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Abstract: The gut microbiota plays a pivotal role in upholding intestinal health, fostering intestinal
development, fortifying organisms against pathogen intrusion, regulating nutrient absorption, and
managing the body’s lipid metabolism. However, the influence of different cultivation modes on
the growth indices and intestinal microbes of Salmo trutta fario remains underexplored. In this
study, we employed high-throughput sequencing and bioinformatics techniques to scrutinize the
intestinal microbiota in three farming modes: traditional pond aquaculture (TPA), recirculating
aquaculture (RA), and flow-through aquaculture (FTA). We aimed to assess the impact of different
farming methods on the water environment and Salmo trutta fario’s growth performance. Our findings
revealed that the final weight and weight gain rate in the FTA model surpassed those in the other
two. Substantial disparities were observed in the composition, relative abundance, and diversity of
Salmo trutta fario gut microbiota under different aquaculture modes. Notably, the dominant genera of
Salmo trutta fario gut microbiota varied across farming modes: for instance, in the FTA model, the
most prevalent genera were SC-I-84 (7.34%), Subgroup_6 (9.93%), and UTCFX1 (6.71%), while, under
RA farming, they were Bacteroidetes_vadinHA17 (10.61%), MBNT15 (7.09%), and Anaeromyxoactor
(6.62%). In the TPA model, dominant genera in the gut microbiota included Anaeromyxobacter (8.72%),
Bacteroidetes_vadinHA17 (8.30%), and Geobacter (12.54%). From a comparative standpoint, the genus-
level composition of the gut microbiota in the RA and TPA models exhibited relative similarity.
The gut microbiota in the FTA model showcased the most intricate functional diversity, while TPA
farming displayed a more intricate interaction pattern with the gut microbiota. Transparency, pH,
dissolved oxygen, conductivity, total dissolved solids, and temperature emerged as pivotal factors
influencing Salmo trutta fario gut microbiota under diverse farming conditions. These research findings
offer valuable scientific insights for fostering healthy aquaculture practices and disease prevention
and control measures for Salmo trutta fario, holding substantial significance for the sustainable
development of the cold-water fish industry in the Qinghai–Tibet Plateau.

Keywords: aquaculture; growth properties; gut microbiota; water environmental factors; Qinghai–
Tibet Plateau

1. Introduction

Salmo trutta fario, a cold-water fish of the Salmoniformes Salmonidae family, also
known as brown trout, is an imported species [1] native to Europe, northern Asia, and West
Asia [2]. In China, it is only found in certain waters of Yadong County and Shigatse City, in
the Xizang Autonomous Region [3]. Possessing a certain commercial value, it represents
the most promising cold-water fish species in Xizang for industrialization [4], consequently
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facing overfishing. In 1992, it was classified as a second-tier key protected aquatic animal in
this region. In recent years, both domestic and international scholars have predominantly
focused on Salmo trutta fario in terms of the impact of organic matter and the role of physical
factors in its healthy breeding ([5–11] and [12–16], respectively), the influence of different
breeding methods [17,18], and its basic biology and disease prevention and control [19–22].

Fish gut microbiota plays a pivotal role in nutrient supply, metabolic balance, and
immune defense, displaying a richer diversity to cope with the ever-changing ecological
environment and food sources [23]. Fish harbor various gut microbiota types, including
protozoa, fungi, viruses, and bacteria, with the latter prevailing as the dominant one in
salmon intestines. Ongoing research, driven by technological advancements, continuously
enhances our understanding of their origins, compositions, and functions and, both do-
mestically and internationally, classifies them into two main categories: uncultured and
cultured. This includes studies employing DNA sequencing technology and bioinformatics
methods to scrutinize the characteristics of fish gut microbiota communities [24,25] and
delve into their multifaceted functions, encompassing nutritional roles [26], immune modu-
lation [27], and the interplay between them and aquatic environments [28,29]. Studies have
unveiled that fish inhabit complex and fluctuating ecological niches, where alterations in
habitat, temperature, feed, and intestinal structure can all prompt shifts in the diversity
of their gut microbiota [30]. It has also been observed that maintaining a dynamic gut
microbiota equilibrium profoundly influences the growth and development of fish and
that a stable gut microbiota aids in the efficient digestion and absorption of nutrients,
regulates the fish’s immune system, and preserves their overall health [31]. Nonetheless,
investigations into the impacts of diverse aquaculture practices on Salmo trutta fario’s gut
microbiota remain elusive.

This study represents the first comprehensive exploration into the impact of three dis-
tinct aquaculture methods—traditional pond aquaculture (TPA), recirculation aquaculture
(RA), and flow-through aquaculture (FTA)—on the growth parameters, water quality indi-
cators, and gut microbiota of Salmo trutta fario. By employing a biostatistical analysis, we
scrutinized the differences in the growth metrics and aquatic environmental factors among
Salmo trutta fario under varied cultivation modes. Utilizing high-throughput sequencing
coupled with advanced bioinformatics, we delved into gut microbiota species composition,
diversity, interspecies dynamics, and correlation with water environmental factors across
different Salmo trutta fario aquaculture modes. This study holds significant implications
for fostering Salmo trutta fario sustainable aquaculture and conservation, enhancing both
economic and ecological outcomes, and laying the groundwork for exploring novel, safe,
and effective approaches to aquatic disease prevention and control. It stands poised to
propel the sustainable progression of the high-altitude cold-water fish aquaculture industry.

2. Materials and Methods
2.1. Aquaculture Farming Setup

This study received approval from the Fisheries Science Research Institute, at the
Tibet Academy of Agricultural and Animal Husbandry Sciences. It was conducted in
the Yarlung Tsangpo River Fish Breeding Base (29.638593◦ N, 91.030090◦ E), where the
terrain slopes from east to west, characterized by a plateau temperate semi-arid monsoon
climate, with an annual sunshine duration exceeding 3000 h. The site’s altitude is 3650 m,
with an atmospheric pressure of 652.0 hPa. Fifteen healthy Salmo trutta fario of similar
weights (Table 1) were sourced from the institute and randomly assigned to three groups
(n = 5 each): traditional pond aquaculture (TPA), recirculation aquaculture (RA), and
flow-through aquaculture (FTA).
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Table 1. Salmo trutta fario phenotypic growth data under various aquaculture modes.

Aquaculture
Modes Density (kg/m3)

Initial Body
Weight (g)

Final Body
Weight (g) GR% WGR%

TPA 7.83 ± 0.06 a 100.35 ± 2.89 a 363.00 ± 4.56 b 85.46 ± 1.23 b 262.34 ± 7.45 b
RA 7.81 ± 0.02 a 103.04 ± 2.85 a 315.29 ± 3.26 c 97.08 ± 1.91 a 206.13 ± 5.59 c
FTA 7.85 ± 0.03 a 102.67 ± 3.08 a 423.72 ± 3.34 a 99.17 ± 0.72 a 314.10 ± 9.46 a

Note: Different letters indicate significance levels (ANOVA Duncan’s multiple comparisons, significance
level 0.05).

The recirculation aquaculture (RA) model employed rectangular 6 m × 2.5 m × 2.0 m
tanks, maintaining a water level of approximately 1 m, accommodating a total water
volume of 12 m3. Within these tanks, three cages (each measuring 1.8 m × 2.5 m × 2.0 m)
were installed, facilitating a water exchange rate ranging from 0 to 0.96 m3 per cycle, with a
flow velocity from 0 to 0.144 m3/h. The flow-through aquaculture (FTA) model utilized
cylindrical glass tanks (r = 0.6 m and h = 1 m), maintaining a water level of 0.8 m and
featuring a flow rate ranging from 0 to 4.5 m3/h. The traditional pond aquaculture (TPA)
model occupied an area of 5 m × 20 m. Groundwater drawn from the same source served as
the water for all three cultivation methods, being pumped into reservoirs for aeration and
sedimentation. In recurrent aquaculture (RA), water is directly pumped from the source,
whereas, in flow-through aquaculture (FTA), it flows into the cultivation tanks from higher
to lower elevations. Fish were fed twice daily, at 10:00 AM and 5:00 PM, with premium
feed pellets containing crude protein ≥ 42%, crude fat ≥ 22%, carbohydrates ≥ 19%, crude
fiber ≥ 2%, crude ash ≤ 6%, moisture content ≤ 8%, and total phosphorus ≥ 1%. The
pre-trial phase spanned 7 days, followed by a 180-day experimental period.

2.2. Measurement of Growth Parameters and Aquaculture Water Environmental Factors

At the outset of this experiment, we measured the initial body weight using a digital
precision balance accurate to 0.01 g, and after 180 days of cultivation, we assessed the final
one using the same method. Upon the conclusion of this experiment, we computed the
salmon survival rate (SR) and total weight gain rate (WGR).

GR (%) = final number of survivors/total number of deaths %

TWG (g) = initial body weight (g)/final body weight (g) %

To evaluate the post-experiment water environmental factors across the three models,
transparency (Secchi disc, Jingcheng, Wuhan, China), pH (DR portable water quality
detector, Hach, Loveland, CO, USA), dissolved oxygen (DR portable water quality detector,
Hach, Loveland, CO, USA), conductivity (conductivity meter, SMART SENSOR, Shanghai,
China), total dissolved solids (HI98302 pen type TDS tester, Hanna, Rome, Italy), and water
temperature (electronic thermometer, OMRON, Kyoto, Japan) were directly assessed three
times in the water under study, following the operational guidelines provided for each
measuring instrument, and the results were averaged.

2.3. Collection and DNA Extraction of Intestinal Samples

After anesthetizing Salmo trutta fario from different farming modes using MS-222
(130 mg/L), intestinal contents were dissected, collected from 1 cm behind the rectum, and
transferred into enzyme-free sterile EP tubes. These samples were promptly placed in dry
ice and transported to the laboratory for storage at −80 ◦C. Meanwhile, water samples were
collected using a vacuum pump (2 L) and filtered through a 0.22-micron mixed acetic acid-
digested cellulose filter membrane. The filtered water was then transferred into enzyme-free
sterile EP tubes and stored at −80 ◦C. We extracted total genomic DNA samples using
the OMEGA DNA Kit (M5635-02) (Omega Bio-Tek, Norcross, GA, USA), following the
manufacturer’s instructions, and stored them at −20 ◦C for further analysis. The quantity
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and quality of the DNA were assessed using a NanoDrop NC2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel electrophoresis, respectively.

2.4. Amplification and High-Throughput Sequencing of Intestinal Microbiota 16S rRNA

Sequencing was conducted by Personal Biotechnology Co. Ltd. (Shanghai, China).
PCR amplification targeted the V3–V4 region of the bacterial 16S rRNA gene, utilizing
forward primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and reverse primer 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). Sample-specific 7 bp barcodes were incorporated
into the primers for multiplex sequencing. The PCR reaction mixture comprised 5 µL
of 5× buffer, 0.25 µL of Fast Pfu DNA Polymerase (5 U/µL), 2 µL of dNTPs (2.5 mM),
1 µL of each forward (10 µM) and reverse primer (10 µM), 1 µL of DNA template, and
14.75 µL of ddH2O. The thermal cycling conditions were as follows: initial denaturation
at 98 ◦C for 5 min, followed by 25 cycles of denaturation at 98 ◦C for 30 s, annealing at
53 ◦C for 30 s, and extension at 72 ◦C for 45 s, with a final extension step at 72 ◦C for 5 min.
The PCR amplicons were purified using Vazyme VAHTSTM DNA Clean Beads (Vazyme,
Nanjing, China) and quantified with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). Subsequently, the amplicons were pooled in equal proportions and
subjected to paired-end 2250 bp sequencing on the Illumina NovaSeq platform using the
NovaSeq 6000 SP (Illumina, San Diego, CA, USA.) Reagent Kit (500 cycles).

2.5. Statistical Analysis

Statistical analyses were conducted in R-4.2.1 (https://cran.r-project.org/ (accessed
on 21 June 2022)). ASV stands for Amplicon Sequence Variant, and ASV data analysis was
performed using the dada2 package in R (https://benjjneb.github.io/dada2/ (accessed
on 3 April 2024)). The one-way ANOVA method was employed to analyze both the
growth parameters of fish and the physicochemical factors of water, utilizing the SPSS
21.0 software. The alpha diversity indices (including Observed, Shannon–Wiener diversity
index, Chao1 index, ACE, Simpson dominance index, and Fisher) were calculated using
the “vegan” package in R [32]. Principal coordinate analysis (PCoA) was performed based
on the Bray–Curtis distance using the “vegan” package in R. Before depicting the heatmap,
we standardized the abundance data of the microbial communities (using the scale the
package in R, https://blog.csdn.net/ByteNinja/article/details/132518709 (accessed on 3
April 2024)). The intestinal microbiota’s co-occurrence patterns were constructed based
on Spearman’s rank correlation coefficients. The co-occurrence network was visualized in
Gephi (version 0.9.2) [33]. We utilized the Linear Discriminant Analysis Effect Size (LEfSe)
to compare the key differential groups and functional predictions of Salmo trutta fario gut
bacteria across the three aquaculture farming modes (using the microeco package in R,
https://github.com/ChiLiubio/microeco (accessed on 3 April 2024)). Mantel tests were
used to determine correlations between environmental variables and selected characteristics
of the intestinal microbiota’s composition in the “linkET” package in R (linkET: Everything
is Linkable. R package version 3.0.3. https://github.com/Hy4m/linkET (accessed on 22
April 2024)). The FAPROTAX database is a collection of prokaryotes’ traits and functions
based on the known research results published in books and the literature.

3. Results
3.1. Varied Growth Performance Metrics among Salmo trutta fario Populations under Various
Aquaculture Modes

The growth phenotype data for the three Salmo trutta fario groups are presented in
Table 1. No significant differences were observed in the initial culture density or body
weight among the three groups (p > 0.05). However, the final body weight in the RA group
was significantly lower than that in the TPA group (p < 0.01), while the FTA group’s was
the highest of the three (p < 0.01). These results indicate that the specific growth rate (GR)
was significantly higher in the RA and FTA groups compared to the TPA group, with no
significant difference observed between the RA and FTA groups. Furthermore, significant

https://cran.r-project.org/
https://benjjneb.github.io/dada2/
https://blog.csdn.net/ByteNinja/article/details/132518709
https://github.com/ChiLiubio/microeco
https://github.com/Hy4m/linkET
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differences in the weight gain rate (WGR) were noted among the three groups: the RA
group exhibited a lower WGR compared to the TPA group (p < 0.01), whereas the FTA
group’s WGR was the highest of the three (p < 0.01).

3.2. Highly Variable Diversity in Salmo trutta fario Intestinal Microbiota Communities across
Various Aquaculture Modes

Using 16S sequencing at the ASV level, the FTA group exhibited the highest number of
ASVs, with 4716 identified, followed by the RA group, with 3677 ASVs, and the TPA group,
with 3619 ASVs. The sequencing coverage of all 15 samples exceeded 97%, indicating the
comprehensive detection of intestinal microorganisms in each Salmo trutta fario specimen.

Salmo trutta gut microbiota’s alpha diversity varied across different farming modes
(Figure 1A, Table S1): the observed ASV counts ranged from 668 to 1629; the Chao1 index
varied from 687.41 to 1955.55; the ACE index ranged from 688.66 to 1952.20; the fragrant
aroma diversity index varied from 6.03 to 6.99; Simpson’s index fluctuated between 0.994
and 0.999; and Fisher’s index value ranged from 183.17 to 676.41. Under the FTA mode, the
average alpha diversity indices were consistently higher compared to the other two models,
with TPA showing relatively higher indices than RA, even though the difference is not
statistically significant. The PCoA analysis based on the Bray–Curtis distance indicated that
PCoA1 and PCoA2 explained 24.6% and 20.9% of gut microbiota variation, respectively.
Significant differences in Salmo trutta fario gut microbiota were observed with changes in
the aquaculture mode (p < 0.05) (Figure 1B).
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3.3. Variations in Salmo trutta fario Intestinal Microbiota Community across Various
Aquaculture Modes

Variability in the composition and relative abundance of Salmo trutta fario gut micro-
biota was pronounced as the farming methods shifted (Figure 2): RA exhibited 3085 unique
ASVs and shared 158 ASVs with TPA, 267 ASVs with FTA, and 147 ASVs with both; TPA
featured 3049 unique ASVs and shared 265 ASVs with FTA; and FTA harbored 4037 unique
ASVs (Figure 2A).
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genus-level groups, based on gut microbiome species abundance data.

Additionally, we analyzed the phylum-level relative abundance of Salmo trutta fario gut
microbiota across the various farming modes (Figure 2B, Table S2): in FTA, the predominant
phyla were Proteobacteria (49.29%), Acidobacteria (13.88%), and Chloroflexi (10.59%); in
RA, they were Proteobacteria (39.01%), Chloroflexi (19.09%), and Acidobacteria (14.52%);
meanwhile, in TPA, the primary phyla were Proteobacteria (41.86%), Chloroflexi (23.12%),
and Acidobacteria (14.08%). At the genus level, we chose the top ten species based on their
relative abundance rankings (Figure 2C, Table S3): within FTA, the most abundant genera
were SC-I-84 (7.34%), Subgroup_6 (9.93%), and UTCFX1 (6.71%); under RA farming, they
were Bacteroidetes_vadinHA17 (10.61%), MBNT15 (7.09%), and Anaeromyxobacter (6.62%);
and, in TPA, they were Anaeromyxobacter (8.72%), Bacteroidetes_vadinHA17 (8.30%), and
Geobacter (12.54%).

At the genus level, a clustered heatmap was generated to depict the similarities and
differences in the composition of the top 20 species with the highest relative abundance of
gut microbiota in Salmo trutta fario across three farming modes, utilizing color variations
and similarity metrics (Figure 2D): RA and TPA cluster closely together, indicating a
relatively similar composition, subsequently clustering together with FTA, which showed a
comparatively distinct composition.



Microorganisms 2024, 12, 1082 7 of 14

3.4. Distribution and Functional Prediction of Core Microorganisms in Salmo trutta fario
Intestinal Tract across Various Aquaculture Modes

To further elucidate the core microbial community within Salmo trutta fario intestinal
microbiota across the various aquaculture modes, we employed an LEfSe analysis to
compare the abundance changes, setting p < 0.05 and an LDA value > 4 as the criteria for
significant differences.

g_Bacteroidetes vadinHA17 showed significant enrichment in Salmo trutta fario‘s
intestinal tract under RA farming, whereas g_Geobacter, g_Sva0485, g_RBG-13-54-9, and
g_Anaeromyxobacter were notably enriched under the TPA model and g_Rokubacteriales,
g_MND1, and g_Defluviicoccus under FTA farming (Figure 3A, Table S4).
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The functional gene prediction of Salmo trutta fario gut microbiota under the three
farming modes revealed that the predominant microbial functions in the gut remained
consistent, encompassing aerobic chemoheterotrophy, iron respiration, chemoheterotrophy,
nitrification, anaerobic chemoheterotrophy, fermentation, and aerobic ammonia oxidation.
Notably, functional diversity peaked under FTA farming (Figure 3B, Table S5).

3.5. Co-Occurrence Network Analysis of Salmo trutta fario Intestinal Microbiota Community
across Diverse Aquaculture Modes

We conducted a co-occurrence network analysis to delve into potential relationships
among the Salmo trutta fario gut microbiota communities across the three farming methods.
The modularization coefficients of all six co-occurrence networks surpassed 0.4, signifying
notable modularized structures. Distinct network metrics were noted across the three
farming methods, primarily varying in node and edge numbers, indicating dynamic
fluctuations (Figure 4A). In TPA farming, the co-occurrence network showed the highest
total number of edges and average degree (the average number of connections per node
in the network), suggesting that interactions within Salmo trutta fario’s gut microbiota
community are more intricate under this mode compared to the other two.
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Figure 4. Co-occurrence network analysis of Salmo trutta fario gut microbiota across three farming
modes: (A) co-occurrence networks of gut microbiota and (B) co-occurrence relationships within the
gut microbial communities.

To delve deeper into these co-occurrence relationships, we examined the interactions
among different taxa. Our analysis revealed distinct interaction patterns for each farming
mode, with the top four co-occurring taxa as follows: RA farming, Proteobacteria (29.71%)
> Chloroflexi (22.06%) > Actinobacteria (16.47%) > Acidobacteria (13.53%); TPA farming,
Proteobacteria (35.02%) > Chloroflexi (19.82%) > Acidobacteria (12.44%) > Bacteroidetes
(8.06%); and FTA farming, Proteobacteria (44.95%) > Acidobacteria (15.66%) > Chloroflexi
(10.35%) > Actinobacteria (6.82%) (Figure 4B). Nodes belonging to the Proteobacteria taxa
demonstrated a higher proportion of interactions with species from other taxa, indicating
that Proteobacteria played a significant role in shaping the network structure across all
three farming modes.
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3.6. Different Aquaculture Modes Impact Salmo trutta fario Gut Microbiota Community
Characteristics through Aquatic Environmental Factors

The mean values of aquaculture water environmental factors are compared across the
different farming modes in Table 2 (Table S6), with transparency, pH, dissolved oxygen,
conductivity, total dissolved solids, and temperature showing varying significant differ-
ences (p < 0.05): transparency, pH, and temperature are notably higher in FTA; dissolved
oxygen and conductivity are significantly higher in RA (p < 0.05); and the total dissolved
solids are significantly elevated in TPA (p < 0.05).

Table 2. Aquatic environmental factors across different farming modes.

Aquaculture
Modes

Transparency
(cm) pH Dissolved

Oxygen (mg/L)
Conductivity

(µS/cm)
Total Dissolved
Solids (mg/L)

Temperature
(◦C)

TPA 0.32 ± 0.02 c 7.60 ± 0.12 b 6.67 ± 0.19 b 306.80 ± 4.87 b 211.67 ± 6.69 a 9.30 ± 0.15 c
RA 0.15 ± 0.01 b 7.47 ± 0.09 b 7.77 ± 0.09 a 362.20 ± 5.63 a 195.33 ± 3.28 a 7.07 ± 0.15 b
FTA 0.48 ± 0.02 a 8.20 ± 0.06 a 7.40 ± 0.06 a 296.33 ± 3.71 b 174.67 ± 3.48 b 11.57 ± 0.41 a

Note: Different letters indicate significance levels (ANOVA Duncan’s multiple comparisons, significance
level 0.05).

To investigate the pivotal factors shaping Salmo trutta fario’s gut microbiota community,
we utilized Mantel’s analysis to assess the impact of various aquaculture water environ-
mental factors on the gut microbiota community (Figure 5). In RA farming, transparency,
dissolved oxygen, conductivity, and temperature emerged as key factors influencing Salmo
trutta fario gut microbiota and were positively correlated with its alpha diversity index. In
the TPA model, dissolved oxygen and total dissolved solids were the primary factors posi-
tively affecting Salmo trutta fario gut microbiota, while, within FTA, these were transparency,
pH, total dissolved solids, and temperature.
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Figure 5. Environmental drivers of Salmo trutta fario intestinal microbiota community across di-
verse aquaculture modes. This primarily highlights the correlation between environmental param-
eters and the diversity index of the gut microbial community in Salmo trutta fario under different
farming conditions.
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4. Discussion
4.1. Differences in Salmo trutta fario Gut Microbiota Characteristics and Distribution Patterns
across Various Aquaculture Modes

Fish harbor diverse and abundant microbial communities within their intestines that
contribute to the development and health of the intestines by establishing a complex and
stable dynamic balance with the intestinal tissue and contents. The intestinal microbiota
plays a crucial role in improving and maintaining fish intestinal environment, facilitating
nutrient digestion, boosting fish immunity, and sustaining overall body health [34]. Stud-
ies have identified Proteobacteria, Clostridia, Firmicutes, Bacteroidetes, Actinobacteria,
Clostridia, Bacilli, and Verrucomycota as the main phyla in fish gut [35,36]. Among these,
Firmicutes, Proteobacteria, and Bacteroidetes are consistently found across various fish in-
testines, constituting the core microbial communities that effectively modulate the diversity
and structure of fish gut microbiota.

In our investigation, similar findings were obtained. At the phylum level, Salmo
trutta fario gut microbiota under three different farming modes primarily consisted of
Proteobacteria, Acidobacteria, and Chloroflexi, aligning with previous results indicating
that the dominant gut microbe group in Nayak fish comprises bacteria [25] and with
Roeselers G, who identified similar core microbial communities in zebrafish (Daniorerio)
gut microbiota under diverse environmental conditions [37]. The findings of the current
study contrast with those of Li et al. on the predominant intestinal microorganism categories
in grass carp [38]. However, in our study, differences in species composition and relative
abundance were observed at the genus level among Salmo trutta fario gut microbiota core
communities under varied aquaculture modes, including differences in α and β diversity,
with the analysis chart indicating distinct dispersion of the three sample groups, signifying
significant differences in composition. The hierarchical clustering analysis yielded similar
results. These variations may stem from the intricate and ever-changing ecological settings
that fish inhabit, where alterations in habitat, temperature, feed, and intestinal structure
can influence the diversity in their gut microbiota [30].

Research findings indicate that increased bacterial interactions and the sharing of
niches contribute to the expansion and complexity of microbial networks, highlighting fun-
damental distinctions among various microbial samples [39]. Our study revealed divergent
co-occurrence networks in Salmo trutta fario gut microbiota under three distinct aquaculture
modes, suggesting that different farming practices may influence its stability. Notably,
FTA exhibited optimal connectivity, transferability, clustering probability, and compactness
among microbial community nodes, indicating superior stability compared to the other
models. Conversely, TPA demonstrated a higher total number of edges and average degree,
reflecting a more intricate network of interactions within the gut microbiota community.
Within a network module, a highly connected group is termed a module center point,
whose reduction in loss can disrupt both the module’s and network’s integrity, potentially
leading to an imbalance in the microbial community and impacting host health [40]. In
summary, aquaculture practices significantly influence Salmo trutta fario gut microbiota
species composition, community structure, diversity, and distribution patterns.

Nevertheless, this study might have been constrained by a small sample size or limited
sampling sources (n = 5), potentially restricting the generalizability and robustness of the
findings. Furthermore, ethical approval and adherence to regulatory standards are typically
obligatory for animal experiments, imposing additional costs and time constraints, thereby
limiting the scope of sample collection. Finally, considering the experimental novelty of
our study, we are committed to refining this research in future endeavors.

4.2. Differences in Salmo trutta fario Growth Indicators and Aquaculture Water Environment
across Various Aquaculture Modes

Across various aquaculture modes, fish are subject to a range of factors, such as water
quality and feed, that can lead to fluctuations in their growth performance and metrics. Our
investigation unveiled notable disparities in the final weight and survival and total weight
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gain rates of Salmo trutta fario under different aquaculture modes, with consistently superior
metrics being observed in the FTA group compared to the other two. Past studies have
underscored the efficacy of RA in mitigating significant challenges linked to cage farming,
encompassing eutrophication and the potential spread of invasive species, diseases, and
antibiotic resistance [41]. Additionally, research suggests that alterations in natural water
flow can influence a water body’s temperature and dissolved oxygen levels, thereby im-
pacting salmon development [42]. It is worth noting that the optimal growth temperature
for salmon typically hovers around 12 ◦C, with this ideal temperature decreasing as fish
size increases, ultimately influenced by the water’s oxygen content [43–45]. Our findings
revealed that both the FTA and RA groups exhibited elevated levels of dissolved oxygen
in the water compared to the TPA group, with FTA also demonstrating a higher water
temperature. These observations further elucidate the disparities in the Salmo trutta fario
growth phenotypes observed across different cultivation modes in our experiments.

4.3. Water Environmental Factors: Key Influences on Salmo trutta fario Gut Microbiota across
Various Aquaculture Modes

The water environment offers a rich and intricate habitat for fish gut microbiota, whose
diversity is intricately linked to factors such as microorganisms, salinity, water temperature,
dissolved oxygen, and water depth [28]. Fluctuations in these water environmental factors
prompt corresponding shifts in the gut microbiota, consequently impacting fish immune
and metabolic systems. Notably, significant alterations in the gut microbiota triggered
by changes in water environmental factors can serve as biomarkers for detecting shifts in
the aquatic environment. Studies have established a close relationship between a water
body’s salinity and temperature and fish gut and water microbiota [23,46,47]. Moderate
pH levels, salinity, and other physicochemical factors within the water environment foster
the growth of intestinal probiotics, exerting beneficial effects on fish [36]. Consistent with
prior research, our study revealed a positive correlation between the aquaculture water
environment and Salmo trutta fario gut microbiota across three distinct aquaculture modes;
transparency, pH, dissolved oxygen, conductivity, total dissolved solids, and temperature
emerged as the key influencing factors. It is noteworthy that different fish species exhibit
varying adaptability and tolerance to water environmental changes, consequently leading
to alterations in their gut microbial niche. While this study explored the influence of water
quality parameters on Salmo trutta fario intestinal microbiome, it is important to note that
other environmental variables whose comprehensive consideration was lacking in our
study, such as breeding density and feed composition, could also affect the outcomes. We
remain committed to refining this experiment in subsequent phases to address these factors.

5. Conclusions

This study represented the first application of ecological, bioinformatic, and high-
throughput sequencing methodologies to explore the impact of various cultivation modes
on Salmo trutta fario growth performance and intestinal microbiota. Our findings under-
scored the FTA model’s propensity for fostering weight gain in Salmo trutta fario. Note-
worthy differences were observed in the composition, relative abundance, community
structure, diversity, distribution pattern, core community functions, and interspecific rela-
tionships of Salmo trutta fario gut microbiota across the distinct aquaculture modes. The
correlation between the environmental factors in the three farming models and Salmo trutta
fario gut microbiota suggested the existence of a longstanding adaptive mechanism between
microbial communities and their ecological niche.
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