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Abstract: Antibiotic resistance is becoming a common problem in medicine, food, and industry, with
multidrug-resistant bacterial strains occurring in all regions. One of the possible future solutions is
the use of bacteriophages. Phages are the most abundant form of life in the biosphere, so we can
highly likely purify a specific phage against each target bacterium. The identification and consistent
characterization of individual phages was a common form of phage work and included determining
bacteriophages’ host-specificity. With the advent of new modern sequencing methods, there was a
problem with the detailed characterization of phages in the environment identified by metagenome
analysis. The solution to this problem may be to use a bioinformatic approach in the form of prediction
software capable of determining a bacterial host based on the phage whole-genome sequence. The
result of our research is the machine learning algorithm-based tool called PHERI. PHERI predicts
the suitable bacterial host genus for the purification of individual viruses from different samples. In
addition, it can identify and highlight protein sequences that are important for host selection.

Keywords: bacteriophages; machine learning algorithm; phage host determination

1. Introduction

Bacterial infections have affected public health throughout human history. The in-
troduction of antibiotics reduced human morbidity and mortality caused by infectious
diseases dramatically. However, the emergence of multidrug-resistant pathogenic bacteria
reverted the situation once again. Moreover, the problem of multi-drug resistance is getting
worse. WHO calls attention to infections, especially by Klebsiella pneumoniae, Mycobacterium
tuberculosis, and Neisseria gonorrhoeae, and blood poisoning and foodborne diseases. These
infections are becoming harder and sometimes nearly impossible to treat [1]. Moreover,
antibiotic resistance is now recorded in every country [2]. One of the possible solutions is
the use of bacteriophages in therapy. Phages have relatively simple structures composed of
proteins (approx. 60%) that encapsulate a DNA or RNA genome (40%) [3,4]. Phages are
among the most abundant entities in the biosphere, with an estimated 1031–1032 phages in
the world at any given time. Moreover, they play a crucial role in regulating bacterial pop-
ulations; for example, phages are responsible for the death of approximately 20–40% of all
marine surface bacteria every 24 h [5–7]. They are ubiquitously and naturally distributed in
all environments populated by bacterial hosts, including soil, water, air, and the intestines
of humans and other animals [7–10]. The idea of using bacteriophages in therapy is not new.
Phage therapy has been used in the former Soviet Union countries for decades [11,12], but
in the last few years, it has begun to be applied in Western countries as well. Bacteriophages
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have proved their usefulness not only in animal models such as mice [13,14], cattle [15,16],
chicken [17], zebrafish [18], and dog [19], but also when used in humans. Human phage
therapy has gained reliance through research projects such as PhagoBurn [20] or practical
experience in Georgia [21], leading to the first cases of phage use on patients in Western
countries. In recent years, phage therapy has been successfully used for the intravenous
treatment of bacterial infections in cystic fibrosis patients in the US and Georgia. It has
been used against multi-drug resistant pathogens such as Achromobacter xylosoxidans, Pseu-
domonas aeruginosa, Mycobacterium abscessus, and Burkholderia dolosa [22–25]. Additionally,
in the treatment of Mycobacterium abscessus, the patient was treated with a cocktail of three
phages, of which only one was naturally lytic, and the other two were engineered to increase
their lysis efficiency by deleting the receptor gene or its HTH domain [25]. These studies
used well-characterized phages from collections, with known hosts, one of the primary
conditions for their successful practical use. Characterized phages were amplified on the
host, purified, and subsequently sequenced. However, the introduction of high-throughput
sequencing has allowed us to examine metagenomic colonies of bacteria right from the
environment. This method has the potential to discover a considerable number of new
species, which were not cultivable before. However, it also produces more and more phage
genomic sequence data without an identified host. Luckily, the host range of known phages
tends to be relatively narrow, often consisting of only a subset of strains making up a single
bacterial species [26]. The problem of unknown hosts can be alleviated by a bioinformatic
approach. For a successful phage infection, it needs not only to adsorb to the host surface
and insert its genetic information, but it also needs to overcome its immune response and
ensure successful transcription and translation. It is therefore essential to consider changes
in bacterial surface structures and thus in the presence of phage receptors on individual
strain membranes within the species [27]. Equally important is the consideration of the
bacterial host immune response in terms of restriction-modification systems [28,29], the
CRISPR mechanism [30] or abortive systems [31,32]. Additionally, factors affecting phage
gene transcription and translation are important, such as the availability of specific tRNA
or sufficient amino acids. However, the change in specificity may be due to overcoming
the host response, as in obtaining the resistance of the CRISPR system [33]. All these
parameters can negatively affect the host prediction. Nevertheless, several groups have
already attempted to bioinformatically elucidate the phage-host interaction using a variety
of approaches and tools such as Virsorter [34], MGTAXA [34,35] or HostPhinder [36]. Our
goal was also to create a bioinformatic tool for predicting the host from the whole genome
sequence, but we chose the machine-learning-algorithm approach. The use of machine
learning algorithms has proved to be suitable for phage biology, as evidenced by their use
in the search for phage virions [37], and improved phage genome annotation [38] as well
as phage classification [39,40]. Our pipeline, PHERI, re-annotates phage genomes, and
uses TRIBE-MCL for rapid and accurate clustering of annotated protein sequences [41,42]
and a binary decision tree classifier to predict the phage host. The rationale behind our
method lies in the close relationship between the genomic sequence of a gene and the
biological function of its translated protein. Even if the function of the gene is unknown,
the presence of similar sequences in phages infecting the same hosts indicates that the
mentioned sequences are related to the host specificity. The presence of such sequences in
the tested genome may resolve potential host infiltration.

2. Materials and Methods

We used phage genome sequences collected from several publicly available databases
to identify clusters of gene sequences that are specific for distinct hosts. We used them
to classify unlabeled phage genomes using the following analysis steps. At first, coding
regions of the genomic sequence were identified and extracted. Then, they were compared
with gene sequences collected from phages with known hosts, resulting in the reduced
binary vector representation of the phage. Finally, the vector was classified to identify
potential hosts of the phage.
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2.1. Collection of Phage Sequences

We downloaded genomic sequences of phages from three publicly available databases
using automated in-house scripts; 6091 records from GenBank [43], 2070 records from
ViralZone [44,45] and 2567 records from PhageDB [46]. Although these databases cover the
majority of currently sequenced and published phages, we made the downloading step
easily extensible for adding new sources of phage sequences that may emerge in the future.
Downloaded records were highly redundant, mainly because many phage sequences were
simultaneously presented in more databases. Therefore, we merged downloaded datasets
and removed duplicated records, resulting in a non-redundant dataset of 7064 phage
sequences capable of infecting 183 bacterial genera (Figure 1). The host name and taxon-
omy for each sequence were obtained and unified according to NCBI taxonomy to allow
computer processing. The phages with hosts from the 50 most abundant bacteria genera
were selected for further analysis. The phages outside this group were discarded due to
an insufficient number of samples for machine learning analysis. Genomes were further
divided, using random sampling, into two distinct datasets; training set with 4723 (80%)
sequences and testing set with 1202 (20%) sequences. The training set was utilized to
identify clusters of common gene sequences and train parameters of the classifier. The
accuracy of the method had been validated on the testing set (Table 1).
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Composition of PHERI ś bacteriophages database

Figure 1. Composition of hosts infected by bacteriophages from the PHERI database. The database is
made up of bacteriophages infecting at least one representative of 183 bacterial families.
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Table 1. Number of true positive, true negative, false positive and false negative predictions on the
testing dataset (n = 1202).

Genus True Positive True Negative False Positive False Negative

Leuconostoc 4 1198 0 0

Ruegeria 3 1197 2 0

Helicobacter 6 1194 2 0

Paenibacillus 6 1192 4 0

Cutibacterium 25 1173 4 0

Moraxella 7 1190 5 0

Synechococcus 29 1166 7 0

Lactococcus 47 1145 9 1

Streptococcus 39 1152 10 1

Mycolicibacterium 320 847 33 2

Staphylococcus 37 1155 8 2

Arthrobacter 45 1150 4 3

Rhodococcus 11 1189 1 1

Microbacterium 21 1171 8 2

Bacillus 32 1156 11 3

Gordonia 55 1135 5 7

Flavobacterium 6 1194 1 1

Acinetobacter 9 1188 3 2

Pseudomonas 46 1129 16 11

Aeromonas 7 1190 3 2

Corynebacterium 3 1194 4 1

Caulobacter 3 1193 5 1

Proteus 2 1199 0 1

Mannheimia 2 1197 2 1

Streptomyces 23 1164 3 12

Escherichia 82 1044 31 45

Enterococcus 6 1189 3 4

Listeria 4 1195 0 3

Erwinia 5 1192 1 4

Campylobacter 8 1180 7 7

Salmonella 20 1147 13 22

Lactobacillus 5 1185 6 6

Clostridioides 2 1197 0 3

Clostridium 2 1195 2 3

Yersinia 2 1192 5 3

Vibrio 13 1163 6 20

Rhizobium 1 1198 1 2

Klebsiella 5 1176 8 13

Xanthomonas 1 1194 3 4
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Table 1. Cont.

Genus True Positive True Negative False Positive False Negative

Cronobacter 1 1193 4 4

Pectobacterium 1 1194 2 5

Pseudoalteromonas 1 1192 4 5

Brucella 1 1194 1 6

Ralstonia 1 1193 2 6

Cellulophaga 1 1193 2 6

Burkholderia 1 1191 4 6

Shigella 1 1184 7 10

Stenotrophomonas 0 1199 0 3

Citrobacter 0 1196 1 5

Mycobacterium 0 1196 4 2

2.2. Extraction and Annotation of Genes

Phage genome sequences were annotated with locations of genes and their biological
functions. Although gene annotations of particular genomes are part of genomic records
in the utilized databases, we decided to annotate sequences from scratch. This way, we
ensured consistency of annotations across our data with up-to-date knowledge. We used
a publicly available pipeline called Prokka [47] to identify and annotate genes. First,
coordinates of coding DNA sequences (CDS) were found with the Prodigal tool [48].
After the locations of genes were predicted, Prokka can start to annotate functions of all
CDSs. The tool does this by comparison of a sequence to several databases of proteins
with an experimentally determined function [45,49] or pre-processed protein families and
domains [45,50,51]. The Prokka pipeline was run with the parameter—kingdom Viruses to
consider that we were annotating genes in phages.

2.3. Clustering of Gene Sequences

We compared extracted genes to identify clusters of highly similar sequences, presum-
ably with the same biological function. Since thorough pairwise comparison of all proteins
in the training set would be overly time-consuming, we employed a multi-step approach.
In the first step, genes were deduplicated using CD-hit [52] to reduce the enormous number
of sequences. Then, gene pairs with at least some local sequence similarity were identified
using an optimized implementation of the Blast alignment tool [42], called CrocoBLAST [53]
(used parameters blastp -max_target_seqs 1,000,000 -max_hsps 1. All other parameters are
default). Afterwards, the identified pairs with high local sequence similarity underwent
thorough pairwise alignment [54] to retrieve more accurate similarity scores. Based on
these similarity scores, we identified gene clusters using the Markov Cluster Algorithm
implemented in the MCL package [41]. We recovered 32,281 gene clusters. A substantial
portion of clusters contained only a small number of gene sequences. We think such clusters
do not have enough information to significantly help the classifier and only increase the
chance of overfitting. Therefore, we removed all clusters with genes from less than 1% of
phages from the training set. In the result, we obtained 1965 clusters that were used further
in the classification.

2.4. Training Classification Model

We trained a binary decision tree classifier [55] for each bacterial host from the dataset
separately, since a united classifier for all potential hosts would be too complicated for
coherent interpretation. Additionally, the phage sequence may be labelled with multiple
bacterial hosts. The separate classification allows one to label less-specific phages with
multiple admissible hosts. At first, phage sequences from the training set were transformed
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to the reduced integer vector representation, where value ai,j represents a number of genes
from cluster j belonging to phage i. For each host, we trained a classifier to predict if an input
vector represents a phage that can infect a given host. Each node in the resulting decision
tree represents a single gene cluster with informative value regarding phage specificity.
The presence or absence of such genes guides decision along the tree. Each informative
cluster may be annotated with biological function to improve the interpretation of the
decision process. Gene clusters without known function are good candidates for follow-up
experimental evaluation. The tool PHERI, the source code for the model training as well
as the source code for the tool is available at https://github.com/fmfi-compbio/pheri
(accessed on 10 May 2023).

2.5. Classifying Novel Sequence

A novel phage genome sequence is classified using similar steps. At first, gene
sequences are identified using Prodigal tool. Then, collected gene sequences are compared
with the gene clusters using Blast. Genes with significant matches with any sequence from
a cluster are assumed to be members of clusters. Finally, the set of genes is transformed
into a reduced vector representation. The vector is labelled with all trained classifiers. All
bacteria with a positive classification are assumed as potential hosts for the phage.

2.6. Bacterial Strains and Growth Conditions

Escherichia, Cronobacter, Enterobacter, Salmonella, Klebsiella, Staphylococcus, Proteus, Mor-
ganella and Citrobacter strains were isolated from clinical or food samples in our laboratory
or were obtained from the collections of Nottingham Trent University, UK, the Belgian
Coordinated Collections of Microorganisms, the Czech Collection of Microorganisms or
from Slovak Food Research Institute. We used a total of 33 strains of the genus Escherichia,
26 Cronobacter, 15 Salmonella, 5 Enterobacter, 3 Proteus, 3 Staphylococcus, 2 Klebsiella, 2 Pseu-
domonas and 1 Morganella morganii strain. We later expanded the set of strains by five
bacteria from the genus Citrobacter. The Luria-Bertani (LB) broth and LB agar were the
general-purpose media used to cultivate strains.

2.7. Isolation of Bacteriophages

Bacteriophage DevCS701 (ON157416) [56] was isolated from a sample from the
Bratislava wastewater treatment plant on the indicators C. sakazakii NTU701. Wastew-
ater was sterilized by passage through a 22 µm filter and mixed with an equal volume of
twofold-concentrated LB medium and up to 1% of overnight bacterial culture. The inocu-
lated mixture was cultivated overnight at 37 ◦C with shaking. Phages were purified by three
repeated isolations from single plaques on double agar, followed by ultracentrifugation in
a CsCl gradient [57].

2.8. Plaque Assay and Host Range

The 200 µL overnight bacterial culture was supplemented with 10 µL of 1 M CaCl2
and 10 µL of 1 M MgCl2, mixed with 5 mL of top agar (0.2% peptone, 0.7% NaCl and
0.7% agar), and poured onto an LB agar plate. A volume of 10 µL of the appropriate
bacteriophage suspension (102–1010 PFU/mL) was spotted onto the plate and incubated
overnight. Alternatively, 20 µL of bacteriophage suspension was mixed with 200 µL of
overnight bacterial culture and with 5 mL of top agar and poured onto the LB agar. After
overnight cultivation at 37 ◦C, the plaques were counted. The strain C. sakazakii NTU701
was used as a reference for the determination of the efficiency of plating (EOP) for phage
Dev-CS701.

2.9. Phage Adsorption

A volume of 180 µl overnight bacterial culture (OD600 = 1) was mixed with 20 µL
of phage suspension (108 PFU/mL; the multiplicity of infection = 0.001) at 37 ◦C. After
10 min, 10µL of the sample was diluted in 0.99 mL of cold SM buffer (100 mM NaCl, 8 mM

https://github.com/fmfi-compbio/pheri
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MgSO4, 50 mM Tris-HCl, pH 7.5, 0.002% gelatine) and centrifuged. Unabsorbed phages
from supernatants were counted by plaque assay, and the amount of phage adsorbed
was calculated as the percentage of cell-bound phage. The measurements were repeated
in triplicate.

3. Results

In this study, we developed and benchmarked PHERI, a tool for predicting the bacterial
host genera for phages from metagenomic data. The method is based on the assumption
that phages infecting the same host share similar protein sequences. In making predictions,
PHERI relies on a reference database, in which sequences of phages have been annotated,
and resulting genes have been categorized based on similarity. Subsequently, host-specific
clusters and cluster combinations were searched and 50 genus-specific decision trees were
created. The genomes of the tested phages, for which the hosts should be predicted, were
also annotated, categorized and compared to decision trees. If the test bacteriophage
contained sequences similar to those in clusters in a specific tree, we assumed that it could
infect the host for which the decision tree is created. The prediction was then experimentally
verified on phage samples from our collection.

3.1. Developing PHERI Method

The method uses a reference database that we made of unique phage sequences
from three databases—GenBank, ViralZone and PhagesDB. In the exploratory stage of
our analysis, we used python library scikit-learn [58] for principal component analysis.
Reduced representation of phages in the form of an integer matrix was used as an input. The
first few principal components were used to create plots in the python library matplotlib. In
Figure 2, we can see data visualized with the first principal component on the x-axis and the
second principal component on the y-axis. Each data point represents one phage record, and
the colour of the particular data point corresponds to the genus of that phage. Most phage
records are located around the centre, with some distinct groups of Mycobacterium and
Staphylococcus phages outside the centre. The first two principal components retained less
than 21% of the dataset variability (Figure 2). This result suggests that many predictors are
contributing valuable information to the dataset. To take into account this high number of
predictors and at the same time keep the interpretability of the resulting model acceptable,
we chose Decision Tree Classifier as our model.

Before the feature selection, our training dataset consisted of a matrix with 4723 rows,
representing phages, and 32,281 columns, representing gene clusters. The high dimen-
sionality of our data could lead to the increased probability of the overfitting of models
on data. To address this concern, we decided to perform feature selection as a process of
removing dimensions with low importance from the dataset. The reason to prefer feature
selection over feature extraction methods as PCA presented in the previous section was
that we wanted our tree models to be interpretable in terms of important clusters rather
than in terms of principal components. Because we expected many clusters with a small
number of genes, our choice for the feature selection method was the Variance Threshold.
The Variance Threshold method is a simple method that removes columns with variance
under a certain threshold. Using this technique, we removed columns in the matrix with
ones in more than 99% of cases or with zeros in more than 99% of cases. The reduced
matrix had 4723 rows and 1965 columns. In our work, we used a Decision Tree Classifier
implementation from the python library scikit-learn. For each group of phages with hosts
from selected genera, we created one model. Each of those models was trained to answer a
question, whether one particular phage was able to infect bacteria from a specific genus.
Models were trained with a reduced matrix used as the feature. The ability to infect a
specific genus was used as the label. To prevent overfitting of our trees, we also set the
parameter min_impurity_split to the value 0.03. This parameter enabled a threshold for
splitting leaves and therefore only nodes with an impurity index greater than 0.03 were
divided. The threshold 0.03 was determined empirically. Lower values created a tree with
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many nodes, where the risk of overfitting was high and greater values did not have enough
nodes to maintain a model’s accuracy. With this approach, we created a model for each
of our 50 selected host genera and visualized it with the python library Graphviz. For
classification, we expected to have a complete sequence of bacteriophage.
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3.2. Host Prediction Evaluation

To examine the accuracy of our models, we classified all bacteriophages from our test
dataset. Test dataset contained 1202 phage records. Resulting predictions were aggregated
and the number correctly predicted (TP + TN), false-positive (FP), false-negative (FN), sen-
sitivity (TPR = TP/P), specificity (TNR = TN/N) and informedness (BM = TPR + TNR − 1)
was recorded. From the identified values, we determined the accuracy, sensitivity, speci-
ficity and informedness prediction for 50 bacterial genera with the highest number of
infecting phages. PHERI predicted a host of bacteriophages infecting Leuconostoc, Reuge-
nia and Helicobacter the best. Accuracy, sensitivity and specificity were equal to or close
to 100%. At the opposite end of the spectrum were bacteriophages infecting the genera
Stenotrophomonas and Citrobacter (Table 1, Figure 3).



Microorganisms 2023, 11, 1398 9 of 17

Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 18 
 

 

Models were trained with a reduced matrix used as the feature. The ability to infect a 

specific genus was used as the label. To prevent overfitting of our trees, we also set the 

parameter min_impurity_split to the value 0.03. This parameter enabled a threshold for 

splitting leaves and therefore only nodes with an impurity index greater than 0.03 were 

divided. The threshold 0.03 was determined empirically. Lower values created a tree with 

many nodes, where the risk of overfitting was high and greater values did not have 

enough nodes to maintain a model’s accuracy. With this approach, we created a model for 

each of our 50 selected host genera and visualized it with the python library Graphviz. 

For classification, we expected to have a complete sequence of bacteriophage. 

3.2. Host Prediction Evaluation 

To examine the accuracy of our models, we classified all bacteriophages from our test 

dataset. Test dataset contained 1202 phage records. Resulting predictions were aggregated 

and the number correctly predicted (TP + TN), false-positive (FP), false-negative (FN), 

sensitivity (TPR = TP/P), specificity (TNR = TN/N) and informedness (BM = TPR + TNR − 

1) was recorded. From the identified values, we determined the accuracy, sensitivity, spec-

ificity and informedness prediction for 50 bacterial genera with the highest number of 

infecting phages. PHERI predicted a host of bacteriophages infecting Leuconostoc, Reu-

genia and Helicobacter the best. Accuracy, sensitivity and specificity were equal to or close 

to 100%. At the opposite end of the spectrum were bacteriophages infecting the genera 

Stenotrophomonas and Citrobacter (Table 1, Figure 3). 

 

Figure 3. Informedness of PHERI host prediction. Each point represents phages infecting one bac-

terial genus. Value informedness estimates the probability of an informed decision; the closer the 

values are to one, the more credible the prediction is. The trendline confirms the hypothesis that the 

informedness value increases with the growing number of specific phages. 

  

Figure 3. Informedness of PHERI host prediction. Each point represents phages infecting one
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informedness value increases with the growing number of specific phages.

3.3. Comparison of PHERI to Other Tools

Surprisingly, there are not many tools with the same goal as PHERI. We discuss
some notable examples in the Discussion. Here, we provide a comparison with the tool
HostPhinder, where the goal is the most aligned with ours. We calculated the accuracy
in the testing dataset, which was held out at the beginning of the analysis. This hold-out
testing dataset mimics the conditions during its use in practice in the laboratory, where
the only information we have is the sequence of the isolated phage. The accuracy of both
tools was remarkably high (>0.85). In Figure 4, we show the accuracy across all 50 selected
genera, with the accuracy of HostPHinder on the x-axis, the accuracy of PHERI on the
y-axis and the genera marked as blue points. PHERI achieved consistently high accuracy
around 0.98 even for more challenging targets, where HostPhinder’s accuracy dropped
below 0.90 (Figure 4).
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3.4. Host Prediction for New Isolated Bacteriophages

The PHERI’s functionality was also verified by determining the host of phages isolated
in our lab and not added to the public databases. Tested bacteriophages were isolated
from wastewater from Bratislava, Slovakia. Their host specificity, as well as whole-genome
sequence, was previously determined using standard wet science methods. The bacterial
host genus for five out of six phages was successfully predicted using the PHERI method.
Moreover, for the DevCS-701 phage, PHERI determined different bacterial genera (Table 2).

Table 2. Host prediction of newly isolated and sequenced phages.

Bacteriophage Closest Relative Real Host PHERI Prediction

Dev-CS701 vB_CsaM_leB (KX431559.1) Cronobacter Citrobacter

vB_EcoM_VP1 vB_EcoM_JS09 (KF582788) E. coli Escherichia

vB-EcoM_KMB43 Rb49-like virus (AY343333) E. coli Escherichia

vB_KpnP_VP3 KPV811 (KY000081) Klebsiella Klebsiella

vB_EcoP_VP5 64795_ec1 (KU927499) E. coli Escherichia

PetSE1 vB_SenS-Ent1 (NC_019539.1) Salmonella Salmonella

According to laboratory tests, bacteriophage Dev-CS701 infects isolates from the genus
Cronobacter, although PHERI predicted isolates from Citrobacter genus as the most likely
candidate. For this reason, the host panel was expanded to include Citrobacter strains



Microorganisms 2023, 11, 1398 11 of 17

and re-established specificity. The extended host panel proved PHERI prediction since the
Dev-CS701 phage infected a representative of the genus Citrobacter, namely Citrobacter
gillenii CCM 4711. However, the bacteriophage was not able to infect all Citrobacter strains.
For this reason, we also examined the bacteriophage adsorption rate to the tested isolates
(Figure 5). Dev-CS701 was able to bind to six out of seven Cronobacter strains and two
out of four Citrobacter strains as well. Other strains did not reach high values, but the
increased rate of adsorption on Enterobacter strains is also interesting.
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Despite partial proof of the accuracy of the prediction, we decided to determine
the cause of the selection of the genus Citrobacter instead of the genus Cronobacter by
examining the decision trees, see Figures S1 and S2. The phages contain sequences classified
into clusters from both Citrobacter and Cronobacter decision trees; in fact, clusters 54 and
170 were found in both trees, see Table S1. In total, the phage had six sequences that were
classified into five clusters for both decision trees. However, PHERI was able to classify
phages only according to the Citrobacter decision tree.

4. Discussion

The study of bacteriophages could help solve many of the problems with resistant
bacteria in medicine, veterinary, food and other industries. One of the basic criteria
for bacteriophage utilization is the knowledge of their whole genome sequence as well
as the host [59,60]. The classic bacteriophage characterization methods were based on
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phage studies with a known host range and subsequent sequencing. However, since
the advent of new massively parallel sequencing methods, these procedures are often
reversed. It is also possible to identify bacteriophages that infect non-cultivable bacteria,
the so-called “bacterial dark matter”. Our studies have been previously focused on the
identification of specific bacteriophages capable of infecting foodborne pathogens [61,62].
However, by using metagenomic data in our research, we discovered phages without the
known host. Therefore, we developed a bioinformatic pipeline for predicting the phage
bacterial host genus from the whole-genome sequences, PHERI, based on machine learning
algorithms. A couple of groups have already tested the idea of using a bioinformatic
approach to identify phage hosts. For example, Martínez-Garcia et al. described one
possibility of identifying a host without cultivation. They retrieved genomic content of
individual cells from an environmental sample using single-cell genomic technologies, then
hybridized them against a set of phage genomes from the same sample, immobilized on a
microarray and sequenced positive hybridization cases. Using this method, they were able
to pinpoint viruses infecting the ubiquitous hyper-halophilic Nanohaloarchaeota, included in
the so-called ‘microbial dark matter’ [63]. Another approach of the virus–host adaptation
analysis was chosen by Roux et al. They developed a bioinformatics tool for virus sequence
identification. The VirSorter identified prophage sequences through a combination of
the detection of hallmark viral genes, enrichment of viral-like genes, depletion in PFAM-
affiliated genes, enrichment in uncharacterized genes, enrichment in short genes and the
depletion in strand switching [34]. This tool was able to identify 12,498 virus–host linkages
from almost 15,000 bacterial and archeal genomes. Identified prophage sequences came
from 5492 microbial genomes, and provided first viral sequences for 13 new bacterial phyla.
In their study, they also analysed the virus–host adaptation in compositions in terms of
nucleotide frequency and codon usage showing the strongest signal of adaptation to the
host genome given by tetranucleotide frequency (TNF) [64]. Another classification method
to predict the taxonomy of bacterial hosts for uncharacterized viral metagenomic sequences,
that does not rely on homology or sequence alignment, was developed by Williamson
et al. In their study explaining the composition of the marine virome in the Indian Ocean,
they also described the bioinformatic tool MGTAXA, which links phage sequences to the
highest-scoring bacterial taxonomic model based on polynucleotide genome composition
similarity between the virus and host genomes [35]. An excellent tool for host prediction is
also HostPhinder created by Villarroel et al. The HostPhinder is based on the assumption
that genetically similar phages are likely to share bacterial hosts. The tool utilizes a phage
database with known sequences that are divided into k-mers. Phages with an unknown
host are also divided into k-mers and compared to a database. The high similarity of short
DNA sequences between two phages will determine the likely host [36]. PHERI bases its
predictions on the machine learning technique, Decision Tree Classifier. The advantages of
this technique are its interpretability and the potential for rapid improvement in prediction
accuracy in the era of big datasets. The dependence of this technique on the size and quality
of the dataset may also be considered its biggest drawback, as we showed for genera with
small amounts of data. In this work, we used phage whole-genomics records from public
databases with known hosts to create clusters of similar gene sequences that are specific
to a certain genus. Sequences were annotated using the Prokka tool [47], and genes were
extracted using a custom script. Extracted genes were aligned using BLAST with a database
of genes from the training set. Based on the retrieved similarity, clusters of genes were
created. After that, a vector of integers was created for each phage representing genes and
their corresponding assignment to clusters. This vector was passed to the decision tree
model, and the resulting prediction was saved. For each of the 50 genera tested, a decision
tree based on the necessity of specific clusters to infect the genus was created. Considering
the mosaic structure of phage genomes, one of the advantages of using machine learning
algorithms for phage host predictions is that only presence, absence and quantity of genetic
elements influence the outcome. Thus, differences in locating and organizing individual
genes do not affect the outcome of the pipeline prediction. In the evaluation test consisting
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of 1202 phages from the database, PHERI performed well when it reached the accuracy of
99.37% for the host genus prediction. However, the differences between bacterial genera
were considerable as some hosts were easier to predict than others. We noticed a more
accurate prediction of host genera with more than 200 phages in the database. The average
sensitivity of prediction here was 81.8%. The prediction was less sensitive for families with
more than 100 and more than 10 phages, reaching 74.4 and 50.7%, respectively. The data
show that more representatives in the database increase the accuracy of the prediction. This
result is probably due to the greater number of different host-specific protein sequences
that PHERI clustered and incorporated into the decision tree. A greater number of clusters
in the tree reduces the likelihood of incorrect prediction in the case of a phage with different
mechanisms of infection. Chibani et al. has already described improvements in the
prediction of machine learning algorithms based on the number of phages in the database
in their phage classification study [39]. The small number of phages that infect individual
species was the main reason why we designed PHERI to identify genera. In this way, we
were able to increase the accuracy of the prediction and thus allow narrowing the range
of hosts for later wet-science host specificity tests. At the same time, we assume that by
increasing the number of specific phages in the database, PHERI has the potential not
only to increase the accuracy of genus prediction but also to predict the host at the species
level. The number of specific phages in the database was not the only factor affecting
the accuracy of the prediction. In particular, PHERI has identified all phages infecting
the genus Leuconostoc, which has only 17 specific phages in the database. In contrast, in
the case of the genus Stenotrophomonas with 13 phages in the database, none could be
identified. By comparing bacteriophages infecting Leuconoctoc, we found that leuconostoc-
specific phages form two highly related groups belonging to the genera Limdunavirus and
Unaquatrovirus within the subfamily Mccleskeyvirinae. Homologous phages probably have
a similar mechanism of infection that provides similar proteins. A similar conclusion
was reached by Kot et al. in the comparative genomic analysis of Leuconostoc phages [65].
PHERI, therefore, constructs a decision tree for a group of genetically related phages easier
and does not need a large number of viruses in the database. Similar results were obtained
with the prediction of phage hosts of other bacterial genera with a small number of specific
viruses. For example, the genera Paenibacillus or Ruegenia with 26 and 12 genetically
related viruses achieved a sensitivity of prediction over 99%. By contrast, phages infecting
Stenotrophomonas are not genetically related, since some, such as IME13 (NC_029000.1)
phages, belong to the Straboviridae family [66], phage vB_SmaS_DLP_5 (NC_042082.1)
belongs to the Delepquintavirus genus within Caudoviricetes class, or phages such as PSH1
(NC_010429.1) belong to the Inoviridae family [67]. Narrow and variable groups of phages
in the training set does not allow one to construct a reliable decision tree. Another factor
that could affect the accuracy of the prediction is the ability of bacteriophages to infect
bacteria of different species, even genera. Especially in cases of genetically related bacterial
genera, several instances of phages with the ability to infect multiple genera have been
described [62,68,69]. Even in these cases of known cross-genera host specificity, only
one genus name was found in the database. We used PHERI to locate a host of several
phages isolated and characterized in our laboratory. The phages had established host
specificity for strains of the genera Escherichia, Cronobacter, Enterobacter, Salmonella, Klebsiella,
Staphylococcus, Proteus, and Morganella. Pheri correctly identified the host genus for five
out of six phages (Table 2). In the case of the phage Dev-CS701, which infected strains of
the genus Cronobacter, it predicted as a suitable host the bacteria from genus Citrobacter.
Subsequent extended host specificity tests against strains of the genus Citrobacter confirmed
that the phage also infected Citrobacter gillenii CCM 4711. Unfortunately, the phage was
unable to form plaques on other strains of the genus. We therefore tested the bacteriophage’s
ability to recognize the bacterial surface, which confirmed that Dev_CS701 recognizes the
surface not only of C. gillenii but also of C. werkmanii. In addition, a comparison of whole-
genome sequences of phages by BLAST showed that Dev_CS701, in addition to its closest
relative cronophage vB_CsaM_IeB (KX431559.1) [70], achieved similarity of over 96% to



Microorganisms 2023, 11, 1398 14 of 17

the Citrobacter-specific phages Margaery (KT381880.1) and Maroon (MH823906.1) [71].
Unfortunately, the detailed host specificity of the closest-related phages is not yet publicly
available. With our tool, we wanted to show a new method in the prediction of phage
hosts. PHERI can help isolate live viruses from samples in wet labs by narrowing the range
of possible hosts. “There is also the potential to refine the prediction with the increasing
number of new phages in databases. With the help of more accurate data from the database
and the addition of several bacterial genera and species, we plan to increase the accuracy
of the tool to the level of bacterial species. One of the advantages of host prediction based
on the clustering of individual genes is the possibility of highlighting genes with unknown
functions necessary for infection. The identification of such genes may, in the future, help
scientists elucidate the mechanisms of infection by individual bacteriophages. Moreover,
by identifying these genes, it will be possible to study them better or directly use them for
the preparation of recombinant phages with changed properties”.

5. Conclusions

The importance of bacteriophages as a research subject is rising mainly due to the
decreasing effectiveness of antibiotic treatments. Bacteriophages could be used as novel
weapons in the fight against bacterial infection. The goal of this work was to examine
relationships between bacteriophage genomes and their bacterial hosts. The tool created
is proof of the concept that the machine learning algorithm-based tool can be used to
search for bacterial hosts for viruses. PHERI can accelerate the isolation of individual
bacteriophages from samples by narrowing the range of potential hosts. It also provides
the user with information about likely proteins that are required for a successful infection.
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