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Abstract: Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regu-
lates almost all aspects of plant growth and development, and is one of the most important plant
hormones. In microorganisms too, IAA plays an important role in growth, development, and even
plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microor-
ganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly
summarizes the biosynthesis pathways that have been reported in microorganisms, including the
indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile
pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some
pathways interact with each other through common key genes to constitute a network of IAA biosyn-
thesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have
also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial
impacts on plants.
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1. Introduction

IAA is an important plant hormone belonging to the auxin family of indole derivatives.
It is the most abundant and fundamental naturally occurring plant hormone that controls
almost every aspect of plant growth and development, such as cell division, elongation, fruit
development, and senescence [1,2]. It can also increase plant protection against external
stress [3]. IAA can be synthesized not only in plants but also in many microorganisms that
interact with plants, including bacteria and fungi [4,5].

Microbial biosynthesis of IAA can be classified into tryptophan-dependent and trypto-
phan-independent pathways based on whether tryptophan (Trp) is used as a precur-
sor. These pathways produce IAA with some similarities to that of plants [6–8]. In
the tryptophan-dependent pathways of microorganisms, there are different intermedi-
ate metabolites, and current research has roughly divided them into five pathways: the
indole-3-acetamide pathway (IAM), the indole-3-pyruvic acid pathway (IPA/IPyA), the
indole-3-acetonitrile pathway (IAN), the tryptamine pathway (TAM), and the tryptophan
side-chain oxidase pathway (TSO). L-tryptophan, the key precursor for IAA biosynthesis in
the tryptophan-dependent pathway, is a relatively rare amino acid that is the most energy-
dense of all amino acids. The synthesis cost for microbial cells is high, so the endogenous
tryptophan concentration in microorganisms is often low. High concentrations of IAA are
only produced when an excess of exogenous tryptophan is supplied [9]. The IAM and IPA
pathways are the two most common biosynthetic pathways for IAA in microorganisms. In
addition, it has been found in very few microorganisms that IAA is synthesized through
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tryptophan-independent pathways, which mainly use indole-3-glycerol phosphate or in-
dole as the main precursors. However, this pathway has not been studied in-depth, and
the key enzymes and genes involved have not been confirmed [6].

In addition to regulating their physiological functions and adapting to external stress
and microbial–microbial communication, IAA produced by microorganisms can often
participate as a signaling molecule in the interaction between microorganisms and plants,
regulating plant growth and development, and causing physiological and pathological
changes in plants [8,10–14]. Therefore, it is of great significance to clarify the IAA biosyn-
thesis pathways in microorganisms for studying the synthesis regulation of microbial IAA
and the functions of IAA.

2. Biosynthetic Pathways of IAA in Microorganisms
2.1. The IAM Pathway

The IAA biosynthesis pathway through IAM has been extensively studied. In
this pathway, tryptophan is first converted to IAM by tryptophan monooxygenase,
followed by hydrolysis of IAM to IAA and ammonia by indole-3-acetamide hydro-
lase (Figure 1). In microorganisms, two key genes, IaaM and IaaH, encoding tryptophan
monooxygenase and indole-3-acetamide hydrolase, respectively, have been first identified
in Pseudomonas savastanoi [15]. Subsequently, homologous genes of IaaM and IaaH have
been identified on the T-DNA of Agrobacterium tumefaciens, which can co-regulate IAA
biosynthesis from tryptophan. The co-transcription of IaaM and IaaH on the T-DNA of
A. tumefaciens can lead to the overproduction of IAA in host plants during infection, ulti-
mately resulting in the formation of plant tumors [8,16–18]. In addition, the IAM pathway
has also been identified as the major pathway for IAA biosynthesis in the anthracnose
fungi, Colletotrichum gloeosporioides, C. acutatum, and C. fructicola [19–21]. C. fructicola has
been found as an endophytic fungus in Coffea arabica. The detected activity of tryptophan 2-
monooxygenase shows the existence of the IAM pathway in C. fructicola. And the extracted
crude IAA of C. fructicola can stimulate the coleoptile elongation of maize, rye, and rice [19].
For actinomycetes, endophytic Streptomyces sp. shows evident growth-promoting effect on
medicinal plants species Taxus chinensis and Artemisia annua. High performance liquid chro-
matography (HPLC) and genetic analysis have detected IAM and screened homologous
gene of IaaM, indicating the existence of the IAM pathway in Streptomyces sp. [22]. Current
studies have showed that the IAM pathway exists in most species of bacteria and some
species of other microorganisms including fungi, actinomycetes, and cyanobacteria [20].
This pathway is one of the most well-studied tryptophan-dependent pathways.

2.2. The IPA Pathway

The IPA pathway was first discovered in plants and is also one of the major path-
ways for microbial IAA biosynthesis. In this pathway, tryptophan is first converted to IPA
by aminotransferases and then to indole-3-acetaldehyde (IAAld/IAD) via the action of
the pyruvate decarboxylase (IPDC). Finally, IAAld is converted to IAA via the action of
aldehyde dehydrogenases. In the IPA pathway, the TAM gene encodes the aminotrans-
ferases, the IPDC gene encodes the decarboxylase, and the IAD gene encodes the aldehyde
dehydrogenase [8] (Figure 1).

Numerous studies have showed that the IPA pathway is a major pathway for IAA
biosynthesis that is widely present in bacteria [23–26]. In Azospirillum brasilense, disruption
of key enzymes in the IPA pathway leads to a significant reduction in IAA production,
which suggests that the IPA pathway is a major IAA biosynthesis pathway [27]. The IPDC
homologous gene has been identified in Bacillus thuringiensis, and the IPDC deletion mutant
showed a significant reduction in IAA synthesis in the presence of tryptophan. Although
there is no significant difference in growth between IPDC deletion mutants and wild type,
mutants lost their ability to colonize maize roots and promote plant growth [28]. The
IPDC homologous genes have also been identified in a range of strains of Enterobacter sp.
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via genome analysis and RT-qPCR, indicating that the IPA pathway is involved in IAA
biosynthesis in these bacterial strains [29].
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For fungi, the IPA pathway is also considered to be the major pathway for IAA biosyn-
thesis [30,31]. A series of enzymes involved in the IPA pathway have been identified in
the corn smut fungus Ustilago maydis, including tryptophan aminotransferases (TAMs)
Tam1 and Tam2, which convert tryptophan to IPA [8], and indole-3-aldehyde dehydro-
genases (IADs), Iad1 and Iad2, which convert IAAld to IAA [30,32]. The transaminase
Tam1/Aro8 homologous gene SsAro8 of the IPA pathway has been identified in the sugar-
cane smut fungus Sporisorium scitamineum. The SsAro8 deletion mutant is defective in IAA
biosynthesis, oxidative stress tolerance, binuclear hyphae formation, biofilm formation, and
pathogenicity [33–35]. Magnaporthe oryzae has been found to generate IAA in its hyphae and
conidia. Genetic analysis of M. oryzae shows a complete IPA pathway, including tryptophan
aminotransferase (MoTam1) and indole-3-pyruvic acid decarboxylase (MoIpd1). MoTam1
or MoIpd1 gene deletion mutants shows varying degrees of defects in IAA biosynthesis,
hyphal growth, conidiation, and pathogenicity of M. oryzae. The targeted metabolomic
analysis further reveals the existence of an IPA pathway catalyzed by MoIpd1, which
contributes to IAA production in M. oryzae [36]. In the mushroom Lentinula edodes, the ex-
pression of an aldehyde dehydrogenase gene ald1 has been detected that is highly induced
by IAAld in roots, which suggests the existence of the IPA pathway [31]. In addition, some
species of ectomycorrhizal fungi (ECM) have been found to produce IAA in liquid medium
with L-tryptophan. The tryptophan aminotransferase activity and HPLC detection indicate
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that these ECMs synthesize IAA through the indole-3-pyruvic acid pathway [37,38]. In
summary, the IPA pathway is a major pathway for IAA biosynthesis and is widely present
in bacteria and fungi.

2.3. The TAM Pathway

The TAM pathway is one of the four tryptophan-dependent pathways of IAA biosyn-
thesis in plants and is also reported in microorganisms. The process of the TAM path-
way is similar in both plants and microorganisms. Tryptophan is first converted to
tryptamine by tryptophan decarboxylase, and then tryptamine is further converted to
indole-3-acetaldehyde by amine oxidase. Finally, IAAld is converted to IAA by aldehyde
dehydrogenase (Figure 1).

In microorganisms, the tryptamine decarboxylase was first identified in B. cereus, with
the production of tryptamine when B. cereus was treated with tryptophan [39]. In the
basidiomycete fungi Rhodosporidiobolus fluvialis, an intermediate metabolite (tryptamine) of
the TAM pathway was detected using LC-MS. Further studies showed the activity of tryp-
tophan decarboxylase, which revealed the presence of the TAM pathway in R. fluvialis [40].
Metarhizium robertsii identified a tryptophan decarboxylase (MrTDC) homolog of
Catharanthus roseus. The lack of MrTDC was resulted in the defective conversion of trypto-
phan to tryptamine and affected the production of IAA in M. robertsii [41].

Compared with the IAM and IPA pathways, the TAM pathway is still unclear in
microorganisms since the key amine oxidase in the conversion of tryptamine to IAAld is
rarely reported. Thus, it has been inferred that the TAM pathway generally coexists with
other IAA biosynthesis pathways to produce IAA in microorganisms.

2.4. The IAN Pathway

Research on the IAN pathway is mostly focused on plants. Tryptophan is first con-
verted by cytochrome P450 enzymes into indole-3-acetaldoxime (IAOx). IAOx is then
directly converted into IAN, or converted into indole-3-acetyl glucosinolate and then
into IAN. Finally, IAN is converted into IAA by nitrilase, which is a key enzyme in this
pathway [42–44] (Figure 1).

Studies on the IAN pathway in microorganisms are still limited. Although the key
enzyme for the conversion of tryptophan to IAOx has not been identified in microorgan-
isms, the presence of several aldoxime dehydratases (Oxds) that convert aldoximes to
nitriles have been confirmed in Bacillus sp. The activity of indole-3-acetaldehyde oxime
dehydratase has been detected in Sclerotinia sclerotiorum and Bradyrhizobium sp. Studies
show that Oxds genes are always coexisting with genes encoding nitrile hydrolases or
nitrile hydratases [45–48]. Therefore, it indicates the existence of the IAN (IAOx-IAN)
pathway in microorganisms [27]. In Variovorax boronicumulans, a bacterium with a growth-
promoting effect on plants, tryptophan cannot be used as a starting material in the synthesis
of IAA, whereas IAN can be used as a precursor to synthesize IAA. Genome analysis shows
the presence of NitA and IamA related to the IAN pathway in V. boronicumulans. Overex-
pression of the NitA and IamA genes shows that NitA has nitrilase activity, while IamA
has amidase activity. Therefore, it is speculated that V. boronicumulans has two enzyme
systems for the IAN pathway with different regulatory mechanisms: a nitrilase system
and a nitrile hydratase/amidase system. In the nitrilase system, IAN is quickly converted
to IAA for cell growth through nitrilase, while in the nitrile hydratase (NHase)/amidase
system, IAN is first converted to IAM and then to IAA slowly and continuously [49]. In
Bacillus amyloliquefaciens, the loss of the nitrilase gene yhcX in the IAN pathway leads to a
50% decrease in IAA production [50]. The existence of the IAN pathway is also reported in
Xylaria sp., Leptosphaeria maculans and Arthrobacter pascens by the identification of nitrile
hydratase and nitrilase [51,52].

Currently, in microorganisms only some key enzyme genes have been identified in the
process from IAN to IAA, while the key enzyme gene that initially converts tryptophan to
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IAOxis still absent. Thus, a complete construction of the IAN pathway in microorganisms
is needed to reveal the process from tryptophan to IAOx [52].

2.5. The TSO Pathway

Compared with other tryptophan-dependent pathways, research on the TSO pathway
is limited. In this pathway, tryptophan is directly converted into IAAld by side-chain
oxidase, and then IAAld is converted into IAA by indole-3-acetaldehyde dehydrogenase.
Currently, this pathway has only been reported in Pseudomonas fluorescens among microor-
ganisms. The IAA biosynthesis pathway of P. fluorescens involves two key enzymes, TSO
and tryptophan transaminase. In addition, the ability of IAA synthesis in the TSO pathway
is also weaker compared to other IAA biosynthesis pathways including the IAM and IPA
pathways [53] (Figure 1). This suggests that the TSO pathway plays a supplementary or
regulatory role in some organisms of IAA synthesis.

2.6. Non-Tryptophan-Dependent Pathway

Compared with the tryptophan-dependent pathway, the precursor of IAA synthesis
in the non-tryptophan dependent pathway is not tryptophan. IAA synthesis in non-
tryptophan-dependent pathways is relatively common in plants, but it has been identified in
a few species of microorganisms [20]. In the nitrogen-fixing bacterium Azospirillum brasilense,
it was found that a significant amount of low-radioactivity IAA was still synthesized when
treated with isotopically labeled tryptophan, suggesting the existence of a non-tryptophan-
dependent pathway [27]. A similar result of isotopically labeled tryptophan treatment
in A. brasilense has been also observed in the filamentous fungi Aspergillus flavus [41]. In
Saccharomyces cerevisiae, when treated with isotopically labeled tryptophan, it has been
found that the aldehyde dehydrogenase gene (ALD) deletion mutant loses the ability of
tryptophan metabolism, but it can still produce nonradioactive IAA. Thus, the results
suggest that a non-tryptophan-dependent pathway may exist in some fungi. However, the
mechanism of the non-tryptophan-dependent pathway has not been revealed to date [54].
A recent study of the endophytic fungus Cyanodermella asteris has showed that it uses
indole as the precursor to start IAA synthesis to bypass tryptophan, which is similar to the
non-tryptophan-dependent pathway in plants [8]. But the enzymes related to this pathway
are still unknown in microorganisms [55]. Above all, the current study findings suggest
that the non-tryptophan-dependent pathway is not the main pathway, but a replenishment
pathway for IAA biosynthesis.

3. Interactive Effect of Multiple IAA Biosynthetic Pathways in a Microorganism

IAA biosynthesis pathways are classified according to the precursor, intermediate, and
key enzymes. These pathways have also been found to form a closely linked redundant
IAA biosynthesis network through common precursors, intermediates, and enzymes in the
previous studies, which suggest that they do not always exist separately in a microorgan-
ism [41] (Table 1).

Table 1. Identified and speculated IAA biosynthetic pathways in some species that have been studied
and reported.

Species
Pathway

IAM IPA TAM IAN TSO Non-Tryptophan
Dependent

Agrobacterium tumefaciens 4

Arthrobacter pascens 4 4 4

Azospirillum brasilense 4 4

Bacillus amyloliquefaciens 4 4 4

Bacillus cereus 4
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Table 1. Cont.

Species
Pathway

IAM IPA TAM IAN TSO Non-Tryptophan
Dependent

Bacillus thuringiensis 4

Erwinia herbicola 4 4

Escherichia sp. 4

Herbaspirillum aquaticum 4

Lysinibacillus spp. 4 4

Pseudomonas fluorescens 4 4

Pseudomonas putida 4

Pseudomonas sp. 4 4

Rhizobium tropici 4 4 4

Serratia marcescens 4 4

Variovorax boronicumulans 4

Aspergillus flavus 4

Astraeus odoratus 4

Bradyrhizobium japonicum 4

Candida tropicalis 4

Colletotrichum acutatum 4

Colletotrichum fructicola 4

Colletotrichum gloeosporioides 4

Cyanodermella asteris 4 4 4 4

Fusarium delphinoides 4 4 4

Fusarium proliferum 4

Gyrodon suthepensis 4

Laccaria bicolor 4

Lentinula edodes 4

Leptosphaeria maculans 4 4

Magnaporthe oryzae 4

Metarhizium robertsii 4 4

Neurospora crassa 4

Phlebopus portentosus 4

Piriformospora indica 4

Pisolithus albus 4

Pisolithus orientalis 4

Rhodosporidiobolus fluvialis 4 4 4

Saccharomyces cerevisiae 4

Scleroderma suthepense 4

Sporisorium scitamineum 4

Tricholoma vaccinum 4

Ustilago maydis 4

Xylaria sp. 4

In Arthrobacter pascens, genome analysis showed the existence of aldehyde dehydro-
genase genes (prr and aldH) and acylamidase genes (aam and gatA). And HPLC-MS also
detected intermediates of IAA biosynthesis, including IAM, IPyA, indole-3-lactic acid (ILA),
and the enzymatic degradation product of indole-3-ethanol (TOL). This result indicates that
the IAM and IPA pathways are involved in IAA biosynthesis in A. pascens [52]. In the plant
growth-promoting rhizobacterium (PGPR), a type of bacteria inhabits the plant rhizosphere,
Pseudomonas sp. UW4 interactions between IAM and IAN pathways have been revealed by
the characterization of aim and nitrilase genes [56,57]. Additionally, in some strains of PGPR
Lysinibacillus spp., genome analysis shows the existence of key genes in both IPA (IPDC and
aldH genes) and TAM (aromatic-L-aminoacid decarboxylase gene) pathways [58]. For the
yeast fungi Rhodosporidiobolus fluvialis, IPA treatment results in an increase in IAA in the cul-
ture supernatant. Furthermore, the activities of tryptophan aminotransferase, tryptophan
2-monooxygenase, and tryptophan decarboxylase have also been observed in cell crude
extract. Thus, results suggested the existence of IPA, TAM, and IAM pathways in R. fluvialis,
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and the IPA pathway is the main route of IAA biosynthesis [52]. For filamentous fungi,
different combinations of multiple IAA biosynthesis pathways in each species have been
revealed via key genes characterizing, intermediate products detecting, and pathways block-
ing. TAM and IAM pathways have been found in Metarhizium robertsii [41]. IPA and IAN
pathways have been found in Leptosphaeria maculans and B. amyloliquefaciens [51,59]. Fur-
thermore, there are even examples of these three pathways existing in one species. IPA, IAM,
and TAM pathways have been identified in Fusarium delphinoides and Rhizobium tropici [60].
In R. tropici, the IAM pathway acts as a replenishment pathway of IAA biosynthesis which
is active and not affected by TAM and IPA pathway mutations [61]. In the endophytic fungi
Cyanodermella asteris, the TAM pathway has been identified as the main way of IAA biosyn-
thesis; meanwhile, IPA and IAM pathways work as a supplement [55]. The YUC (yucca
gene family encoding flavin monooxygenases) pathway is a branched metabolic pathway
that transforms IPA to IAA in plants [28]. Interestingly, two yucca genes homologous to
the Arabidopsis thaliana YUC pathway genes have been identified in Magnaporthe oryzae.
Treatment with yucca protein inhibitors yucasin or deletion of two yucca genes in M. oryzae
can result in defects of mycelial growth, conidiation, and pathogenicity, indicating that
M. oryzae can also synthesize IAA from IPA directly through this YUC pathway, except
through intermediate IAAId [36,52] (Figure 1). Overall, these redundant systems may
be able to remedy the situation when a primary biosynthetic pathway fails to produce
IAA, thereby preventing the death of organisms from IAA deficiency. In addition, the
expression level of piTam1, a key gene in the IPA pathway of the endophytic bacterium
Piriformospora indica, is highly induced during the biotrophic phase of infection process.
The silencing of piTam1 leads to a decrease in the production of IAA and ILA in the strain,
while the ability to colonize barley roots is also affected. However, the vegetative growth of
P. indica in the medium is not significantly affected, indicating that the other two replenish-
ment pathways (TAM and IAM pathways) in P. indica may help in providing the IAA [62].
The IPA pathway genes of the plant pathogenic bacterium Erwinia herbicola are highly
expressed during the saprophytic phase on the leaf surface, while the IAM pathway genes
are highly expressed after the bacteria penetrate the leaf, suggesting that this redundant
system may also be a microbial adaptation to the environment [63,64].

4. The Functions of IAA in Microorganisms

Like many plants, the main function of IAA in microorganisms is growth regulation.
More concretely, different concentrations of IAA have both promoting and inhibitory effects
on microbial growth. For example, high concentrations (5000 µM) of IAA significantly affect
the growth of Saccharomyces cerevisiae, while Ustilago escultenta is not sensitive to the same
concentration [65]. In Fusarium delphinoides, low concentrations (0.5, 5, and 50 µM) of IAA
can promote its growth, while its growth is significantly inhibited by high concentrations
(500 and 5000 µM) of IAA [65]. In Fusarium graminearum, growth is inhibited by any
concentration of exogenous IAA [66]. In addition, IAA may also act as a signaling molecule
regulating metabolism, cellular compartment, and pathogenicity. The IAA-overproducing
mutant RD64 of Rhizobium meliloti can synthesize more alginates, lipopolysaccharides
(LPS), extracellular polysaccharides (EPS), and biofilms [67] to evade the plant defenses
and increase their survival rate under environmental stress including drought and low
temperature [68]. Candida tropicalis synthesizes IAA through the IPA pathway to promote
the formation of biofilms, thereby further enhancing its pathogenicity [69]. Mutations of
indole-3-neneneba pyruvate decarboxylase gene y4wf and oxidase/dehydrogenase gene
tidC in Rhizobium tropici also lead to increased extracellular polysaccharide synthesis and
enhanced stress resistance [61]. During the infection process, the insect pathogenic fungus
Metarhizium robertsii can utilize tryptophan in the insect cuticle layer to produce more
IAA, indicating that IAA plays an important role in infection growth. The following study
showed that exogenous IAA can significantly increase the formation of appressoria in the
infection process of M. robertsii [41,70]. However, the intermediate products of IAA play
the opposite roles against IAA. In Candida albicans, treatment with exogenous indole or
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IAN does not affect the growth, but significantly inhibits the formation of biofilm and
the ability of producing virulence-related filamentous bodies [71,72]. Hyphae growth of
F. graminearum is inhibited by exogenous TAM and IAN. IAN also affects the branching
mode of hyphae, spore germination, and the production of mycotoxins [66].

In addition to acting directly on the growth of microorganisms, IAA can also act as a
virulence factor or plant growth-promoting factor in the interaction between plants and
microorganisms. The IAA synthesized and secreted by pathogenic microorganisms can
induce the expression of its virulence genes, and inhibit plant immunity by loosening
cell walls, opening stomata, and suppressing host defense [73]. Studies have showed
that plants often enhance their immune response by inhibiting their own IAA synthesis
or response pathways [74]. In the interaction between plants and microorganisms, both
pathogenic and symbiotic bacteria and fungi can weaken the host’s immune response by
synthesizing and secreting IAA or by affecting IAA synthesis and transport in the host
plant, leading to local tissue accumulation of IAA [74–78]. During the early infection stage,
the expression of IAA synthesis genes is highly induced in both Ustilago maydis and maize.
Therefore, a large amount of IAA is synthesized in the infection site. And the salicylic
acid (SA)-mediated defense response of the host is weakened. Hyphae proliferate rapidly
and eventually form tumors [79,80]. Plasmodiophora brassicae can induce the conversion of
indole-3-acetonitrile to IAA in the infected tissue and root swelling of cruciferous plants.
However, the A. thaliana mutant which is lacking the key gene for polar IAA transport
can inhibit the infection of P. brassicae and the swollen root formation [75]. Additionally,
accumulation of IAA in rice enhances susceptibility to blast disease [81], while blocking
IAA synthesis by overexpression of indole-3-acetic acid amido synthetase gene can help
to acquire resistance to blast disease [82]. Overexpressing CsGH3.1 and CsGH3.1L in
citrus significantly brings down free IAA levels, thereby reducing the susceptibility of
Xanthomonas citri subsp. citri [83]. Conversely, a few studies have showed a different
opinion, suggesting that the increase in IAA level in plants does not affect the defense or
even induce the resistance to pathogens. Induced IAA level promotes resistance of rice
to rice sheath blight that is caused by Rhizoctonia solani [84]. For rice dwarf virus (RDV),
exogenous auxin application promoted the degradation of OsIAA10 protein to release
OsARF12, thereby activating the defense-related gene OsWRKY13 to participate in the
resistance of RDV [85].

However, many plants symbiotic bacteria and fungi also produce IAA to stimulate
various physiological processes in plants, including cell division, elongation, polarity,
apex dominance, senescence, flow, and stress response [86–88]. Studies have showed
that 80% of bacteria in the root environment can synthesize IAA [89]. PGPRs, such as
Enterobacter sp., Serratia marcescens, Brevibacillus laterosporus, Burkholderia phytofirmans,
Pseudomonas aeruginosa, Glomus mosseae, etc. [90–93], have been reported that can directly or
indirectly affect host plant growth and development by IAA [11]. Mechanisms of growth-
promoting effect on plants by some PGPRs have been revealed. Mutants of B. thuringiensis
with a blocked main IAA biosynthesis pathway had significantly reduced the ability to
promote maize growth compared to the wild-type strain [28]. Similarly, IAA produc-
tion has been significantly reduced when the IAA synthesis gene IPDC of A. brasilense is
knocked out, and the ability to promote the growth of sorghum roots is also significantly
weakened [94]. In addition to promoting growth directly through the production of IAA,
microorganisms can also promote plant growth by improving the plant resistance to abiotic
stresses. Some PGPR strains, which are isolated from alkali soil, can produce IAA to
enhance the salt tolerant of maize and wheat seeds during germination [95]. Salt stress
induces the ability of IAA biosynthesis in Acinetobacter pittii. Thus, the inoculated soybeans
with A. pittii show a significantly improvement in plant growth under salt stress [96]. The
salt-tolerant strains isolated from saline-alkali soil that can promote the growth of upland
cotton can produce IAA [97–99]. Studies have speculated that these microorganisms can
increase the induced systemic resistance of plants including antioxidant enzyme activity,
inorganic salt solute accumulation, and ACC deaminase activity in response to environ-
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mental stress through IAA [100], which can promote the growth of various plants (forage
legume, common ice plant, rice, wheat, tomato, etc.) under salt stress [100–104]. A new
species of root endophytic fungus within Sordariomycetidae, named CJAN1179, can produce
IAA to promote lateral root growth of A. thaliana and increase the uptake of nutrients
and water resulted in a threefold increase in lateral root number, indicating a significant
plant growth-promoting effect. Therefore, CJAN1179 has great potential for widespread
application in arid areas [105]. Similarly, a PGPR Cronobacter sp. has a promoting effect
on maize plant growth under drought stress by inhibiting abscisic acid (ABA) signaling
and inducing IAA biosynthesis in a tryptophan-dependent manner [106]. Except bacteria,
studies have showed that some fungi strains with high IAA production can also have a
significant promoting effect on the plant growth, diosgenin content, and nutritional value
of fenugreek [107–112].

5. Summary

As research progresses, many key enzyme genes involved in auxin synthesis in mi-
croorganisms have been identified, and the main IAA biosynthesis pathway has been fully
characterized. However, the complex IAA biosynthesis network and the role of IAA in
microorganisms are still unrevealed, including interactions between various regulatory
genes and key enzyme genes in some synthesis pathways. In the aspect of IAA functions
in microorganisms, further exploration is required on the mechanism of interaction be-
tween microbially synthesized IAA and plants, such as how microorganisms communicate
with plants through IAA-mediated signaling pathways, whether IAA is a virulence factor,
whether IAA amplifies virulence effects and what are the effects of IAA on plant defense
mechanisms. Elucidating the synthesis, metabolism, transport, and signal transduction
pathways of IAA in microorganisms is essential for the rational and adequate utilization of
microorganisms to promote plant growth and development, increase crop yields, improve
soil conditions, and create significant economic, environmental, and social benefits.
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