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Abstract: Staphylococcus aureus is a commensal skin bacterium and a causative agent of infectious
diseases. Biofilm formation in S. aureus is a mechanism that facilitates the emergence of resistant
strains. This study proposes a mechanism for the regulation of biofilm formation in S. aureus through
strain-specific physiological changes induced by the plant steroid diosgenin. A comparison of
diosgenin-induced changes in the expression of regulatory genes associated with physiological
changes revealed the intracellular regulatory mechanisms involved in biofilm formation. Diosgenin
reduced biofilm formation in S. aureus ATCC 6538 and methicillin-resistant S. aureus (MRSA) CCARM
3090 by 39% and 61%, respectively. Conversely, it increased biofilm formation in S. aureus ATCC
29213 and MRSA CCARM 3820 by 186% and 582%, respectively. Cell surface hydrophobicity and
extracellular protein and carbohydrate contents changed in a strain-specific manner in response
to biofilm formation. An assessment of the changes in gene expression associated with biofilm
formation revealed that diosgenin treatment decreased the expression of icaA and spa and increased
the expression of RNAIII, agrA, sarA, and sigB in S. aureus ATCC 6538 and MRSA CCARM 3090;
however, contrasting gene expression changes were noted in S. aureus ATCC 29213 and MRSA
CCARM 3820. These results suggest that a regulatory mechanism of biofilm formation is that activated
sigB expression sequentially increases the expression of sarA, agrA, and RNAIII. This increased RNAIII
expression decreases the expression of spa, a surface-associated adhesion factor. An additional
regulatory mechanism of biofilm formation is that activated sigB expression decreases the expression
of an unknown regulator that increases the expression of icaA. This in turn decreases the expression
of icaA, which decreases the synthesis of polysaccharide intercellular adhesins and ultimately inhibits
biofilm formation. By assessing strain-specific contrasting regulatory signals induced by diosgenin
in S. aureus without gene mutation, this study elucidated the signal transduction mechanisms that
regulate biofilm formation based on physiological and gene expression changes.

Keywords: biofilm; cell surface hydrophobicity; diosgenin; extracellular polysaccharide; extracellular
protein; regulatory mechanism; Staphylococcus aureus

1. Introduction

Biofilms facilitate the survival of microorganisms by interfering with the penetration
of antibiotics [1,2] and the action of the host’s immune cells [3,4]. More than 65% of
microbial infections are related to biofilm formation [5]. Biofilms do not act as a barrier to
completely block antibiotic penetration [6]; instead, they reduce the antibiotic concentration
to below the effective bactericidal concentration [7]. In addition, cells in biofilms receive
limited nutrients; therefore, their growth rate decreases and their antibiotic sensitivity
becomes lower than that of planktonic cells [8]. During the treatment of biofilm-related
bacterial infections, continuous antibiotic prophylaxis is followed because of low antibiotic
susceptibility, resulting in the emergence of antibiotic-resistant strains [9]. Cells in a
biofilm cannot be easily removed by antibiotics and can also cause chronic infections [10].
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Therefore, inhibiting biofilm formation has been proposed as a way to control bacterial
infections [11,12].

During the discovery of biofilms, polysaccharides likely accounted for most of the
materials surrounding biofilm cells; therefore, they were simply labeled as slime or glyco-
calyx, suggesting that they are sticky and have adhesive properties [13]. However, further
research revealed the presence of polysaccharides, proteins, environmental DNA, and lipids
in biofilms; therefore, they were labeled as extracellular polymeric substances (EPS) [14].
During biofilm formation, cell surface hydrophobicity [15], flagella [16,17], environmental
RNA [18], and EPS [19] are known as factors affecting initial adhesion. Studies have also
demonstrated that a decrease in cell surface hydrophobicity is one of the main causes of
reduced biofilm formation [13,20,21].

Staphylococcus aureus is a Gram-positive commensal and opportunistic pathogen.
This bacterium can cause many infections and diseases, including skin infections [22,23],
endocarditis [24], sepsis [25], toxic shock syndrome [26], and medical device-associated
infections [27]. Planktonic cells are associated with acute infections, such as bacteremia
and skin abscesses [28]. Cells in biofilms can attach to host tissues, such as bones or heart
valves, and cause chronic infections [29]. Many methicillin-resistant S. aureus (MRSA)
strains are multidrug-resistant strains that are resistant to beta-lactam antibiotics and
other antibiotics [30]. The biofilm-forming ability of MRSA aggravates the risk of severe
infectious diseases [31] and increases mortality [32].

Diverse intracellular regulatory mechanisms have been proposed for biofilm formation
in S. aureus. The regulatory mechanisms involved in the formation of EPS are direct cellular
mechanisms that determine biofilm formation. The polysaccharide intercellular adhesin
(PIA) is a well-known substance responsible for biofilm formation; it facilitates adhesion
and aggregation during biofilm formation [33,34]. PIA is composed of poly-β(1-6)-N-
acetylglucosamine and is synthesized by membrane proteins encoded by the icaADBC
operon [35]. Surface-related adhesins (SRAs) are also crucial factors associated with biofilm
formation in S. aureus, particularly in strains lacking PIA [36,37]. Spa is a well-known SRA
that is involved in both biofilm formation and host cell binding [37,38].

Intercellular signaling mechanisms play a crucial role in biofilm formation. One such
mechanism involves the agr system, which is a part of the quorum-sensing system [39]. The
agr system is considered to inhibit biofilm formation by interfering with the expression of
SRAs through the activation of RNAIII expression [39]. Moreover, SarA, a global regulator
of S. aureus virulence factors, plays an important role in biofilm formation [34]. The
expression of sarA is activated by σB, an alternative general stress response sigma factor [40].
Increased sarA expression has been found to inhibit biofilm formation by activating the agr
system [40]. These results suggest a complex interplay between the agr system, SarA, and
σB in regulating biofilm formation in S. aureus.

Diosgenin is a compound that accounts for most of the saponins present in fenugreek
and hemp; it is an important precursor widely used in the pharmaceutical industry for the
synthesis of oral contraceptives, sex hormones, and other steroids [41]. It can be absorbed
through the intestine and participate in the regulation of cholesterol metabolism [42]. In ad-
dition, it can exhibit anti-inflammatory effects by inhibiting the production of enzymes [43]
and anti-cancer effects by promoting the production of p53, a cancer-suppressing pro-
tein [44]. It also exhibits antibacterial activity against planktonic and biofilm cells of the
bacteria Porphyromonas gingivalis and Prevotella intermedia; however, the underlying mech-
anism has not been elucidated [45]. Conversely, diosgenin exhibits a low antibacterial
activity against some S. aureus strains in the planktonic state [46]. The effects of diosgenin
on S. aureus biofilms remain unknown. However, tea saponin can inhibit biofilm formation
in Streptococcus agalactiae [47], and the chemical derivatives of Camellia oleifera sapogenin
can effectively inhibit biofilm formation in S. aureus and Escherichia coli. Furthermore,
sapogenin derivatives may target mannitol-1-phosphate dehydrogenase to inhibit biofilm
formation via a molecular docking method [48].
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During our research on compounds that inhibit biofilm formation in S. aureus, we
discovered that diosgenin could impact biofilm formation. Interestingly, the effect of
diosgenin on biofilm formation differed depending on the specific S. aureus strain. In
some strains, diosgenin had no significant effect on biofilm formation, while in others, it
either increased or decreased biofilm formation. These strain-specific changes in biofilm
formation could help trace signal transduction pathways for identifying the physiological
regulatory mechanisms of biofilm formation in cells without gene alterations.

The regulatory mechanisms of biofilm formation in S. aureus have been extensively
investigated. This accumulation of knowledge has led to the development of various
models that aim to unravel the complex processes underlying biofilm formation in S.
aureus. This study will verify the biofilm formation regulation model proposed in many
previous studies through mutation of genes and propose an improved model using a new
method, mutation-free signaling of external environmental changes. We also highlighted
strain-specific responses, including contrasting responses related to the activity of σB.

2. Materials and Methods
2.1. Strains and Culture Medium

S. aureus ATCC 6538 was purchased from the Korean Collection for Type Cultures at
the Korea Research Institute of Bioscience and Biotechnology (Jeongeup, Republic of Korea).
S. aureus ATCC 29213 was obtained from the American Type Culture Collection (Manas-
sas, VA, USA). MRSA CCARM 3090, MRSA CCARM 3806, MRSA CCARM 3820, MRSA
CCARM 3846, MRSA CCARM 3862, MRSA CCARM 3876, MRSA CCARM 3878, MRSA
CCARM 3879, and MRSA CCARM 3905 were purchased from the Culture Collection of An-
timicrobial Resistant Microbes (Korea National Research Resource Center, Seoul Women’s
University, Seoul, Republic of Korea). Eight S. aureus strains (CN-OA1, CN-OA2, FH-OA6,
JN-OA2, KN-OA2, AP-OA1, NE-1A1, and CK-OA1) were obtained from the bacterial strain
collection of the BioResource laboratory in Kookmin University (Seoul, Republic of Korea).
All bacteria were mixed with 25% glycerol and stored at −80 ◦C.

Bacteria stored at−80 ◦C were streaked onto tryptic soy agar (TSA, ref: 214010, Becton,
Dickinson and Company Korea Ltd., Seoul, Republic of Korea) and incubated at 37 ◦C
for 24 h. A single colony was inoculated into 5 mL of tryptic soy broth (TSB, ref: 211825,
Becton, Dickinson, and Company Korea Ltd.) and cultured at 37 ◦C for 24 h at 250 rpm to
obtain precultured cells.

2.2. Cell Growth Curve

Growth curves were observed for 24 h to determine whether diosgenin (catalog
number: sc-205652, Santa Cruz Biotechnology Inc., Dallas, TX, USA) affected the growth of
S. aureus. Diosgenin was dissolved in ethanol to overcome its solubility in water and added
at a concentration of 80 µM, which significantly affected biofilm formation, to 20 mL TSB
containing 0.5% glucose in a 250 mL baffled flask. Precultured S. aureus was subcultured
into the main culture medium to obtain 2.0 × 107 colony-forming units (CFU)/mL and
then cultured at 37 ◦C at 250 rpm for 24 h. Cell density was measured based on absorbance
at 600 nm (Abs600).

2.3. Evaluation of Biofilm Formation

A biofilm formation experiment was conducted using a 96-well polyvinyl chloride
(PVC) microplate (catalog number: 2797, Corning Korea Company Ltd., Seoul, Republic
of Korea). TSB containing 0.5% glucose and 80 µM diosgenin was dispensed into each
well of the 96-well PVC plate at a total volume of 100 µL. The precultured bacteria were
subcultured to obtain a final inoculation concentration of 2.0 × 107 CFU/mL. The cells
were incubated at 37 ◦C for 24 h.

The degree of biofilm formation was measured using 1% crystal violet according
to previously described methods [17], with some modifications. Suspended cells were
removed from the cultured 96-well PVC microplate and washed thrice with distilled water.
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In total, 100 µL of 1% crystal violet was aliquoted and removed after the culture was
allowed to stand at 23 ◦C for 15 min. The wells were again washed thrice with distilled
water. Following this, 100 µL of 95% ethanol was dispensed on the dyed biofilm and
incubated at 23 ◦C for 15 min. The biofilm was quantitatively evaluated by measuring
Abs600 using Synergy™ LX Multi-Mode Reader (BioTek Instruments Korea Ltd., Seoul,
Republic of Korea).

2.4. Measurement of Cell Hydrophobicity

The effect of diosgenin (80 µM) on bacterial cell surface hydrophobicity was also
evaluated. For this purpose, cell surface hydrophobicity was examined according to
previously described methods [49], with some modifications. In brief, 4 mL TSB containing
0.5% glucose and 80 µM diosgenin was added into a test tube. The precultured bacteria
were then subcultured to 2.0 × 107 CFU/mL. After incubation at 37 ◦C at 250 rpm for
18 h, the cells were harvested by centrifugation (4300 ×g for 10 min), washed twice with
phosphate-buffered saline (PBS, catalog number: P5493, Sigma-Aldrich Co., St. Louis, MO,
USA), and resuspended in 4 mL PBS to measure Abs600 (A0). Then, 0.4 mL n-hexadecane
was added, mixed well by vortexing for 1 min, and incubated at 23 ◦C for 15 min.

Abs600 (A) of the lower aqueous layer out of the two separated layers was measured.
Hydrophobicity was calculated using the following formula:

Hydrophobicity (%) = [(A0 − A)/A0] × 100 (1)

2.5. Analysis of Gene Expression Levels Using Real-Time Polymerase Chain Reaction (RT-PCR)

The expression levels of biofilm-related genes were analyzed using RT-PCR to deter-
mine the effect of 80 µM diosgenin on gene expression. In brief, 5 mL of TSB with 0.5%
glucose and 80 µM diosgenin was added into a test tube. The precultured bacteria were
then subcultured to 2.0 × 107 CFU/mL. After incubation at 37 ◦C with shaking at 250 rpm
for 1 h, the total RNA was extracted using the AccuPrep® Bacterial RNA Extraction Kit
(Bioneer Co., Daejeon, Republic of Korea), according to the manufacturer’s instructions. As
S. aureus is a Gram-positive bacterium, TissueLyser LT (Qiagen, Seoul, Republic of Korea)
was used to break the cell wall at 50 Hz for 5 min.

The biofilm-related genes agrA, icaA, RNAIII, sarA, sigB, and spa were selected, and
changes in their expression levels induced by 80 µM diosgenin were analyzed. The
primer sequences for amplification were 5′-CCACACTGGAACTGAGACAC-3′ and 5′-
AAGACCTTCATCACTCACGC-3′ for 16S rRNA, 5′-GCTTTGTCGTCAATCGCCAT-3′ and
5′-TCACCGATGCATAGCAGTGT-3′ for agrA, 5′-TGAACCGCTTGCCATGTG-3′ and 5′-
CACGCGTTGCTTCCAAAGA-3′ for icaA, 5′-TTCACTGTGTCGATAATCCA-3′ and 5′-
GGAAGGAGTGATTTCAATGG-3′ for RNAIII [50], 5′-TCTCTTTGTTTTCGCTGATGT-3′

and 5′-TCAATGGTCACTTATGCTGACA-3′ for sarA, 5′-GCGGTTAGTTCATCGCTCAC-3′

and 5′-AGTGTACATGTTCCGAGACGT-3′ for sigB, and 5′-TGTTGTCTTCCTCTTTTGGTGC-
3′ and 5′-AGACGATCCTTCAGTGAGCA-3′ for spa. Gene expression levels were analyzed
using the AccuPower® RT Premix (Bioneer Co.) for cDNA synthesis and PowerUp™
SYBR™ Green Master Mix (ThermoFisher Scientific Korea Ltd., Seoul, Republic of Korea)
for RT-PCR, according to the manufacturers’ instructions. RT-PCR analysis of all genes was
performed under the following conditions: UDG activation (50 ◦C, 2 min); Dual-Lock™
DNA polymerase activation (95 ◦C, 2 min); polymerization (40 cycles of denaturation
[95 ◦C, 15 s], annealing [57 ◦C, 15 s for 16S rRNA, agrA, icaA, sarA, sigB, and spa and
53 ◦C, 15 s for RNAIII], and elongation [72 ◦C, 1 min]); and melting (denaturation [95 ◦C,
15 s], annealing [60 ◦C, 1 min], and dissociation [95 ◦C, 1 s]). RT-PCR was performed
using QuantStudio5 (ThermoFisher Scientific Korea Ltd.). Cycle threshold (Ct) values for
each gene were obtained and standardized using 16S rRNA, a housekeeping gene. Gene
expression levels were compared using the 2−∆∆Ct method.
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2.6. Quantitative Analysis of EPS

EPS was analyzed according to previously described methods [51], with some mod-
ifications. In brief, 5 mL TSB with 0.5% glucose and 80 µM diosgenin was added into a
test tube. The precultured bacteria were then subcultured to 2.0 × 107 CFU/mL. After
incubation at 37 ◦C with shaking at 250 rpm for 1, 6, or 18 h, the cells were harvested by
centrifugation (4300× g for 10 min). The cell-free supernatant was collected and stored at
−80 ◦C. After the cell pellet was washed once with PBS, 5 mL of isotonic buffer (10 mM
Tris/HCl at pH 8.0, 10 mM EDTA, and 2.5% NaCl) was added. The pellet was then in-
cubated at 4 ◦C for 12 h. After 3 min of vigorous mixing, another cell-free supernatant
was obtained by centrifugation (4300× g for 10 min). After the two cell-free supernatants
were mixed, three times the volume of ice-cold ethanol was added to the mixture. The
mixture was then incubated at −20 ◦C for 12 h. The supernatant was again removed by
centrifugation (4300× g for 10 min). Following this, the precipitated pellet was dried at
23 ◦C. Dried EPS was obtained and dissolved in distilled water for analysis.

The proteins in the EPS were quantitatively analyzed using the Bradford method [52].
In brief, 100 µL of dissolved EPS was completely mixed with 1 mL of Bradford reagent
(Biosesang, Seongnam, Republic of Korea) and incubated at 23 ◦C for 2 min. Following this,
the absorbance at a wavelength of 595 nm was measured.

The polysaccharides in the dried EPS were quantitatively analyzed using phenol–
sulfuric acid according to a previously described procedure [53], with some modifications.
In brief, 200 µL of dissolved EPS and 600 µL of sulfuric acid were mixed vigorously.
Following this, 120 µL of 5% phenol was added and incubated at 23 ◦C for 10 min. The
absorbance at a wavelength of 490 nm was then measured.

2.7. Statistical Analysis

Statistical significance was assessed using a t-test. Data were statistically analyzed by
comparing the values of the control group with those of the experimental group.

3. Results and Discussion
3.1. Strain-Specific Effects of Diosgenin on Biofilm Formation

In our screening experiments, diosgenin was identified as affecting biofilm formation
in S. aureus. To determine whether the effects of diosgenin on biofilm formation are common
to all S. aureus species, diosgenin-induced changes in biofilm formation were evaluated
in 19 different S. aureus strains, including 9 MRSA strains (Figure 1). Of the 19 tested
strains, no diosgenin-induced change in biofilm formation was noted in 7 strains. However,
biofilm formation increased in four strains and was inhibited in eight strains. These results
suggested that the effect of diosgenin on biofilm formation was strain-specific. To elucidate
the physiological changes and intracellular signaling mechanisms by which diosgenin
influences biofilm formation, we selected S. aureus ATCC 6538 and S. aureus ATCC 29213,
which have reported whole genome sequences. These strains showed contrasting changes
in biofilm formation in response to diosgenin. Among the remaining tested strains, we
selected MRSA CCARM 3090 and MRSA CCARM 3820, which showed the greatest decrease
and increase, respectively, in biofilm formation in response to diosgenin.
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Figure 1. Changes in biofilm formation in Staphylococcus aureus strains after diosgenin treatment for
24 h. Black bars represent the amount of biofilm formed in the absence of diosgenin as a control.
Gray bars represent the amount of biofilm formed with 80 µM diosgenin. The amount of biofilm was
measured using crystal violet (CV). Values were calculated from five independent experiments, and
their standard deviations are shown. Values that differ from the control with 95% and 99% confidence
levels are marked with one and two asterisks, respectively, on top of the bars.

3.2. Effect of Diosgenin on Cell Growth and Biofilm Formation

The four selected strains were treated with 80 µM diosgenin, and changes in biofilm
formation (Figure 2) and cell growth (Supplementary Figure S1) were observed. Diosgenin
inhibited biofilm formation in S. aureus ATCC 6538 and MRSA CCARM 3090 by 39% and
61%, respectively. Conversely, it increased biofilm formation in S. aureus ATCC 29213
and MRSA CCARM 3820 by 186% and 582%, respectively. These findings confirmed that
diosgenin significantly changed biofilm formation in S. aureus, resulting in two contrasting
types of responses.

Biofilm formation is closely related to changes in bacterial growth. After treatment
with 80 µM diosgenin, the growth of four strains, namely S. aureus ATCC 6538, S. aureus
ATCC 29213, MRSA CCARM 3090, and MRSA CCARM 3820, was measured to determine
the effect of diosgenin on cell growth (Supplementary Figure S1). In all of the tested
strains, growth was slightly delayed by 80 µM diosgenin; however, the difference was not
significant.

The minimum inhibitory concentration (MIC) was measured to determine the bacteri-
cidal activity of diosgenin against the four S. aureus strains; however, growth inhibition
was not observed at the maximum soluble concentration (160 µM) in water-based media.
Although the antibiotic activity of diosgenin has not been well described, its antibacterial
activity against P. gingivalis and P. intermedia has been reported [45]. The MIC for S. aureus
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ATCC 25923 was 0.98 mM. Moreover, in MRSA 10, no growth inhibition was noted at the
maximum concentration of 2.47 mM [54].
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3.3. Diosgenin-Induced Changes in Cell Surface Hydrophobicity

Biofilm formation was evaluated in a 96-well PVC microplate (Figure 2). The PVC
surface is hydrophobic. It is advantageous for microbial cells to be hydrophobic to initiate
biofilm formation. Diosgenin-induced changes in the cell surface hydrophobicity of S.
aureus were assessed (Figure 3). After treatment with 80 µM diosgenin, the cell surface
hydrophobicity indices of S. aureus ATCC 6538 and MRSA CCARM 3090 significantly
decreased (Figure 3A,C). Conversely, the cell surface hydrophobicity index of S. aureus
ATCC 29213 significantly increased (Figure 3B). Furthermore, the average cell surface
hydrophobicity index of MRSA CCARM 3820 increased, albeit not significantly (Figure 3D).
The surface hydrophobicity of a solid object and that of cells must match to allow bacteria
to sufficiently form a biofilm on the surface of a solid object. The surface hydrophobicity of
the PVC plate in this study could support biofilm formation by cells with a hydrophobic
surface. The diosgenin-induced decrease in the hydrophobicity indices of S. aureus ATCC
6538 and MRSA CCARM 3090 was associated with the reduced attachment of cells to the
PVC surface during biofilm formation. Conversely, the diosgenin-induced increase in the
hydrophobicity indices of S. aureus ATCC 29213 and MRSA CCARM 3820 was associated
with increased cell attachment. As shown in Figure 3, the diosgenin-induced changes in
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cell surface hydrophobicity were consistent with the expected changes in biofilm formation
on the hydrophobic PVC surface.
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Figure 3. Diosgenin-induced changes in cell surface hydrophobicity. The cell surface hydrophobicity
of Staphylococcus aureus ATCC 6538 (A), S. aureus ATCC 29213 (B), MRSA CCARM 3090 (C), and
MRSA CCARM 3820 (D) was examined without diosgenin (open bars, control) or with 80 µM
diosgenin (closed bars). Values were calculated from four independent results, and their standard
deviations are shown. Values that differ from the control with 95% and 99% confidence levels are
marked with one and two asterisks, respectively, on top of the bars.

A previous study has shown that biofilm formation changes are proportional to varia-
tions in the cell surface hydrophobicity of S. aureus depending on pH [55]. Temperature-
dependent changes in cell surface hydrophobicity were found to be associated with biofilm
formation in 67 S. aureus isolates [49]. Vitexin, an apigenin flavone glucoside, could reduce
S. aureus cell surface hydrophobicity and biofilm formation at the sub-MIC [56]. These
results suggest that diosgenin-induced changes in cell surface hydrophobicity are a major
cause of alterations in biofilm formation.

3.4. Diosgenin-Induced Changes in Extracellular Protein Contents

Extracellular protein contents are closely correlated with biofilm formation [57,58].
The changes induced by 80 µM diosgenin in the extracellular protein contents of planktonic
cells were quantitatively measured (Figure 4). After 1, 6, and 18 h of diosgenin treatment,
the extracellular protein contents of S. aureus ATCC 6538 and MRSA CCARM 3090 were
significantly lower than those of untreated cells (Figure 4A,C). The extracellular protein
contents of S. aureus ATCC 29213 and MRSA CCARM 3820 were increased by diosgenin



Microorganisms 2023, 11, 2376 9 of 17

treatment at the mean value; however, statistically significant differences with 95% were
observed only at 18 h (Figure 4B,D). Considering the correlation between extracellular
protein contents and biofilm formation, the diosgenin-induced changes in the extracellular
protein contents of planktonic cells could affect biofilm formation in S. aureus. In addition,
such changes may induce variations in the degree of cell surface hydrophobicity. The
extracellular protein content shown in Figure 4 was correlated with biofilm formation. A
previous study suggested the importance of proteins in biofilm formation through the
inhibition of biofilm formation by protease treatment [59].
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contents of Staphylococcus aureus ATCC 6538 (A), S. aureus ATCC 29213 (B), MRSA CCARM 3090 (C),
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3.5. Diosgenin-Induced Changes in Extracellular Polysaccharide Contents

Extracellular polysaccharides are materials that form biofilms and are closely related
to biofilm formation [60,61]. Diosgenin-induced changes in the extracellular polysaccharide
contents of planktonic cells were measured (Figure 5). The extracellular polysaccharide
contents of S. aureus ATCC 6538 and MRSA CCARM 3090 decreased 6 and 18 h after
diosgenin treatment (Figure 5A,C). Conversely, the extracellular polysaccharide contents of
S. aureus ATCC 29213 increased 1, 6, and 18 h after diosgenin treatment (Figure 5B). The
average extracellular polysaccharide contents of MRSA CCARM 3820 slightly increased,
albeit not significantly (Figure 5D).
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Figure 5. Diosgenin-induced changes in extracellular polysaccharide contents. The extracellular
polysaccharide contents of Staphylococcus aureus ATCC 6538 (A), S. aureus ATCC 29213 (B), MRSA
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3.6. Diosgenin-Induced Changes in the Expression of Genes Associated with the Regulation of
Biofilm Formation

Diosgenin changed the extracellular protein (Figure 4) and polysaccharide (Figure 5)
contents; these changes were proportional to the change in biofilm formation. Diosgenin-
induced changes in the expression of genes involved in the regulation of physiological
changes related to biofilm formation were measured (Figure 6). Gene expression changes
were observed during planktonic growth.

PIA is a well-known extracellular polysaccharide associated with biofilm formation in
S. aureus. It is synthesized by proteins expressed at the ica locus [33]. In this study, diosgenin-
induced changes in the expression of icaA, the first gene in the icaADCB operon, were
measured (Figure 6A). Diosgenin treatment decreased icaA expression in S. aureus ATCC
6538 and MRSA CCARM 3090, in which biofilm formation and extracellular polysaccharide
contents were reduced. Conversely, diosgenin treatment increased icaA expression in S.
aureus ATCC 29213 and MRSA CCARM 3820, in which biofilm formation and extracellular
polysaccharide contents were increased. Changes in the extracellular polysaccharide
contents and icaA expression along with the changes in biofilm formation induced by
diosgenin suggested that extracellular polysaccharides, such as PIA, were a cause of
diosgenin-induced changes in biofilm formation.
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Figure 6. Diosgenin-induced changes in gene expression levels. Gene expression changes in icaA (A),
spa (B), RNAIII (C), agrA (D), sarA (E), and sigB (F) were calculated by comparing the gene expression
levels with 80 µM diosgenin treatment for 1 h with those without diosgenin treatment using RT-PCR.
The dotted horizontal line indicates no change in gene expression levels induced by diosgenin with a
value of 1. Values were calculated from three independent results, and their standard deviations are
shown. Values that differ from the control with 95% and 99% confidence levels are marked with one
and two asterisks, respectively, on top of the bars.

Among the proteins involved in biofilm formation, Spa promotes cell aggregation [61].
Diosgenin-induced changes in spa expression were also measured (Figure 6B). Diosgenin
treatment decreased spa expression in S. aureus ATCC 6538 and MRSA CCARM 3090.
Conversely, it increased spa expression in S. aureus ATCC 29213 and MRSA CCARM 3820.
These findings indicated that spa expression was proportional to biofilm formation and
extracellular protein contents.

An S. aureus mutant in which the spa function was lost could no longer form a biofilm.
When the Spa protein was added to the culture medium of this spa mutant, its ability
to form a biofilm was restored [61]. Spa is not covalently attached to cells and is impli-
cated in biofilm formation. It can bind to IgG antibodies that inhibit the attachment of
microorganisms to a silastic catheter and interfere with its activity [62].

Increased RNAIII expression inhibits spa expression and decreases biofilm forma-
tion [63]. RNAIII is an effector of the quorum-sensing system; it regulates transcriptional
regulators and virulence factors [64]. AgrA activates RNAIII expression [65]. The agr
system is a two-component regulatory system that regulates many virulence factors in S.
aureus and plays an important role in the early stages of biofilm formation [64,66]. SarA is a
global regulator that controls agrA expression. SarA expression is known to be regulated
by σB, which is an alternative sigma factor that regulates the expression of many genes in
response to external environmental stresses.

In this study, diosgenin-induced changes in the expression of RNAIII, agrA, sarA, and
sigB were measured (Figure 6C,F). The expression levels of the four aforementioned genes
were increased by diosgenin treatment in S. aureus ATCC 6538 and MRSA CCARM 3090
and decreased in S. aureus ATCC 29213 and MRSA CCARM 3820. These results suggested
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that diosgenin could regulate the expression of proteins related to biofilm formation in a
strain-specific manner.

3.7. Regulatory Signaling Mechanisms of Biofilm Formation Identified Using Diosgenin

The proposed regulatory mechanism of biofilm formation using diosgenin is shown
in Figure 7. Diosgenin activates or represses sigB expression in a strain-specific manner. σB

activates RNAIII expression by sequentially increasing sarA and agrA expression. RNAIII
inhibits biofilm formation by repressing spa expression. In this study, spa expression was
correlated with biofilm formation after diosgenin treatment, as opposed to sigB expression.
The changes in the strain-specific gene expression after diosgenin treatment (Figure 6) along
with the changes in biofilm formation support the regulatory model of biofilm formation
proposed in Figure 7.
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Figure 7. A regulatory signaling model of biofilm formation. Diosgenin activated σB expression in
Staphylococcus aureus ATCC 6538 and MRSA CCARM 3090 and inhibited σB expression in S. aureus
ATCC 29213 and MRSA CCARM 3820. In the signal transduction pathway on the left side of the
figure, σB sequentially promotes the expression of SarA and AgrA, which in turn promotes RNAIII
expression. Increased RNAIII expression inhibits the expression of surface-related adhesins (SRAs),
increasing biofilm formation. The other signal transduction pathway, shown on the right side of
the figure, is regulated by the σB-mediated inhibition of an unknown regulator that promotes the
expression of IcaA, which synthesizes the polysaccharide intercellular adhesin (PIA), increasing
biofilm formation. In conclusion, σB, an alternative general stress response sigma factor, inhibits
biofilm formation.

An additional regulatory mechanism of biofilm formation is that σB increases the
turnover of Ica proteins and eventually reduces the synthesis of PIA [67]. In our gene
expression observations, the change in sigB expression induced by diosgenin treatment was
opposite to the change in icaA expression. This suggests that in addition to the increased
turnover rate of IcaA by σB, diosgenin treatment may be involved in the expression of icaA.
A proposed mechanism is that σB represses icaA expression by inhibiting the expression of
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unknown genes that activate icaA expression [68]. The gene expression patterns noted in
response to diosgenin treatment in this study support the hypothesis that σB is involved in
icaA expression. However, future research should clarify whether icaA expression changes
are regulated by σB and identify the intermediate gene between σB and icaA in the signal
transduction pathway.

A previous study has suggested that SarA promotes icaA expression [34]. However,
this finding is inconsistent with the regulatory mechanism of biofilm formation proposed
in Figure 7. Our results in the four selected S. aureus strains support the model provided
in Figure 7 and do not support the activation of icaA expression by SarA. In a previous
study [69], quinic acid inhibited the biofilm formation of S. aureus in a concentration-
dependent manner, with increased expression of agrA, icaA, and sigB, consistent with our
results.

Furthermore, diosgenin-induced changes in the expression levels of codY [34], mgrA [34],
saeS [34], and saeR [34], which are known regulators of biofilm formation, were evaluated
(Supplementary Figure S2). However, no synchronized gene expression changes occurred
with the strain-specific contrasting changes in biofilm formation induced by diosgenin. This
suggests that even if these are regulators of biofilm formation, they may not be involved in
diosgenin-induced signaling or may not be regulated by changes in gene expression.

In addition to the regulatory model of biofilm formation presented in Figure 7, we
observed opposite changes in sigB expression in response to diosgenin treatment in a
strain-specific manner. Comparing the amino acid sequences of σB and its upstream reg-
ulator, RsbU, from S. aureus ATCC 6538 and S. aureus ATCC 29213 strains, we observed
differences in amino acids at specific positions. These differences may be responsible for the
strain-specific opposite response to the diosgenin treatment. If these amino acid differences
are unrelated to strain-specific diosgenin responses, it could be suggested that signal trans-
duction upstream of RsbU confers the strain-specific opposite signals. Further studies are
warranted to understand how the same diosgenin treatment can induce opposite changes
in sigB expression. σB, an alternative general stress response sigma factor, helps S. aureus to
survive under hostile environmental conditions. Therefore, studying the mechanisms of
strain-specific opposite changes in sigB expression induced by diosgenin may provide in-
sights into the survival strategies of S. aureus under unfavorable environmental conditions.
These further studies will provide clues that can help to prevent and treat various diseases
caused by S. aureus.

4. Conclusions

By tracing the intracellular signaling by diosgenin without introducing genetic modifi-
cations, this study proposed an integrated model for the regulatory mechanisms of biofilm
formation. The existence of strain-specific opposing responses to diosgenin suggests a
diversity of signal transduction mechanisms for the regulation of the σB activity in S. aureus.
Strain-specific responses to the regulation of biofilm formation confer strain-specific selec-
tivity, whereby the subspecies population distribution of S. aureus may vary depending on
the stress conditions imposed. This suggests that it may affect the effectiveness of infection
treatments or hygiene processes.
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//www.mdpi.com/article/10.3390/microorganisms11102376/s1, Figure S1: Effect of diosgenin on
cell growth; Figure S2: Diosgenin-induced changes in codY, mgrA, saeS, and saeR expression.
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Abbreviations

CFU Colony-forming units
EPS Extracellular polymeric substances
MIC Minimal inhibition concentration
MRSA Methicillin-resistant S. aureus
PBS Phosphate-buffered saline
PIA Polysaccharide intercellular adhesion
PVC Polyvinyl chloride
RT-PCR Real-time polymerase chain reaction
SRAs Surface-related adhesins
TSA Tryptic soy agar
TSB Tryptic soy broth
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