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Abstract: Fipronil is a broad-spectrum insecticide with remarkable efficacy that is widely used to
control insect pests around the world. However, its extensive use has led to increasing soil and water
contamination. This fact is of concern and makes it necessary to evaluate the risk of undesirable effects
on non-target microorganisms, such as the microbial community in water and/or soil. Studies using
the metagenomic approach to assess the effects of fipronil on soil microbial communities are scarce. In
this context, the present study was conducted to identify microorganisms that can biodegrade fipronil
and that could be of great environmental interest. For this purpose, the targeted metabarcoding
approach was performed in soil microcosms under two environmental conditions: fipronil exposure
and control (without fipronil). After a 35-day soil microcosm period, the 16S ribosomal RNA (rRNA)
gene of all samples was sequenced using the ion torrent personal genome machine (PGM) platform.
Our study showed the presence of Proteobacteria, Actinobacteria, and Firmicutes in all of the
samples; however, the presence of fipronil in the soil samples resulted in a significant increase in the
concentration of bacteria from these phyla. The statistical results indicate that some bacterial genera
benefited from soil exposure to fipronil, as in the case of bacteria from the genus Thalassobacillus,
while others were affected, as in the case of bacteria from the genus Streptomyces. Overall, the results
of this study provide a potential contribution of fipronil-degrading bacteria.

Keywords: bioremediation; 16S rRNA; next generation sequencing; environmental biotechnology;
targeted sequencing

1. Introduction

Fipronil is an organic insecticide of the phenylpyrazole family, discovered and de-
veloped by Rhône-Poulenc between 1985 and 1987 [1] and marketed since 1993 [1]. Its
increasing widespread use has raised concerns about the possible effects on the integrity
of humans and animals [1–4]. Fipronil can have a half-life ranging from 15 to 105 days,
depending on the soil type and the application of residues such as vinasse and filter cake.
The pH of the aqueous medium can also affect the half-life of more than 100 days, which
decreases to 28 days at pH 9 and 2.4 at pH 12 [5]. A cytotoxic effect of fipronil and its
metabolites in neuroblastoma-derived cells has been reported, and this effect may lead
to neurodegenerative diseases [6–8]. It has also been reported that fipronil acts as a neu-
rotransmitter receptor and alters the function of neurons [9,10]. This compound and its
metabolites can also cause hypertension and memory impairment, which has been ob-
served in fipronil-treated rats [11]. In addition, there are reports of exposure of liver and
kidney cells to fipronil, which can lead to the failure of these organs [12–14].

Fipronil can remain in the soil for weeks to months. Half-lives of fipronil in dystroferric
Red Latosol (clay texture) soils varied from 18 to 100 days, while in dystrophic Red Latosol
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(medium texture) soils they ranged from 25 to 141 days, with fipronil concentrations of
5 µg per gram of soil [5]. Another study reported half-lives of fipronil in clay loam soils
containing 0.50 mg/kg of the pesticide, which varied from about 4 to 6 days, while the
value in the soil (control) was about 100 days [15]. The possible impacts of the use of
fipronil on the environment and non-target species [3–5,15] and its persistence in soil [5,15]
are attracting increasing attention in research and in the search for microorganisms that
have the potential to biodegrade this compound, as the use of fipronil is of great interest
to the environment. For this reason, knowledge of the microbial community in the soil
can provide information that favors the search for microorganisms with biotechnological
potential, since this ecosystem can be considered the habitat with the greatest bacterial
diversity [16,17]. In this sense, the study of the existing microbial community allows not
only a better understanding of the ecological dynamics of the soil but also the possibility to
search for and exploit microorganisms with promising applications, such as the degradation
of recalcitrant compounds [18–21].

In this regard, metabarcoding is a powerful approach that allows the characterization
of the unknown bacterial community in soil samples without the need to culture them [22].
Selected genetic markers in microbial genomes are used to verify the occurrence in the
microbiota of different environments, including soil [23]. Recently, Rawat and Joshi [20]
reported that this type of next-generation sequencing (NGS) technique has proven to be
a valuable tool for biodiversity analysis in metagenomic samples and metabolic pathway
prediction. It has been widely used for the microbial diversity analysis of environmental
interest [24,25]. NGS technology tags conserved regions of evolutionary markers to find
operational taxonomic units (OTU) and expand the knowledge of complex microbial
communities [26].

Regarding pesticides, some may be toxic to microorganisms, while others serve as a
source of nutrients and energy and can be used for effective bioremediation. In this context,
microorganisms capable of degrading fipronil have been isolated and studied [21,27,28].
However, many studies aiming at finding them for biotechnological applications are
limited to their isolation because more than 99% of microorganisms cannot be cultured in
media [29,30]. Moreover, the pathway of fipronil degradation is still not fully understood.
Therefore, metagenomics and metabarcoding (culture-independent methods) enable the
exploration of the genetic material of these non-culturable microorganisms. This research
aims to answer the hypothesis of whether the application of fipronil affects microbial
diversity in microcosms. For this purpose, we have analyzed the bacterial diversity in soil
microcosms under short-term exposure to fipronil using metabarcoding analysis using
the 16S ribosomal RNA (rRNA) gene and compared the observed diversity with soils not
exposed to fipronil.

2. Materials and Methods
2.1. Soil Sampling and Microcosm

Semideciduous forest soil was collected at the experimental farm of EMBRAPA
Agropecuária Oeste, in the region of Dourados-MS Brazil at three coordinates:
(1) 22◦17′06.4′′ S 54◦48′37.5′′ W; (2) 22◦17′05.7◦ S 54◦48′39.9◦ W; and (3) 22◦17′04.9′′ S
54◦48′42.8′′ W. The soil was obtained from three depth levels: soil surface, about 5 cm, and
10 cm depth from the surface. All soil samples were homogenized. Information on the
chemical properties of the soil can be found in Table 1.

Table 1. Read chemical analysis of the soil collected.

Chemical Analysis Value

P (mg/dm3) 3.46
Ca (cmolc/dm3) 4.04
Mg (cmolc/dm3) 1.93
K (cmolc/dm3) 0.27
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Table 1. Cont.

Al (cmolc/dm3) 0.00
H + Al (cmolc/dm3) 2.30

pH CaCl2 6.19
pH H2O 6.74
pH SMP 6.83

T (cmolc/dm3) 8.52
SB (cmolc/dm3) 6.23

V% 73.06

The experimental design consisted of three samples with the application of fipronil
(F1, F2, and F3) and three samples for the control (C1, C2, and C3). The fipronil used
was Regent 800 produced and sold by BASF, with a purity of 98.8%. In each autoclaved
Erlenmeyer of 250 mL, 30g of the homogenized soil was distributed followed by 6 mL of
0.9% saline solution. All samples were kept at 30 ◦C in the biochemical oxygen demand
incubator during the microcosm period without agitation. In the second week, 3 mL of
0.9% saline was applied to each sample. In the fipronil treatment (F1, F2, and F3 samples),
sterilized (by autoclaving) and diluted fipronil was added to the samples with a final
concentration of 200 µg soil Kg−1. In the third and fourth weeks, 1 mL of 0.9% saline
solution was applied to all samples, and in the fipronil treatment, fipronil was added the
same way as in the second week (methodology adapted from Silva et al. [31]). The most
relevant steps used in this work are described in detail in Figure 1.
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Figure 1. Schematic representation of the main steps carried out in this work.

2.2. DNA Extraction and Metagenomic Library Construction

After four weeks of the microcosm, DNA from the soil samples was extracted using
the MoBio Laboratories Power Soil® DNA Isolation kit according to the manufacturer’s
instructions. The 16S rRNA metagenomic library construction and the sequencing of
DNA amplicons were performed in the central multi-user laboratory for large-scale DNA
sequencing (LMSeq) (Facility FAPESP proc. No. 2009/53984-2), at the State University of
São Paulo’s (UNESP) Jaboticabal Campus in São Paulo, Brazil.
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The extracted DNA was quantified using the Qubit® Fluorometer (Invitrogen-Life
Technologies, Waltham, MA, USA). For the metagenomic library, primers for the V4 and V5
regions of the 16S rRNA gene were used for PCR amplification (515F 5′-
TGTGNCAGCMGCCGCGGTAA-3 and 926R 5′-barcode-CCCCGYCAATTYMTT-3′) [32].
The primers for amplification were connected to the sequencing adapters, whereas the
reverse primer had both the adapter and barcode for sequence identification. The condi-
tions for 16S rRNA amplification were: initial denaturation at 95 ◦C for 3 min; 35 three-step
cycles: 95 ◦C for 30 s, 55 ◦C for 1 min and 30 s, and 72 ◦C for 45 s; and a final extension at
72 ◦C for 5 min. Agarose gel electrophoresis was performed for the amplicons. The bands
formed corresponding to the V4 and V5 regions of 16S rRNA were cut from the gel and
purified with the Zymoclean™ Gel DNA Recovery kit according to the manufacturer’s
instructions (Zymo Research, The Epigenetics Company, Irvine, CA, USA).

2.3. High-Throughput Sequencing

The amplified sequences of the V4 and V5 regions of the 16S rRNA gene were quanti-
fied using the Qubit® Fluorometer. The mean size of the fragments was verified using the
2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). The quantity and size data of the DNA
sequences were used for the dilution and emulsion preparation of the samples.

The Ion OneTouch™ 2 system and the Ion PGM Hi-Q OT2 400 kit were used for the emul-
sion and enrichment of the samples. DNA was deposited on a 318 V2 Ion chip, and sequencing
was conducted on a PGM Ion-Torrent Hi-Q following the manufacturer’s instructions.

Raw reads with a minimum size of 150 bp and a minimum quality mean Q20 were
filtered through the Prinseq software v.0.20.4 [33]. Cutadapt v.1.14 [34] was used to trim
primers and adapters, deleting sequences in which no adapter was found. Sequences
shorter than 150 bp were also discarded.

Raw data from 16S rRNA bacterial was deposited into the Sequence Read Archive
(SRA) database of the National Center for Biotechnology Information (NCBI) and can
be accessed by BioProject ID PRJNA692250 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA692250, accessed on 14 January 2021).

2.4. Diversity Analysis

The Brazilian Microbiome Project (BMP) pipeline [35] was performed with adaptations.
For the following steps, USEARCH v.9 [36] was used. Sequences were deduplicated. Their
abundances were classified from highest to lowest. The singletons found (OTUs represented
by only a single DNA sequence) were discarded. In order to characterize the taxonomic
structure of the samples, sequences were grouped in operational taxonomic units (OTUs)
using the UPARSE method [37] and considering the 97% identity, which represents the
usual definition for bacteria genus. OTUs were mapped to the initial file after preprocessing.
The resulting file from the mapping step was converted into tabulated text format. The
Biological Observation Matrix (BIOM) script [38] was then used to convert the text file into
BIOM format (OTUs table) and to add metadata to the file.

Quantitative Insights into Microbial Ecology (QIIME) v.1.9.1 [39] was used for the fol-
lowing steps. Taxonomy was attributed to clustered and filtered OTUs using the Ribosomal
Database Project (RDP) method [40]. Global alignment of the filtered OTUs was performed
using the Greengenes reference alignment core [41]. As a standard, QIIME executes the
alignment using the Python Nearest Alignment Space Termination (PyNAST) program
method [42]. Alignments were filtered using QIIME. A reference tree was constructed
from the filtered global alignment with the set of representative OTU sequences using the
FastTree program [43] (QIIME default software for alignments).

Multiple rarefaction curves were constructed using QIIME (multiple_rarefactions.py
script) from the BIOM table, with step sizes of 100 sequences, iteration of 50, and a
maximum depth of 11,547 (the number of sequences of the smallest sample). From the
multiple rarefaction files and the reference tree, the number of OTUs, Shannon, Simp-
son, Chao1, and Phylogenetic Diversity (PD) Whole Tree indexes were calculated us-
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ing the alpha_diversity.py script from QIIME. A rarefaction curve was constructed for
the number of OTUs and each alpha-diversity index through the collate_alpha.py and
make_rarefaction_plots.py scripts. Phylum proportion graphics for each sample were
generated using MEGAN v.6.6.7 [44] by importing the BIOM file.

2.5. Statistical Analysis

The BIOM table file was converted into a tabulated format containing the number
of sequences for each OTU on each sample and imported into R. Then, the Levene test
(from the car package) [45] and the Shapiro-Wilk test (from the stats package) [46] were
performed on the table to check, respectively, whether the sample data had equal variance
and normal distribution.

BIOM table was converted into a STAMP Profile File (spf) format using the
biom_to_stamp.py script from the Microbiome Helper workflow [47]. Statistical Anal-
ysis of Taxonomic and Functional Profiles (STAMP) v.2.1.3 [48] was used to construct the
principal component analysis (PCA) plot based on the genus level. Because the sample data
had heteroscedasticity and non-normal distribution, as demonstrated by the Levene test
and Shapiro–Wilk test (considering p-value < 0.05 for both tests), the nonparametric White
t-test [49] was selected on the STAMP software to infer the differences in mean proportions
between both groups. The selected method for the confidence interval was DP: bootstrap
of 0.95.

3. Results
3.1. General Information about Sampling and Sequencing

As a result of sequencing all the samples studied, a total of 321,561 raw reads were ob-
tained. These reads were preprocessed using the Prinseq program, resulting in 295,258 reads,
of which 204,855 were trimmed with cutadapt and had final length longer than 150 bp. The
resulting N50 (the size of the reads after the cutting process) was 341 bp. After clustering, a
total of 271 OTUs were obtained.

Ecological indices were used to verify whether there was a variation in diversity and
species richness between the different treatments analyzed. In addition to the number of
OTUs, Shannon and Simpson indices were calculated and are represented in rarefaction
curves (Figure 2). All the generated rarefaction curves reached the stabilization shown by
the plateau (asymptomatic values on the Y-axis).

In Figure 2A, the use of the Shannon–Weaver ecological index revealed a high species
richness. Interestingly, although there is a high species richness, the results do not indicate
a significant difference between the fipronil-exposed and control samples.

Simpson’s reciprocity index, in turn, refers to the probability that two random species
in the samples belong to the same species. The higher the value, the higher this probability.
Figure 2B shows a high value of species diversity but no difference between the control
and fipronil-exposed samples.

Finally, Figure 2C shows that the sequencing depth was sufficient to capture all the
microbial diversity in the analyzed sample. This is indicated by the plate in the rarefaction
curve obtained from the dataset.

In the PCA plot (Figure 3), fipronil and control microcosm soil presented different
taxonomic profiles. Taking into account the highest axis (PC1) in the PCA, the control
samples had a shorter distance between themselves compared to the distance between the
samples within the fipronil group. The difference in PCA grouping between control and
fipronil samples indicates that fipronil affected the evaluated bacterial communities.
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Figure 3. Principal component analysis representing the structure of the bacterial community of soil
microcosm under application of fipronil and control at the genus level. The PCA was generated using
the software STAMP. Control samples are plotted in green color and fipronil in yellow color. Each
axis shows the variance explained in percentage of the distance between the bacterial community
structures of the samples.
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3.2. Composition of the Microbial Community

The diversity of the microbial community found in the samples was analyzed and rep-
resented in Figure 4. Eleven different bacterial phyla were identified, with Proteobacteria,
Actinobacteria, and Firmicutes predominating in all samples.
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Consistently among each sample, the mean proportion of the most abundant phyla for
the control and fipronil-exposed samples, respectively, were Proteobacteria 33.12 ± 5.51%
and 35.69 ± 2.79%; Actinobacteria 23.59 ± 3.40% and 26.73 ± 3.62%; and Firmicutes
17.52 ± 5.82% and 25.02 ± 11.04%.

Finally, the range of OTUs was compiled and ordered by summing the readings of
all samples for each OTU (Table 1). These results revealed that of all the bacterial genera
observed in Table 2, Thalassobacillus, a member from the Firmicutes phylum, showed the
greatest difference between the two conditions studied.

Table 2. Read counts of the top ten most abundant OTUs for each soil microcosm sample. Control
samples: C1, C2, and C3 and Fipronil samples: F1, F2, and F3. Norm is normalization (the mean
relative abundance).

Genera C1 C2 C3 Sum Norm. F1 F2 F3 Sum Norm.

Gaiella 359 356 514 1229 0.057219 919 621 604 2144 0.099818
Thalassobacillus 0 102 38 140 0.006518 839 1632 480 2951 0.13739
Mesorhizobium 360 301 273 934 0.043484 693 485 623 1801 0.083849

Bacillus 1211 4 10 1225 0.057032 15 1214 15 1244 0.057917
Streptomyces 502 377 490 1369 0.063737 315 244 417 976 0.04544

Mycobacterium 252 191 255 698 0.032497 423 345 308 1076 0.050095
Actinobacterium Gp-6 236 201 247 684 0.031845 347 377 276 1000 0.046557

Bradyrhizobium 199 185 186 570 0.026538 379 228 329 936 0.043577
Pedomicrobium 184 161 164 509 0.023698 303 271 283 857 0.039899

Rhodoplanes 138 134 153 425 0.019787 237 217 257 711 0.033102



Microorganisms 2023, 11, 52 8 of 14

3.3. Statistically Significant Changes

Based on the Levene and Shapiro-Wilk tests, the distribution of the data did not
conform to the assumption of homogeneity (F statistics = 3.3198; p-value = 0.005482)
nor normality (W = 0.31539; p-value < 2.2 × 10−16). Since the nonparametric White t-
test eliminates the normality assumption of a standard t-test by using permutation, this
statistical hypothesis test was selected to infer the differences between both groups studied
in this work. At the phylum level, there were no statistically significant differences between
the treatments, considering the p-value to be less than 0.05. At the genus level, differences
occurred for six genera (Figure 5). Interestingly, Thalassobacillus and Streptomyces were the
genera with the highest effect sizes for fipronil and control, respectively. The populations
from the genus Thalassobacillus were higher in the fipronil-treated samples, while those
from the genus Streptomyces were higher in the control samples. The unclassified and
uncultured genera were omitted from the analysis.
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4. Discussion

To validate the representativeness of the samples, rarefaction curves were constructed.
The stabilization of rarefaction curves for Shannon and Simpson indices and OTU number
presented sufficient sequence coverage for taxonomic diversity. Similarly, the rarefaction
curves for Chao1 and PD whole tree also tended to plateau (Figure 2). This behavior
indicates that the higher the number of sequences considered in the samples, the lower
the contribution of these additional sequences to the diversity index and the number
of OTUs. Thus, the sample size was considered adequate to illustrate the diversity of the
soil microcosm bacterial community.

Soil samples were collected in a transition region between the Cerrado and the At-
lantic Forest. In studies carried out in similar environments, a predominance of the phyla
represented by Proteobacteria, Actinobacteria, and Firmicutes has been observed, with ap-
proximately 80% of the total number of representatives representing the relative abundance
of these three phyla [50,51]. Different studies have shown the occurrence of these same
phyla in the Brazilian Cerrado [52–54].

In this study, at the phylum level, it was observed that the exposure of the soil samples
to fipronil affected the bacterial community with a slight increase in the representatives
from the phyla Proteobacteria, Actinobacteria, and Firmicutes, compared to the control
samples. Such variation was recently mentioned by Walder et al. [55], who similarly
observed that contamination of agricultural soils with pesticide residue influences the
microbiome. In this regard, some of the genera observed, such as Thalassobacillus (Figure 5)
and Rhodoplanes (Table 1), have been shown to be positively influenced by fipronil exposure.
On the other hand, fewer genera were observed in fipronil-exposed samples compared to
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the control, suggesting that these genera were influenced negatively by the presence of this
compound (Figure 4).

The changes observed in a microbial community may be related to the ability of some
microorganisms to degrade recalcitrant compounds. Some work has shown that after
exposure to pesticides, some groups of bacteria were able to return to the initial population
using the applied pesticides as a source of energy and carbon [56]. In other words, some
microbial cultures are able to degrade xenobiotic compounds, such as fipronil, as the sole
carbon and energy source. For example, in the recent work published by Singh et al. [20],
the authors mentioned that only nine bacteria have been identified as fipronil degraders
up to their publication date. Among them, we can mention Bacillus thuringiensis [57] and
Streptomyces rochei [58]. In the same vein, Cappelini et al. [59] observed that the bacterium
Burkholderia thailandensis belonging to the phylum Proteobacteria also showed potential for
fipronil degradation. Another example is the result observed by Ahemad et al. [60], where
the authors stated that the Rhizobium strain MRL3 could grow in a medium with fipronil
as the sole source of carbon and nitrogen. Finally, Gangola et al. [61] have demonstrated
the potential of Bacillus sp. strain 3C to degrade environmental pesticide mixtures. In
this work, changes in the microbial community have been observed, with the different
taxonomic profiles demonstrated by PCA (Figure 3) indicating that the bacterial community
composition is different between the control and fipronil soil microcosms. Additionally, the
positive influence of fipronil exposure on the genera Thalassobacillus and Rhodoplanes could
suggest the involvement of these two groups in the fipronil degradation pathway.

In terms of bacterial community composition, Proteobacteria was the most predomi-
nant phylum in all samples. The same was observed in other metagenomic studies on soil
microbiomes from the Cerrado [51–54] and the Atlantic Forest [61]. In this study, as men-
tioned above, the phyla Proteobacteria, Actinobacteria, and Firmicutes were observed in all
samples. However, soil samples exposed to fipronil showed a higher population of bacteria
representative of these phyla. In Table 2, two bacteria (Gaiella and Actinobacterium Gp-6) are
among the ten most abundant OTUs for each soil microcosm sample. Both bacteria belong
to the phylum Actinobacteria and experienced a slight increase after fipronil application. In
line with the results obtained in this work, Pacchioni et al. [62] have described bacteria from
the phylum Actinobacteria in fipronil degradation experiments in soil. The authors also
stated that the same strain increased the exopolysaccharide secretion with progressively
increasing fipronil concentrations. Similarly, Tomazini et al. [63] recently showed that the
strain Mesorhizobium sp. MRC4, from the same order as Rhizobium, was tolerant to high
levels of several pesticides. The authors also observed that this strain produced increased
exopolysaccharide secretion with increasing pesticide concentrations. In another recent
study, Araujo et al. [54] observed that different strains of Mesorhizobium were shown to
be highly tolerant to different pesticides used in chickpea cultivation. In this context, the
results presented in Table 2 show the presence of Mesorhizobium in higher concentrations in
soil samples exposed to fipronil, confirming the observations of the studies cited above.
In addition, most genera from the order Mesorhizobium are beneficial to their plant hosts.
They are often associated with nitrogen fixation, nodulation of legumes, and symbiosis
with plant roots [64].

With respect to Actinobacteria, this phylum was also one of the most abundant in all
samples. Among the genera belonging to Actinobacteria, Streptomyces was the most affected
by the exposure of soil samples to fipronil, with a decrease in its population in the presence
of this compound. Consistent with the high abundance in the samples, Streptomyces
is commonly found in soils [65]. With respect to that genus, members of this group
of microorganisms include important wood decomposers and producers of secondary
metabolites, such as antibiotics [66,67]. These compounds influence their antagonism
against other microorganisms. They are also capable of synthesizing proteases, chitinases,
and xylanases [67].

In addition to the most abundant phyla, representatives from the Firmicutes group
were present in all samples. Interestingly, some bacteria from the phylum Firmicutes
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have been described as involved in fipronil degradation [62]. In this work, the phylum
includes Bacillus and Thalassobacillus among the ten most abundant OTU in the samples.
Representatives from this phylum are spore-forming microorganisms, which increases their
chances of survival in disturbed environments. Although no statistical differences between
treatments were found for Bacillus in this study, research has reported fipronil biodegrada-
tion promoted by different Bacillus species [15,27,57,68,69]. Interestingly, Thalassobacillus,
a genus from the same family as Bacillus, had a higher proportion of representatives in
the fipronil-exposed microcosms compared to the control. In relation to this group of
microorganisms, it should be mentioned that the bacterium Thalassobacillus devorans was
isolated for the first time from saline soils in southern Spain [70]. Many other species
belonging to the genus Thalassobacillus have been isolated from various saline environ-
ments, such as a hypersaline lake, marine coastal tidal flat sediments, and salty animal
skins [71–74]. Thalassobacillus bacteria are moderately halophilic. Consequently, the saline
solution applied to the microcosms could have been conducive to their growth. Consid-
ering that Thalassobacillus can biodegrade aromatic compounds, the difference in ratios
between fipronil and the control suggests that Thalassobacillus may be able to metabolize
fipronil or fipronil-derived compounds. If this is correct, it is possible that Thalassobacillus
may contribute to the biodegradation of the pesticide.

Finally, by using 16S rRNA metagenomics, this study indicates changes in taxonomic
groups due to fipronil exposure. These findings motivate future research on the experi-
mental effects of fipronil on specific bacterial groups, especially the candidates with the
potential to degrade the fipronil described here. Using this information as a basis for the
development of new tools, efforts can be made to minimize the impacts of human activity
on soil microbial activities and biochemical cycling and to increase crop productivity by
facilitating the abundance of plant growth-promoting bacteria.

5. Conclusions

This work showed that exposure of soil samples to fipronil affects the bacterial com-
munity in studies using microcosms. Therefore, the hypothesis proposed was confirmed.
In this sense, it has been observed that the phyla represented by Proteobacteria, Actinobac-
teria, and Firmicutes have benefited from soil exposure to fipronil, with their population
slightly higher in the presence of fipronil compared to the control.

The findings of this study point in the direction of the potential bacterial candidates for
fipronil degradation, providing valuable information for further research. The metabolic
pathway for fipronil and its metabolite degradation is still not completely understood,
but the effects of its indiscriminate use have been demonstrated on some organisms,
emphasizing the importance of investigating ways to degrade the pesticide. Collaborative
efforts to better understand the relationship between the microorganisms and their contact
with the pesticide can shed light on the metabolic pathway for fipronil and its metabolite
degradation in the future, minimizing the negative impacts of human intervention on
the environment.
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