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Abstract: The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh en-
vironment of the Qinghai–Tibetan Plateau, while their gut microorganisms play a crucial role in
maintaining the health of the animal. Gut microbes spread through the animal population not only
by horizontal transmission but also vertically, which enhances microbial stability and inheritance
between generations of the population. Homogenization of gut microbes in different animal species
occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this
paper discusses the adaptive strategies under extreme environments, and how the gut microbes of
the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals
such as plateau pikas, but can also have a profound impact on the health of people. By examining
the relationships between yaks and their gut microbiota, this review offers new insights into the
adaptation of yaks and their ecological niche on the Qinghai–Tibetan plateau.

Keywords: yak; microbial interactions; Qinghai–Tibetan plateau

1. Introduction

Yaks (Poephagus grunniens) diverged from cattle between one and five million years
ago, and it has been suggested that yaks are more closely related to bison than to other
Bovidae [1]. As an ancient domestic animal of the Tibetan Plateau, the yak has inhabited this
land since ancient times, being domesticated by the Qiang people 10,000 years ago [2]. They
are crucial for the livelihoods of the inhabitants, providing meat, milk, dung and wool [3].
The severe habitat, namely extreme cold, a low oxygen content, strong ultraviolet light and
a short growing season, has shaped the yak’s adaptation to the harsh environment.

The gut microorganisms, also known as ‘the second genome’, are considered to be
the ‘second digestive organ’ of ruminants, due to the close association between them and
the host [4]. Gut microorganisms influence host adaptation, and help the host cope with
challenges such as food shortage, phenotypic plasticity, and adaptive immunity [5]. Yaks
are an essential component of the plateau ecosystem and interact with organisms, as well as
with the environment through microorganisms, which play a central role in the exchange
of matter and energy, and transfer information between ecosystems and even between
animals. The unique adaptive strategies evolved by yaks cannot be separated from their
gut microbes [6], in particular, the seasonal variation in their gut microbial composition
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with changes in forage availability [7]. Yaks have low nitrogen and carbon requirements
under microbial mediation [8], and the gut microorganisms influence the quality of yak
products [9]. Studies thus far have focused on a single aspect of yak–microbe interactions, while
a systematic review of yak microbes is still lacking. This paper aims to fill this important gap by
presenting a comprehensive review on the co-evolution of yaks and microbes, the microbial
mechanisms behind yak response to pasture scarcity, the impact of yak microorganisms on
livestock products, and the relationship between yak health and microbes.

2. Synergistic Evolution between Yaks and Microorganisms

Throughout their long history, yaks co-evolved with microorganisms, which enabled
them to adapt to the harsh environment. This co-evolution can be witnessed through
the current yak–microbe relationships, where gut microorganisms colonize the yak from
birth [10]. During the early stages of rumen development, yaks exhibit functional links and
synergistic effects between rumen epithelial cell genes and microbial genes [11]. Compared
to adult yaks, pathways related to transport and catabolism are up-regulated in the rumen
microbes of 5- to 180-day-old calves, which is beneficial to calf health and improves calf
survival [12]. Yak rumen microorganisms alter accordingly to cope with changing diets at
different growth stages, with greater relative abundances of Ascomycetes and Mesomycetes,
that is, fungi adapted to liquid rations during juvenile years [13,14]. The fungal structure
changes continually; at the grazing stage, after 90 days of age, there is an increase in
the relative abundance of Thelebolus, a genus that contributes to host immunity and by
180 days of age, there is an increase in the relative abundance of Penicillium, a genus with
a strong cellulose-degrading capacity [15]. In addition, yaks have adapted to the plateau
environment by preferentially harboring protozoa such as rumen ciliates that have evolved
to digest mainly fibers [16]. Yaks also alter rumen protozoa at 90 days of age as the dietary
fiber content increases, with an increase in the abundance of Dasytricha spp, and a decrease
in Entodinium [17], while Isotricha spp. has also been detected, enhancing the utilization of
carbohydrates [18].

The co-evolution of yaks with microbiota has resulted in specific rumen microbial
maturation strategies. Yak rumen archaea reach full maturity at approximately five years
of age, and other microbiota mature between 5 and 8 years of age, corresponding to the
peak growth period of yaks [18]. These insights into the co-evolutionary dynamics between
yaks and their rumen microbiota not only highlight the intricate adaptations that support
survival in extreme environments but also provide valuable perspectives for improving
livestock management and conservation strategies.

3. Microbial Mechanisms of Yaks Coping with Pasture Scarcity

Seasonal pasture availability on the Qinghai–Tibetan plateau fluctuates greatly. During
the long, cold winter, vegetation is sparse, with high fiber and low protein content, and
yaks generally lose substantial body weight [7]. The warm season is the peak period
for growth of pasture grasses, and yaks generally gain body weight. During the long
evolutionary process, yak rumen microorganisms have gradually developed an adaptive
mechanism by altering the composition according to the fluctuating pasture availability.
During the summer, when pasture is abundant, the ability of yak rumen microbes to obtain
energy from the diet increases substantially, which promotes compensatory growth in the
renourishment process [19]. Conversely, during the cold season, when forage is scarce,
yak rumen microbes enhance the ability to digest and utilize low-quality forage, thereby
mitigating the effects of poor, fibrous forage [20]. Consequently, yaks cope with seasonal
fluctuations in forage resources, at least in part, by their microbes.

3.1. Microbiological Mechanisms of Yaks with High Nutrient Digestibility
3.1.1. Mechanisms of Yak Rumen Bacteria to Improve Nutrient Digestibility

The feeding modes of yaks on the Tibetan Plateau include grazing, housed feeding,
and semi-housed feeding. However, regardless of the feeding mode, the dominant rumen
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bacterial flora of yaks do not change substantially, and at the phylum level, Firmicutes and
Bacteroidetes dominate. Most Firmicutes play an essential role in plant cell wall degrada-
tion and the activity of Firmicutes increases the production rate of monosaccharides and
VFAs, which aids in the absorption and utilization of nutrients [21–23]. The Christensenel-
laceae_R7_group, which enhances the degradation of cellulose, is the dominant genus of
Firmicutes [1,24]. Bacteroidetes enhance the utilization of carbohydrates by degrading
non-fiber complex polysaccharides chemosynthetically, maintain intestinal homeostasis,
and are involved in protein hydrolysis [25–27]. Both Firmicutes and Bacteroidetes are
closely related to the metabolism of fiber and non-fiber feed nutrients and enable yaks to
better digest forage [28,29]. The dominant bacteria in yaks at the family level and their
main functions are presented in Table 1.

Table 1. Dominant ruminal bacteria at the family level in yaks.

Family Main Functions

Ruminococcaceae Degrade fiber and proteins
Succinivibrionaceae Degrade starch and fiber

Lachnospiraceae Promote growth of fiber-degrading bacteria
Rikenellaceae Degrade fiber

Bacteroidaceae Degrade starch and fiber and improve fiber digestibility.

Prevotellaceae
One of the major glycolytic flora of the rumen, known for its protein

binding capacity and digestion of a wide range of
carbohydrate substrates

Christensenellaceae Quickly respond to changes in feed components and participate in
protein catabolism

3.1.2. Mechanisms by Which Yak Rumen Fungi Improve Nutrient Digestibility

Ruminal fungi in yaks can efficiently degrade lignocellulose [30], in particular, the
anaerobic fungi Orpinomyces, the dominant genus [31]. Bacteria and fungi in the yak rumen
can have synergistic effects, and the presence of some fungi facilitates the bacterial digestion
of cellulose [18]. For example, Penicillium is correlated positively with Firmicutes, which
degrades mainly cellulose [32]. Fungi can also form associations with bacteria attached to
food particles and extract energy from the bacteria [16]. Co-cultivation of methanogens with
anaerobic fungi leads to changes in the metabolic pathways of the fungi, with a better ability to
degrade lignocellulose and produce methane and acetic acid than anaerobic fungi alone [30].

3.1.3. Rumen Microbial Secretion of Enzymes to Improve Nutrient Digestibility

Enzymes encoded by the yak rumen microbiome, similar to how microbial genes in yaks
guide enzyme formation, play a crucial role in the digestion of feed [25]. Compared with cattle,
the rumen microbiota of yaks encode cellulase, hemicellulase and polysaccharide lyase (PL
family) with greater abundances, which contributes to cellulose degradation. However, the
rumen microbiome encode fewer glucoside hydrolase glycolytases (GH family) with starch
digestion ability and carbohydrate-binding modules (CBM family) with the ability to improve
the catalytic efficiency of carbohydrate enzymes [33,34]. As a result, the degradation of starch
in the rumen decelerates, allowing more starch to reach the small intestine, which uses starch
more efficiently than the rumen [35]. The rumen fungus Neocallimastix sp. YAK11, isolated from
feces, has high feruloyl esterase, acetyl esterase, and xylanase activities, which enable yaks to
utilize low-quality roughage to a greater extent [20].

3.2. Microbiological Strategies of Yaks to Cope with Seasonal Variation in Forage

Yak gut microbiota adapt to transitions between diets with nutritional differences in
about 16 days, which enables yaks to rapidly adapt to a wide range of forage sources and
seasonal pasture fluctuations on the Qinghai–Tibetan plateau. Although the structure of the
yak gut microbial community undergoes substantial changes during the transition process,
it stabilizes over time [36]. Therefore, although yaks experience large fluctuations in body
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condition, they can successfully adapt to the harsh environment of the Qinghai–Tibetan
plateau in the absence of supplemental feeding through alterations in the structure of their
gut microbial communities, as well as seasonal variations in gut shape.

3.2.1. Seasonal Gut Patterns in Yaks

The proportion of ruminal Proteobacteria in yaks does not change throughout their entire
growth stage, while members of the Proteobacteria class exhibit metabolic flexibility. There-
fore, they can adapt to changes in substrates and energy sources by altering their gene pool,
allowing yaks to adapt to dietary changes [37]. To adapt to the seasonal pasture fluctuations,
yaks have evolved seasonal gut dynamics: gut enterotype 1, mainly during the cold season, is
dominated by Akkermansia, which contributes to efficient nitrogen utilization, and by uncul-
tured eubacterium WCHB1-41; gut enterotype 2, mainly in the warm season, is dominated by
Ruminococcaceae_UCG-005, which is very efficient with low-protein, low-fiber diets [7].

3.2.2. Dominant Flora Established by Yaks in Response to the Harsh Environment

Yaks maintain a stable microbial ecosystem in their rumen to adapt to dietary shifts
across different grazing seasons, with microbial populations varying in response to these
changes [38]. For instance, there is a greater prevalence of Verrucomicrobia in the cold
than the warm season in yak rumen. Verrucomicrobia secretes glycosidic hydrolases that
play a key role in the degradation of carbohydrates [39]. The predominant species within
this phylum, Akkermansia muciniphila, enlarges the surface area for intestinal absorption,
aids in regulating the intestinal barrier, and modulates the microbial community, thereby
improving energy utilization [40]. Consequently, the increased presence of Verrucomicrobia
during the winter aids yaks in managing energy more effectively under cold conditions.
Furthermore, the proportion of certain methanogenic bacteria, such as those from Eur-
yarchaeota and Methanobrevibacter, declines in cold seasons [41], which helps minimize
energy losses during severe winter conditions [42].

Yak rumen microbes are influenced by dietary factors. For example, the greater
organic matter content in a high-fiber diet enhances the growth of fibrolytic bacteria, and a
high-energy diet rich in starch and fat increases the abundance of Prevotellaceae [43,44].
Moreover, the greater abundance of Clostridial, Ruminococcaceae and Prevotella in the
intestinal tract of yaks than cattle resulted in greater concentrations of short-chain fatty
acids (SCFAs) in the rumen of yaks than in cattle [45]. The SCFAs provide close to 70% of
the energy requirements of ruminants [46]. The microbial mechanisms by which yaks cope
with pasture scarcity are summarized in Figure 1.

Figure 1. Yaks adapt to seasonal fluctuations in forage resources by altering the seasonal gut microbial
compositions between the warm and cold seasons, thus enabling yaks to overcome scarce forage resources.
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4. Microbiological Mechanisms of Yak Health Maintenance

Yaks live in the harsh environment of the Qinghai–Tibetan plateau, where many
factors, such as stress and sudden weather changes, can threaten their health. Yaks have
evolved a microbial strategy, with the help of some probiotic bacteria, to maintain their
health on the plateau.

4.1. Interaction between Yak Health and Yak Microbes
4.1.1. Impact of Yak Gut Microbes on Yak Health

Yak gut microbes influence yak health [47], and the effects can be divided into three
types: metabolism-dependent, immune, and neural activation pathways [48]. In metaboli-
cally dependent pathways, microbial communities affect intestinal epithelial cells through
metabolites and regulate intestinal signaling pathways, such as butyrate produced by Vibrio
butyrate, which alleviates symptoms of diabetes [49]. Short-chain fatty acids produced by
Ruminococcus enhance host immunity and inhibit colonization by pathogenic bacteria
by regulating intestinal pH [48,50,51]. In the immune pathway, to mitigate the effects of
low temperature on yak gut health, cold stimulation increases the abundance of some
Akkermansia spp., such as Akkermansia muciniphila, which are involved in maintaining the
integrity of the host gut barrier. They also induce the differentiation of intestinal regulatory
T cells, including T follicular helper cells, which play a crucial role in maintaining intestinal
homeostasis by regulating immune responses and by mediating the balance of microorgan-
isms in the gut [52–54]. In the neural activation pathway, probiotics stimulate the central
nervous system through the enteric nervous system and vagus nerve; however, there are
few studies on the neural activation pathway, and further studies are needed to clarify the
mechanisms involved [55,56].

4.1.2. Impact of Yak Health on Gut Microbiota

Yak health affects gut microbes. For example, diarrhea causes the dysregulation of gut
microbes, resulting in the alterations in the relative abundances of some bacteria and fungi
in the gut. This effect can be amplified by microbial networks, affecting more fungi and
bacteria, thus increasing the adverse effects of diarrhea on yak gut health [57]. Gut microbes
are also affected when yaks are under stress. For example, when yaks are stressed during
transport, there is a reduction in the abundance of ruminal Prevotella, which affects the
breakdown of carbohydrates and proteins [58]. With the stress at weaning in yak calves, the
relative abundances of bacteria such as Firmicutes, Bacteroidetes, and 5-7N15 change in the
feces [59]. In addition, environmental factors influence disease resistance in yaks. Wild yaks
that live in environments with greater microbial diversity are more resistant to diseases
such as diarrhea than domestic yaks [60]. The study of microbial associations with yak
health may provide a reference for reducing the impact of the harsh highland environment.

4.2. Gut Probiotics in Yaks

Bacillus subtilis and Lactobacilli in the yak rumen inhibit the proliferation of pathogenic
bacteria and improve the gut environment [61]. Bacillus subtilis is enriched in the ABC
transporter protein-related gene pathway that reduces damage from toxic substrates [62]
and protects the host [63]. Three strains of Bacillus subtilis (BS1, BS2, and BS3) and one
of Bacillus velezensis (BV1) were isolated from the intestine of yaks. These four strains
have growth-enhancing properties, can promote a healthy balance of intestinal flora, and
can inhibit the growth of pathogenic bacteria [64]. Bacillus pumilus DX24 strain isolated
from yak feces has growth-promoting properties and enhances antioxidant capacity by
increasing superoxide dismutase (SOD) concentration in blood, and immune responses by
increasing lysozyme (LZM) and alkaline phosphatase (AKP) activities [65].

Lactic acid bacteria can improve intestinal microbial structure and reduce the pro-
portion of harmful bacteria in yaks [66]. For example, lactic acid bacteria can reduce the
abundance of pathogenic bacteria Paenibacillus, Aerococcus, and Comamonas to reduce
diarrhea caused by E. coli [67]. Lactobacillus johnsonii (LY1), which has a strong antibacterial
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effect against E. coli and S. enteritidis, and Leuconostoc pseudomesenteroides (P1), which has
a strong antibacterial effect against S. aureus, were isolated from yak feces. The presence
of LY1 and P1 can reduce the occurrence of diarrhea associated with bacterial diseases in
yaks [68]. Five LAB strains Leuconostoc mesenteroides, Lactobacillus plantarum, Enterococcus
hirae, Lacticaseibacillus camelliae, and Lactobacillus mucosae, isolated from yak vagina, dis-
played growth resistance, aggregation capacity, and potent antimicrobial activity against
E. coli, S. aureus and S. enteritidis [69]. Therefore, lactic acid bacteria are important for the
health of yaks, especially, to reduce diarrhea [66].

5. Relationship between Microorganisms and Quality of Yak Products

Like all ruminants, the yak rumen is a fermentation organ that converts substances
that humans cannot, such as plant fibers, into valuable animal products such as meat, milk,
and wool through microorganisms in the rumen. Yak milk is characterized by a high fat
content, while yak meat is high in protein, low in fat, and has a unique flavor, which is
closely linked to the specific microbial community in the yak rumen [70].

5.1. Microbiological Mechanisms of High Milk Fat Content in Yak Milk

Milk yield and milk composition in yaks are highly correlated with the abundance of
different bacteria in the rumen. Clostridium spp. and Ruminalococcus spp. play essential
roles in the fermentation of cellulose- and starch-rich diets, and in the production of
acetic and butyric acids, which are precursors for the synthesis of milk lipids [71,72]. The
microbial diversity of yaks is richer than in cattle, and the enrichment of their rumen
bacterial genes in the bacterial chemotaxis pathway suggests that yak microorganisms,
aided by flagella, move to and gather in areas with high nutrient concentration, which
is conducive to improving the conversion of nutrients [73]. In addition, high bacterial
diversity enhances milk fat synthesis [74,75]. Yaks from different geographical regions have
specific gut microbial communities, which influence energy acquisition and, thus, milk
composition through their enzymatic activities [76].

5.2. Microbiological Mechanisms of High Meat Quality in Yaks

The rumen microbial communities play a crucial role in energy storage and fat de-
position in animals; in particular, Firmicutes and Bacteroidetes affect intramuscular fat
deposition, which is strongly correlated with muscle fatty acid composition. The ratio of
Firmicutes and Bacteroidetes in the rumen of yaks is different from that of cattle, which
results in a low fat content of in yak meat [77–79]. Some bacteria in the rumen of yaks,
such as the phylum Tenericutes, affect the content of muscle fat in longus muscle. The
abundance of Tenericutes gradually increases with an increase in age, and Tenericutes
is correlated negatively with fat content in longus muscle [80,81], which can explain, at
least in part, the low fat content of yak meat. The relationship between microbiota and
yak meat quality is not well established, and more research is needed to determine how
microorganisms affect the taste and quality of yak meat.

6. The Role of Microorganisms in Yak-Environment Interactions

The Qinghai-Tibetan plateau is a fragile ecosystem and yaks are important in maintain-
ing the ecological balance. The yak rumen is a conversion station for minerals and nutrients
from soil, pasture, and feces, and a site for microbial exchange. The microorganisms in
the rumen affect the soil and pasture through feces, and the environment by participating
in metabolic processes, such as methane emission. The yak’s microorganisms can spread
horizontally throughout the plateau ecosystem and affect other animals.

6.1. Microbiological Mechanisms of Low Methane Emissions in Yaks

Yaks emit less methane than cattle due to their microbial metabolic strategies. Yaks
follow the ‘low carbon strategy’ to improve energy efficiency and the microbial strategy to
compete for hydrogen with the methane emission pathway.
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6.1.1. Low Carbon Strategies

The “low carbon strategy” refers to yaks producing more volatile fatty acids, and
emitting less methane than other ruminants [6]. Genome sequencing results revealed
that 36 genes related to volatile fatty acid transport and uptake were up-regulated in the
rumen epithelium of high-altitude ruminants compared to low-altitude ruminants. The
rumen microbiota of yaks were enriched in volatile fatty acid-producing enzymes along the
prokaryotic carbon sequestration pathway, which promoted efficient synthesis of volatile
fatty acids [45]. Prevotella is involved in protein and hemicellulose degradation and the
production of volatile fatty acids [82]. When yaks consume roughage, the abundances
of some cellulose-degrading bacteria, such as Coccidioides tumefaciens, increase in the yak
rumen, which secrete enzymes to break down fiber into acetic acid, thereby increasing
the production of volatile fatty acids [83]. The high volatile fatty acid production reduces
methane production by competing with the methanogenic pathway for hydrogen [45].

6.1.2. Microbial Strategies Competing with Methane Emission Pathways for Hydrogen

The difference in methane emission between yaks and cattle is due mainly to their dif-
ferent enrichment relationships between hydrogen-producing microorganisms, hydrogen-
consuming microorganisms and methanogenic hydrogen-nutrient microorganisms [84].
Selenomonas, enriched in the rumen with low methane emission, is involved mainly in
the furanate and nitrate reduction metabolic pathways, which are hydrogen-consuming,
and, therefore, can effectively compete with methanogenic bacteria for H2 [85]. Methane-
producing hydrogenotrophic microorganisms such as Quinella spp. are more abundant in
the rumen of yaks than in cattle [79]. The primary fermentation products of Quinella spp.
are lactic and propionic acids, which produce little to no hydrogen during fermentation,
and a reduction in rumen hydrogen results in less methane emission [86].

In ruminants with high methane emissions, protozoan enrichment in hydrogenase
metabolic pathways were detected, which increases rumen hydrogen production, while no
similar phenomenon was detected in ruminants with low methane emissions [87,88], thus,
it can be speculated that the abundance of hydrogen-producing protozoa in the yak rumen
is low. In fermentation studies on rumen fluid from yak and cattle, hydrogen utilization
was greater in cattle than yak, and a high utilization of hydrogen leads to an increase in
methane production [89]. In addition, the diversity of methanogenic bacteria (methanogens)
is greater in yaks than in cattle, and the greater the diversity of methanogens, the lower
the methane production [3]. For example, in an in vitro gas production assay, rumen fluid
with a high diversity of sequences related to thermoplasmatales-affiliated linage C (TALC)
methanogens produced less methane [90]. These characteristics explain why yaks have
relatively low methane emissions and energy needs (Figure 2).

6.2. Interactions between Yak Gut Microbes and Soil Microbes

Soil has a vast reservoir of microbial diversity, and is considered the most geneti-
cally diverse ecosystem on Earth [91]. Microbes in soil influence microbes in yak rumen
and vice versa; however, based on SourceTracker modeling, yak gut microbes have a
greater influence on soil and grass microbes than soil and grass microbes have on yak gut
microbes [91].

6.2.1. Effects of Yak Gut Microbes on Soil

The diversity and abundance of soil bacteria and fungi on the Qinghai-Tibetan plateau
are reduced by yak grazing and yak feces [92]. The abundance of beneficial microorganisms
in fecal-contaminated soil declines, leading to adverse effects on soil nutrient cycling, soil
pollution remediation, and rhizosphere stability, and a decline in soil health [93]. Con-
comitantly, the abundance of pathogens in grazed soils increases, lessening soil function
and system resilience [92]. Compared to grazed soil, non-grazed soil has greater abun-
dances of Acidobacteria and Latescibacteria, which play beneficial roles in soil restoration,
plant growth, and nutrient cycling [94]. Yak grazing reduces soil lignin content and the



Microorganisms 2024, 12, 1122 8 of 14

abundance of trophic bacterial phyla responsible for decomposing lignin and maintaining
ecosystem material cycling [95]. However, rational grazing can have a positive effect on
grassland ecosystems, as the dung increases unstable carbon in the soil, which enables
Ascomycetes to absorb organic matter and develop faster [96]. Ascomycetes are correlated
positively with the diversity of grassland vegetation, so it is reasoned that rational grazing
increases the diversity of pasture grasses [97].

Figure 2. Yaks cope with the harsh environment of the Tibetan Plateau by improving energy efficiency
through two strategies: efficient synthesis of volatile fatty acids and utilization of hydrogen by rumen
microbes and reduction of rumen hydrogen production and methane emission.

6.2.2. Effects of Soil Micro-Organisms on Yaks

The composition and abundance of soil micro-organisms can affect yaks. For example,
an increased abundance of pathogens in the soil as a result of grazing can affect yak health.
High abundance of Desulfovibrio can cause intestinal diseases [98], while genera such as
Romboutsia, Butyricimonas, and Parabacteroides are increasing in abundance and pose a threat
to host health [99,100]. The catabolism of soil microbial communities plays an essential
role in trace elements and energy flow between plants. Soil microbes influence plants
consumed by yaks and influence yaks, which, in turn, alter the composition of yak fecal
microbes that influence soil microbes. In all fecal-contaminated soils, Ascomycetes is the
dominant phylum, with γ-Ascomycetes containing a variety of pathogenic bacteria such as
Salmonella, Yersinia, Vibrio, and Escherichia [101] that cause diarrhea [102].

6.3. Effects of Yak Microbes on People and Plateau Pika
6.3.1. Effects of Yak Microbes on People Inhabiting the Qinghai-Tibetan Plateau

The yak is the major milk producer on the Qinghai-Tibetan plateau [103], and the
milk and milk products are the primary foods consumed by the people [104], providing
most of their vitamin and nutritional requirements [2]. As a result, the diet of highland
people historically lacked fruits and vegetables, but the people did not suffer from vitamin
and mineral deficiencies [105]. Lactobacillus delbrueckii subspecies bulgaricus F17 isolated
from yak milk has a high free radical scavenging capacity and its consumption decelerates
human oxidative stress [106]. The Lactobacillus rhamnosus CY12 strain from yak milk has
a high survival rate in bile salts, acidic conditions, and gastrointestinal juices, and high
antimicrobial activity and adhesion potential [107]. Yak yogurt is rich in microbial commu-
nities, particularly in beneficial lactic acid bacteria such as Lactobacillus plantarum Lp3 [108],
which reduces the rate of cholesterol degradation [109,110]. Lactic acid bacteria with high
antioxidant capacity in naturally fermented dairy products maintain their reductive sta-
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bility by regulating the host’s antioxidant system, thus, reducing oxidative damage in the
people residing on the plateau [111]. Yak yogurt has a lower lactose content than cow
yogurt, which is beneficial for people with lactose intolerance [110].

6.3.2. Effects of Yak Microbes on Plateau Pika

In the shared habitat of the Qinghai-Tibetan plateau, fecal microbes are crucial in the
development of mechanisms that allow different species to coexist. For example, a small
mammal known as the plateau pika (Ochotona curzoniae) is common on the Qinghai-Tibetan
Plateau, feeding primarily on herbaceous plants [112]. Plateau pikas coexist with yaks, and
consume yak dung in winter to compensate for food shortages [113], while yaks also graze
near ground level. The vegetation in their shared habitat undergoes structural changes in
response to animal activities, providing a more diverse food source for yaks and plateau
pikas [114]. Multiple factors create mechanisms for microbes to establish mutually benefi-
cial coexistence between yaks and plateau pikas [115]. For plateau pikas, yak transmission
of Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria enhance pika enrichment
in prebiotic and immune-related pathways, and for yaks, horizontal transmission of bac-
teria by plateau pikas enhances pathways associated with hepatoprotection, exogenous
biodegradation, and detoxification [115].

7. Conclusions

Yaks have co-evolved with microbes to withstand the extreme pressures of the harsh
Qinghai-Tibetan plateau environment. These microbes are closely linked to the yak’s
digestion, metabolism, and immune responses. Knowledge on the characteristics and
functions of yak gut microbes is not complete. Future research should establish a yak
microbiome network to examine the horizontal transmission pathways of microbes. In
addition, by leveraging metagenomic sequencing technologies, mechanisms by which yaks
adapt to extreme environments could be better understood. This could provide guidance
in yak husbandry and understanding the adaptability of ruminants in extreme conditions.
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