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Abstract: Peribacillus simplex is a Gram-positive, spore-forming bacterium derived from a vast range of
different origins. Notably, it is part of the plant-growth-promoting rhizobacterial community of many
crops. Although members of the Bacillaceae family have been widely used in agriculture, P. simplex
has, so far, remained in the shadow of its more famous relatives, e.g., Bacillus subtilis or Bacillus
thuringiensis. Recent studies have, however, started to uncover the bacterium’s highly promising and
versatile properties, in particular in agricultural and environmental applications. Hence, here, we
review the plant-growth-promoting features of P. simplex, as well as its biocontrol activity against a
variety of detrimental plant pests in different crops. We further highlight the bacterium’s potential as
a bioremediation agent for environmental contaminants, such as metals, pesticide residues, or (crude)
oil. Finally, we examine the recent developments in the European regulatory landscape to facilitate
the use of microorganisms in plant protection products. Undoubtedly, further studies on P. simplex
will reveal additional benefits for agricultural and environmentally friendly applications.

Keywords: Peribacillus simplex; antimicrobial activity; sustainable agriculture; bioremediation;
European Green Deal

1. Introduction

Sustainable agriculture is key in ensuring a continuous food supply for the growing
world population, while at the same time minimizing negative effects on the environ-
ment [1]. This is also reflected in policy developments such as the European Green Deal
and its ambitious Farm to Fork strategy, aiming at halving the use and risk of chemical
pesticides and increasing organic farming practices [2].

One promising approach to replacing chemical products is the use of soil microbial
inoculants, which are predominantly based on plant-growth-promoting (PGP) fungi and
bacteria [3,4]. When applied to soil and/or plants, these microorganisms can exert several
beneficial effects on their surroundings, such as (i) acting as biopesticides, (ii) enhancing
plant growth, or (iii) improving soil conditions (e.g., through bioremediation or bioad-
sorption) [3]. Thus, bacterial inoculants can increase agronomic efficiency by reducing
production costs and environmental pollution, as well as (partially) eliminating the use of
chemical fertilizers and pesticides [5].

Plant-growth-promoting bacteria (PGPB) and plant-growth-promoting rhizobacteria
(PGPR) are essential parts of the soil microbiome, sustaining plant health and growth. These
microorganisms colonize the soil, plant rhizosphere, and root surface or interior and fulfil a
variety of useful functions, such as increasing nutrient availability, counteracting abiotic
stress, or improving the stress tolerance of the plant [5–8]. Here, members of the genus
Bacillus—and recently reclassified closely related genera [9]—are one of the predominant
microbial communities and play an important role in maintaining healthy soils conducive
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for plant growth and nutrition [8,10]. These Gram-positive bacteria are characterized by
their ability to form dormant endospores, enabling them to withstand harsh conditions
otherwise fatal to vegetative cells [11–13]. In addition, their ability to produce a wide
arsenal of biologically active compounds with inhibitory and/or plant-growth-promoting
effects has been well documented [14–16].

The biocontrol activity of a microorganism can generally be classified into two mecha-
nisms. Direct antimicrobial activity includes the synthesis of phytohormones, as well as the
production of antibiotics, hydrolytic enzymes, or lipopeptides [17]. In this regard, Bacillus
spp. have been recognized as promising sustainable plant protection agents presenting a
viable alternative to chemical pesticides [18], with, e.g., B. thuringiensis-, B. subtilis-, and B.
amyloliquefaciens-containing formulations already commercially available [17,19,20].

Indirect mechanisms of biocontrol activity include (amongst others) inducing sys-
temic resistance (ISR) in plants [17], which activates/increases plants’ resistance towards
phytopathogenic infections and indirectly stimulates plant growth [21,22]. Here, Bacillus
spp. can induce systemic resistance through different mechanisms, such as the secretion
of enzymes, cyclic lipopeptides, or volatile organic compounds (VOC) [23]. That said, it
is important to note that there is no clear separation of ISR and antimicrobial activity, as
several antimicrobial lipopeptides, e.g., fengycin and surfactin, or VOCs can simultaneously
induce systemic resistance [24].

Although positive environmental impacts of members of Bacillus spp. and related
genera have been widely demonstrated, studies on Peribacillus simplex have only recently
started to uncover the bacterium’s wide range of highly promising PGP features, including
the ability to promote plant growth through nutrient fixation, the production of antimicro-
bial compounds, or acting as biosorbent for environmental contaminants. Hence, here, we
provide a comprehensive overview of these findings and highlight P. simplex’s potential for
its use in sustainable agricultural. Finally, with a view towards the future applications of P.
simplex as a biocontrol agent, we will briefly summarize the requirements and changes in
the European Regulation in the light of the European Green Deal and Farm to Fork strategy,
which aim to facilitate the use of microorganisms in plant protection products.

2. Genus Peribacillus

Members of the genus Peribacillus belong to the family of Bacillaceae and are rod-shaped,
Gram-positive, endospore-forming bacteria. Aerobic or facultative anaerobic bacteria
were previous members of the genus Bacillus, however, after an extensive taxonomic
reclassification in 2020 using phylogenomics and comparative genomic analyses, the species
have been rearranged based on molecular markers to form a separate monophylogenetic
group of the genus Peribacillus [9,25]. Today, the genus includes 21 species, with Peribacillus
simplex as the type strain (Table 1) [26].

Many of the species have been originally isolated from soil and plant samples, although
they can be derived from a wide variety of origins, such as near the Viking spacecraft at
Kennedy Space Center [27] or stratospheric air samples at a 41 km altitude [28].

Table 1. Members of the Peribacillus genus. Original sources of isolation are indicated.

Peribacillus Species [25,26] Original Isolation Source Ref.

Peribacillus acanthi Rhizosphere soil of a mangrove plant Acanthus ilicifolius [29]
Peribacillus alkalitolerans Marine sediment near a hydrothermal vent [30]

Peribacillus asahii Soil [31]
Peribacillus butanolivorans Soil [32]

Peribacillus castrilensis River otter [33]
Peribacillus cavernae Cave soil [34]
Peribacillus deserti Desert soil [35]

Peribacillus endoradicis Soybean root [36]
Peribacillus faecalis Cow feces [37]

Peribacillus frigoritolerans Arid soil [38,39]
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Table 1. Cont.

Peribacillus Species [25,26] Original Isolation Source Ref.

Peribacillus glennii Vehicle assembly building at Kennedy Space Center [27]
Peribacillus gossypii Stem of Gossypium hirsutum [40]

Peribacillus huizhouensis Paddy field soil [41]
Peribacillus kribbensis Soil [42]
Peribacillus loiseleuriae Soil from a loiseleuria plant [43]

“Peribacillus massiliglaciei”1 Siberian permafrost [44]
Peribacillus muralis Deteriorated mural paintings [45]

Peribacillus psychrosaccharolyticus Soil or lowland marsh. [46]
Peribacillus saganii Vehicle assembly building at Kennedy Space Center [27]
Peribacillus simplex Soil [46]

Peribacillus tepidiphilus Tepid spring [47]
1 Nomenclature status not validly published.

3. Plant-Growth-Promoting Properties

Members of the Bacillus genus (as traditionally defined) are among the most widespread
Gram-positive soil microorganisms and are predominant in the plant-growth-promoting
bacteria (PGPB) community [10]. The beneficial effects of the family members have been
well documented [8,10,18].

In this regard, a number of studies have highlighted P. simplex’s potential to act as a
plant-growth-promoting microorganism (Table 2).

Table 2. Examples of uses of Peribacillus simplex as plant-growth-promoting bacteria.

P. simplex Isolate Effect Tested Plant Ref.

MRBN26 Increased shoot and root weight Canola plant [48]
KY604953 Enhanced germination, root growth, and nutrient uptake Wheat [49]

K10 Improved plant height, tuber weight, photosynthesis yield,
transpiration rate, water use efficiency, and overall yield Potato [4]

MH671854.1, MH671861.1 Increased shoot and root weight, IAA production, and high
phosphate solubilization Tomato [50]

KBS1F-3 Increased shoot and root weight, IAA production, and high
phosphate solubilization Tomato and wheat [51]

KY515398 Stimulation of root and shoot growth Corn, wheat, and soybean [22]
L266 Stimulation of primary root growth and lateral root development Arabidopsis thaliana [52]

30N-5 Increases number of lateral roots Pea legume [53]
PHYB1; PHYB9 Increased root and foliar dry weight Black cumin [54]

313, 371 Increased phosphate uptake and increased soil nutrient
concentrations (co-cultured with P. biliaiae) Winter wheat [55]

RC19 Root induction Kiwi [56]
SYM00260 Increased yield and root and shoot dry weight Corn and soybean [57]

UT1 Improved phosphate, potassium, and silica uptake, and increased
root and shoot biomass Wheat [58]

EGE-B-1.2.k High phosphate solubilization Tomato, pepper, and eggplant [59]

499G2 Increased nitrogen, phosphorus,
And IAA in plant leaves Wild rice [60]

3.1. Plant Growth Promotion through Compound Secretion

With the aim of searching for sustainable plant supplements or alternatives to chem-
ical fertilizers, the use of PGPB has shown great potential, minimizing environmental
impacts [51]. P. simplex demonstrates a broad range of activity, stimulating growth in a large
variety of commercially relevant crops, such as tomato, wheat, soybean, or corn (Table 2),
and has sometimes achieved over a quarter of crop yield increase [57]. In some cases,
growth stimulation can notably reach levels similar to chemical fertilizers, making the
bacterium a sustainable alternative to potentially harmful chemicals in food production [50].
Growth stimulation has most commonly been attributed to direct growth promotion via
auxin production (indole-3- acetic acid, IAA) or siderophore secretion [22,50,56,58].
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Another way of stimulating plant growth is the emission of volatile organic com-
pounds (VOC), e.g., acetoin and 2,3-butanediol. When emitted by PGPB bacteria, these
compounds can act as plant growth promotion triggers [52]. Gutiérrez-Luna et al. sug-
gested that the VOCs secreted by P. simplex isolated from lemon plants improved the root
growth and development in Arabidopsis thaliana under greenhouse conditions [52]. These
compounds, mostly ketones and aldehydes also with antimicrobial attributes, included 2-
nonenal, benzaldehyde, acetophenone, 6,10,14-trimethyl-2-pentadecanone, and 1-butanol,
amongst others. However, there was no direct, experimental support for the effect of
specific VOCs on plant growth promotion [52].

Finally, recent studies have shown that these growth promotion effects can be maxi-
mized when using combined inoculations with other PGPBs [51] or inorganic material [58].
This effect was particularly visible when combining PGP bacteria (P. simplex) and nitro-
gen (N)-fixating rhizobacteria (B. subtilis, Rhizobium leguminosarum bv. Viciae) in peas [53],
while P. simplex-based bioformulations showed hydrogen cyanide (HCN), siderophore, and
ammonia production in wheat [49]

In contrast, studies investigating the addition of inorganic acids such as salicylic acid
together with P. simplex did not show any effect on plant growth [61].

3.2. Improved Nutrient Availability

Recent research attempts have aimed at increasing the concentrations of specific
nutrients or micronutrients, thus improving plant health and nutritional value [4]. Although
many techniques are based on plant-breeding techniques or transgenics, the use of PGP
bacteria could also boost the uptake of specific nutrients in crops.

Studies have shown that siderophore-producing P. simplex can increase the uptake of
iron in potatoes, while at the same time improving overall plant growth and yield [4].

P. simplex isolates have also demonstrated a high phosphate and zinc solubilization
index in wheat [49], whereas high phosphate solubilization was detected in experiments
with tomato plants. The latter, however, was distinctly strain-dependent [50].

Given that, in the soil, microorganisms occur in communities presumably acting
synergistically, the combination of several PGPBs has shown better plant growth promotion
effects than when used in isolation [3]. For example, co-culturing canola plants with P.
simplex improved the shoot and root weight, in addition to enhancing the molybdenum
micronutrient uptake [48]. Higher soluble nutrient concentrations (phosphate, magnesium,
manganese, and sulfur), as well as increased phosphate uptake, could be obtained in winter
wheat upon co-inoculation of the soil fungus Penicillium bilaiae with P. simplex (isolated from
P. biliaiae) [55]. Equally, co-culturing P. simplex with inorganic silicon (Si) could improve
the phosphate (P) uptake from P-rich and P-deficient soils. This was attributed to reduced
oxidative stress as a result of increased antioxidant enzyme production, ultimately lowering
the environmental stress for the plant and preventing root deterioration.

3.3. Root Colonization

PGPRs colonize the soil closely surrounding plant roots (rhizosphere), where they
exert beneficial effects on plants. Hence, the success of microorganisms used as inoculants
in agricultural crops greatly depends on the ability to colonize the host plant roots and body
and prevail against other competing microorganisms [5,62]. The successful association of
the bacteria with the plant roots is achieved by chemotaxis, attachment, and distribution
along the roots. Once established, the bacterial colony size will determine and improve the
root coverage and antagonism [62].

P. simplex has demonstrated a good root colonization potential and persistence in
several commercial plants, such as wheat, tomato, and pine tree roots [51,55,62]. In some
cases, P. simplex showed a higher rate of colonization than other Bacillus species (e.g., B.
subtilis) [49]. Fluorescent localization studies with the transgenic P. simplex strain S11R41 iso-
lated from pine tree rhizosphere have, in particular, confirmed that the bacterium is able to
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rapidly associate with tree roots, forming clusters at emerging lateral roots and elongation
zones [62].

Regarding biofilm formation, GFP-report localization studies have not evidenced any
biofilm formation of P. simplex associated with tree roots [62].

4. Biocontrol Activity

P. simplex strains isolated from different environments showed biocontrol activity
against a large range of phytopathogens, mostly fungi, but also nematodes and bacteria,
which was detected in several commercially highly relevant plants, such as potato, wheat,
or tobacco (Table 3).

Table 3. Applications of Peribacillus simplex as biocontrol agent in selected crops/diseases and
associated phytopathogens. Studies on the species’ antimicrobial activity, as well as the induction of
the plant systemic response, are considered.

P. simplex Isolate Effect Target Class Test Conditions
(Plant) * Ref.

Antimicrobial activity

30N-5; 11; 237

Presence of biocontrol
genes/cellulase, xylanase,
pectinase, and chitinase

production Fusarium spp. Fungus

In vitro/In silico [17]

30N-5 Pathogenetic growth inhibition In vitro [53]

R180 Pathogenetic growth inhibition
and reduction in disease severity

In vitro and in planta
(corn, wheat, and

soybean)
[63]

PHYB1 and PHYB9 Reduction in disease severity, and
hyphal tissue maceration

In vitro and in planta
(black cumin) [54]

Isolate 1–6 VOC production
Panagrellus redivivus
and Bursaphelenchus

xylophilus
Nematode In vitro [64]

Alg.24B2 Production of lytic enzymes and
lipopetides Zymoseptoria tritici Fungus In vitro [65]

03WN13;
03WN23;03WN25

Reduced lesion size and disease
(pink rot)

Phytophthora
erythroseptica Fungus In planta (potato) [66]

BA2H3
Pathogenetic growth inhibition

and reduction in soft rot
symptoms

Pectobacterium sp. Bacterium In vitro and in planta
(potato) [67]

UJA_MA_369 Pathogenetic growth inhibition Xylella fastidiosa Bacterium In vitro [68]

Induced Systemic Resistance

HS-2
Antifungal/

increased ROS and callose
production

Pythium
aphanidermatum Phytium In vitro and in planta

(tobacco) [23]

499G2 Increased antioxidant enzyme
production Magnaporthe grisea Fungus In vitro and in planta

(wild rice) [60]

S11R41
Reduced lesions and plant

mortality

Heterobasidion
annosum and

Armillaria
mellea

Fungus In vitro and in planta
(Pinus radiata)

[69]

Reduced fungus growth and
density and reduced lesion length Fusarium circinatum [70]

Sneb545

Increased plant resistance,
reduced infection/nematode

penetration, and reduced
nematode growth

Heterodera glycines Nematode In vitro and in planta
(soybean seeds) [71–73]

* Test conditions indicate if studies were performed in vitro, in silico, or the tested plant in case of in planta tests.

4.1. Antimicrobial Activity

The antifungal activity of P. simplex has been demonstrated in a number of stud-
ies, most of them conducted on the phytopathogenic fungus Fusarium spp. In vitro as-
says showed up to a 70% growth inhibition of the plant pest and fungal hyphal thin-
ning [17,53,63], however, compared to B. subtilis, the effects were slightly lower [17]. In
planta experiments further confirmed these antifungal properties, greatly reducing dis-
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ease severity after P. simplex application to the root seedlings of row crops or in black
cumin [54,63]. The authors cautioned, however, that the results obtained from in vivo
and in vitro antagonistic assays were not always aligned [63], and thus appropriate care
should be taken for the screening of biocontrol agents under field conditions. Schwartz
et al. [53] also confirmed P. simplex’s antagonistic activity against Fusarium spp., which
was, however, dependent on growth conditions. This study was of particular interest,
as it demonstrated the combined antimicrobial and plant-growth-promoting effects of P.
simplex isolate 30N-5 in pea (Tables 2 and 3), suggesting that such a combined activity
could be more effective under field conditions [53]. Similar results were observed for
isolates PHYB1 and PHYB9 in black cumin treatment [54]. Regarding the mode of action,
in silico genomic studies indicated the presence of genes involved in the chitin degradation
pathway and hydrolytic enzyme production, as well as cell-wall-degrading enzymes such
as cellulase, pectinase, and xylanase, all of which are indicators for P. simplex’s antimicrobial
activity [17]. Scanning electron microscopy studying the interaction between P. simplex and
F. camptoceras demonstrated the bacterial adhesion to the fungus and the colonization of
hyphae, causing tissue maceration [54].

P. simplex also reduced fungi-associated diseases in potato (pink rot) and wheat (Septo-
ria Tritici Blotch) [65,66], while other studies demonstrated its antagonistic activity against
the phytopathogens Pectobacterium sp. and Xylella fastidiosa [67,68]. Finally, in silico studies
of the strain BA2H3 suggested the production of the antimicrobial compounds bacitracin
and anthrachelin [67,74].

Regarding VOCs, several studies have highlighted P. simplex’s ability to produce a variety
of microbial volatile organic compounds, including 2-ethyl-3,5-dimethylpyrazine, phenol,
1-decanol, 2-propanone, and benzaldehyde [17,64]. In this regard, Gu et al. [64] showed
that soil-derived P. simplex strains secreted a mix of volatile organic compounds from the
phenol, alcohol, aldehyde ketone alkyl, alkene, acid, ether, or heterocyclic groups, with strong
antagonistic activity against the parasitic nematodes Panagrellus redivivus and Bursaphelenchus
xylophilus. One important consideration with regard to the use of bacterial VOCs is that this
mix is potentially less likely to select for resistance upon fumigation treatment.

4.2. Systemic Resistance

Recent studies have indicated that, besides antifungal activity in tobacco plants, pre-
treatment with the P. simplex strain HS-2 increased reactive oxygen species (ROS) production
and lowered plant cell wall permeability through increased callose production in response
to a pathogen challenge [23]. Both reactions are indicators of the plant immune response. In
addition, priming with this strain enhanced the expression of plant-related defense genes
(e.g., lipoxygenase), as well as MAPK (mitogen-activated protein kinases) signals [23].

Fungal antagonism was also demonstrated in vitro and in planta against the forest
fungal pathogens Heterobasidion annosum s.s., Armillaria mellea, and Fusarium circinatum. No-
tably, the treatment of pine seedlings with P. simplex considerably reduced lesions and plant
mortality after pathogen exposure, which was tentatively attributed to antibiosis/systemic
response [69,70]. Here, a dual application of the bacterium together with essential oils able
to reduce seedling lesions was suggested as a plant prophylactic treatment [70].

Several studies by Yu-xi Duan and colleagues furthermore demonstrated the antag-
onistic effects of P. simplex Sne545 against nematodes through the activation of induced
systemic resistance in soybean using a wide range of different analytical approaches [71–73].
First, metabolomic and transcriptomic analyses showed that the bacterium induces ISR by
modulating the accumulation of nematocidal compounds (4-vinylphenol, L-methionine,
piperine, and palmitic acid) after root infection, hence improving soybean resistance against
pathogenic attacks [72]. Then, additional ISR-active compounds were determined using
1H-NMR and 13C-NMR as cyclic (Pro-Tyr), phenylalanine, cyclic (Leu-Pro), uracil, cyclic
(Val-Pro), and tryptophan. The latter three notably activated the root resistance path-
ways (SA and JA pathways) in the plant [71]. Finally, metabolomics studies identified
15 metabolites involved in nematode resistance as a result of P. simplex Sne545 priming.
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These metabolites were involved in the provision of nematode nutrient sources (glucose,
fructose, sucrose, and trehalose), the production of nematocidal compounds (melibiose and
gluconic acid, lactic acid, phytosphingosine, and noradrenaline), and improved disease
resistance (oxoproline, maltose, and galactose) [73].

Studies on wild rice have furthermore highlighted that pretreatment with strain
499G2 can promote plant growth (mostly through IAA production), while at the same time
inducing plant resistance [60]. Overall, this is a good illustration that systemic resistance in
plants (and bacterial antagonistic activity) mostly consists of an elaborate interplay of dif-
ferent pathways and compounds warding off the phytopathogen and often simultaneously
improving plant resistance, survival, and health [60,71–73].

5. Biosorption and Bioremediation

The use of microorganisms as a remedy for contaminated zones is widely accepted.
Several microorganisms have shown good potential as biosorbents for binding metals, en-
vironmental contaminants, or even mineral oil, immobilizing the contaminating substances
and hindering their entry into the plant, food chain, or ground water [75–77]. In addition,
bioremediation by microorganisms can indirectly promote plant growth by reducing stress
conditions. In this regard, studies throughout the years have shown the bioremediation
activity of P. simplex (Figure 1).
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Early studies performed in the 1990s revealed that P. simplex could remove metals
from contaminated soils and thus act as an environmental decontamination agent [75]. The
bacterial uptake of cationic metal is usually attributed to interactions with the negatively
charged cell wall. In particular, P. simplex’s ability to adsorb heavy metals showed a pH
dependency with an optimum performance close to a neutral to alkaline pH. Researchers
thus concluded that metal uptake was dependent on variably charged protonation sites (e.g.,
amino groups, phosphate, or carboxylate) [75]. As an example, Valentine and colleagues
showed how the P. simplex strain ZAN-44 can adsorb divalent cadmium, nickel, cobalt, and
strontium ions with a higher efficiency than B. subtilis 168 or Escherichia coli K-12. Notably,
the latter two of the tested ions (60Co and 90Sr) were radionuclides, making P. simplex
an interesting biosorbent for the cleaning of radioactively contaminated sites [75]. The
ability of P. simplex to adsorb lead has been demonstrated in the literature, while authors
have suggested that the bacterium could be exploited for bioremediation purposes [76].
Elevated levels of cadmium have been a major concern also in cocoa plants, with many
initiatives aiming at reducing cadmium levels. Here, P. simplex has been proven as a highly
promising sustainable biosorbent material for removing cadmium from contaminated soils
and preventing its entry into plants and food chains [78].

Bioremediation activity has also been shown for other environmental contaminants
such as low-molecular-weight polyaromatic hydrocarbon fluorene and phenanthrene, as
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well as nitrate, nitrite, and ammonium [79–81]. In particular, nitrogen removal capacity
was favored by the strains’ (P. simplex H-b) tolerance of low temperatures [81].

The pesticidal burden of soils has become an increasing concern in agriculture and
the food industry, given the long-time stability and non-specific toxicity of many active
substances [82]. In this regard, several studies have demonstrated P. simplex’s ability
to remove chemical pesticides from contaminated soils, as shown with the example of
chlorsulfuron [83].

Finally, P. simplex isolates derived from bioaugmented oil contaminated soil have
been classified as hydrocarbonoclastic bacteria, i.e., able to live on hydrocarbons as an
energy source [84]. In addition to biodegradation, a P. simplex strain isolated from oil-
contaminated sea sediment showed a high oil recovery efficiency through the production
of a lipopeptide surfactant, including at a high salinity [85]. These features make P. simplex
a particularly interesting candidate for the bioremediation of (crude) oil-contaminated sites
via oil degradation and recovery.

6. EU Regulatory Aspects on the Use of Microorganisms in Sustainable Agriculture

Plant pathogens present a serious threat to agricultural productivity and can cause
severe crop loss. For decades, chemical pesticides have been used to fight phytopathogens,
including bacteria, fungi, or insects. However, with regulatory and food safety require-
ments becoming much stricter, a switch towards sustainable agriculture using biological
alternatives to hazardous chemicals is gaining importance. In this regard, P. simplex and
other members of the Bacillaceae family have shown promising traits that could be exploited
in commercial agriculture, thus providing solutions to recent policy requests. Here, with the
aim of contributing towards the objectives set under the Farm to Fork Strategy to reduce the
overall use and risk of chemical pesticides by 50% and the use of more hazardous pesticides
by 50% by 2030 [2], the European Union (EU) is facilitating the application of microorgan-
isms in plant protection products. More specifically, it has developed four implementing
regulations—applicable since 2022—regarding the approval of microorganisms as active
substances in plant protection products (PPP). The first modification was Commission
Regulation (EU) 2022/1438 amending Annex II of Regulation (EC) No 1107/2009 [86,87].
The latter provides rules for the authorization of PPPs and their placing on the market,
while the amendment (amongst others) extends specific criteria related to microorganisms.
Some of these main modifications and/or additions specifically refer to the requirement
that the microorganism in question needs to be deposited at an internationally recognized
culture collection and receive an accession number. It must be identified at minimum at
the strain level and information must be provided about whether the biological materials
are wild types, mutants, or genetically modified organisms. Regarding the safety aspects
of the microorganisms, they must not be pathogenic to humans and must have no known
functional and transferable gene coding for resistance to relevant antimicrobial agents. In
this regard, the amendment further requires the microorganism to be susceptible to at least
two classes of antimicrobial agents for it to be considered a low-risk active substance [87].

Other amendments related to the necessary information to be submitted for active
substances and the specific data requirements for microorganisms were Commission Reg-
ulation (EU) 2022/1439 amending Regulation (EU) No 283/2013 [88,89]. We particularly
highlight a modification referring to antimicrobial resistance (AMR), as well as the presence
of antimicrobial resistance genes (ARG) [88]. Here, information is required on whether
the bacterium shows any resistance to relevant antimicrobial agents or if ARG are ac-
quired, transferable, and functional. These changes also relate to modifications in the
data requirements for plant protection products containing microorganisms, as reflected
in Commission Regulation (EU) 2022/1440 amending Part B of the Annex to Regulation
(EU) No 284/2013 [90,91]. Thus, both amendments aim to update the data requirements
for the latest scientific developments and adapt them to the specific biological properties
of microorganisms.



Microorganisms 2023, 11, 2540 9 of 13

Finally, given the abovementioned updated regulatory documents, Commission Reg-
ulation (EU) 2022/1441 amends Regulation (EU) No 546/2011 regarding the uniform
principles for the evaluation and authorization of plant protection products containing
microorganisms. Hence, data assessments are aligned across Member States, ensuring a
high level of protection for human and animal health [92,93].

7. Conclusions

The advantages of Bacillus spp. in agriculture have long been recognized. That
said, Peribacillus simplex has not received as much attention as other strains in this regard.
However, recent efforts focusing on this spore former have shown its various beneficial
effects for agricultural and environmental applications. These notably include plant-
growth-promoting properties and excellent root colonization skills, as well as antimicrobial
compound production and the induction of the plant systemic immune response. Regard-
ing environmental functions, studies have begun to reveal highly promising properties
of P. simplex as a bioremediation agent, for example, of heavy metals, pesticides, or oil
removal and recovery. Future work will surely uncover further modes of action for this
versatile bacterium.

A revision of the European regulatory landscape highlights changes in the legal
frameworks to facilitate the use of microorganisms in sustainable plant protection products,
while imposing strict safety rules to protect humans, animals, and the environment.

Author Contributions: Conceptualization, J.M., N.B. and H.A.; writing—original draft preparation,
J.M., N.C.G., C.S.-R., N.B. and H.A.; writing—review and editing, J.M., N.C.G., C.S.-R., N.B. and
H.A.; supervision, J.M., N.B. and H.A.; funding acquisition, J.M. and H.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 research and innovation
program under Marie Skłodowska-Curie grant agreement No. 101029930.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge the research team at the University of Jaen (EI_BIO1_2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865.

[CrossRef]
2. European Commission. Communication from the Commission to the European, the Council, the European Economic and Social and the

Committee of the Regions—A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission:
Brussels, Belgium, 2020.

3. O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities.
Soil Use Manag. 2022, 38, 1340–1369. [CrossRef]

4. Mushtaq, Z.; Nazir, A.; Asghar, H.N.; Zahir, Z.A. Interactive Effect of Siderophore-Producing Bacteria and l-Tryptophan on
Physiology, Tuber Characteristics, Yield, and Iron Concentration of Potato. Potato Res. 2022, 65, 1015–1027. [CrossRef]

5. de Souza, R.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Bacteria as Inoculants in Agricultural Soils. Genet. Mol.
Biol. 2015, 38, 401–419. [CrossRef] [PubMed]

6. Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus Species in Soil as a Natural Resource for Plant Health
and Nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [CrossRef]

7. Glick, B.R. The Enhancement of Plant Growth by Free-Living Bacteria. Can. J. Microbiol. 1995, 41, 109–117. [CrossRef]
8. Manetsberger, J.; Caballero Gómez, N.; Benomar, N.; Christie, G.; Abriouel, H. Characterization of the Culturable Sporobiota

of Spanish Olive Groves and Its Tolerance toward Environmental Challenges. Microbiol. Spectr. 2023, 11, e04013-22. [CrossRef]
[PubMed]

9. Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust Demarcation of 17 Distinct Bacillus Species Clades, Proposed as Novel Bacillaceae
Genera, by Phylogenomics and Comparative Genomic Analyses: Description of Robertmurraya kyonggiensis Sp. Nov. and Proposal
for an Emended Genus Bacillus Limiting It Only to the Members of the Subtilis and Cereus Clades of Species. Int. J. Syst. Evol.
Microbiol. 2020, 70, 5753–5798. [CrossRef] [PubMed]

10. Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular
Changes in Adverse Environments. Front. Physiol. 2017, 8, 667. [CrossRef] [PubMed]

https://doi.org/10.3390/su7067833
https://doi.org/10.1111/sum.12811
https://doi.org/10.1007/s11540-022-09565-w
https://doi.org/10.1590/S1415-475738420150053
https://www.ncbi.nlm.nih.gov/pubmed/26537605
https://doi.org/10.1111/jam.14506
https://doi.org/10.1139/m95-015
https://doi.org/10.1128/spectrum.04013-22
https://www.ncbi.nlm.nih.gov/pubmed/36719235
https://doi.org/10.1099/ijsem.0.004475
https://www.ncbi.nlm.nih.gov/pubmed/33112222
https://doi.org/10.3389/fphys.2017.00667
https://www.ncbi.nlm.nih.gov/pubmed/28932199


Microorganisms 2023, 11, 2540 10 of 13

11. Setlow, P. Spores of Bacillus Subtilis: Their Resistance to and Killing by Radiation, Heat and Chemicals. J. Appl. Microbiol. 2006,
101, 514–525. [CrossRef] [PubMed]

12. Nicholson, W.L. Roles of Bacillus Endospores in the Environment. Cell. Mol. Life Sci. 2002, 59, 410–416. [CrossRef]
13. Driks, A. Bacillus Subtilis Spore Coat. Microbiol. Mol. Biol. Rev. 1999, 63, 1–20. [CrossRef] [PubMed]
14. Abriouel, H.; Franz, C.M.A.P.; Ben Omar, N.; Galvez, A. Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiol. Rev.

2011, 35, 201–232. [CrossRef] [PubMed]
15. Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by

Members of the Bacillus Subtilis Group. Front. Microbiol. 2019, 10, 302. [CrossRef]
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