mediated drug discovery. The key pharmacological metabolites, including CPT, podophyl-
lotoxin, huperzine A, and vinca alkaloids (vincristine/vinblastine), define a novel paradigm
in pharmacology, with a new hope to discover and employ high-value metabolites in ther-
apeutic endeavors. Although endophytes continue to gain popularity as an attractive
production platform for pharmaceutical therapeutics at an affordable scale, the existing and
emerging bottlenecks regarding the purity of endophyte strains, sub-culturing concerns,
low yields, and adverse effects need to be further addressed for maximal utilization. Recent
advances in scientific interventions and high-throughput methods have made substantial
contributions to endophyte research, aiming to address the projected challenges. Genetic
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engineering of endophytes comprising gene overexpression and gene constructs, strain
mutagenesis, and co-cultivation of compatible strains is targeted toward the improvement
of different endophyte strains and high yield of targeted metabolites. With the deple-
tion of natural resources and limited availability of natural products, the bio-prospection
of endophytes and their genetic improvement is an important area of research in drug
discovery programs.
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