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Abstract: Bacteria in the phylum Gemmatimonadota are globally distributed and abundant in
microbial communities of various environments, playing an important role in driving biogeochemical
cycling on Earth. Although high diversities in taxonomic composition and metabolic capabilities have
been reported, little is known about the environmental preferences and associated functional features
that facilitate adaptation among different Gemmatimonadota lineages. This study systematically
analyzed the relationships between the environments, taxonomy, and functions of Gemmatimonadota
lineages, by using a comparative genomics approach based on 1356 Gemmatimonadota genomes
(213 high-quality and non-redundant genomes) available in a public database (NCBI). The taxonomic
analysis showed that the 99.5% of the genomes belong to the class Gemmatimonadetes, and the rest
of the genomes belong to the class Glassbacteria. Functional profiling revealed clear environmental
preference among different lineages of Gemmatimonadota, and a marine group and two non-marine
groups were identified and tested to be significantly different in functional composition. Further
annotation and statistical comparison revealed a large number of functional genes (e.g., amiE, coxS,
yfbK) that were significantly enriched in genomes from the marine group, supporting enhanced
capabilities in energy acquisition, genetic information regulation (e.g., DNA repair), electrolyte
homeostasis, and growth rate control. These genomic features are important for their survival in the
marine environment, which is oligotrophic, variable, and with high salinity. The findings enhanced
our understanding of the metabolic processes and environmental adaptation of Gemmatimonadota,
and further advanced the understanding of the interactions of microorganisms and their habitats.

Keywords: Gemmatimonadota; functional profile; marine environment; genomic features

1. Introduction

Bacteria in the phylum Gemmatimonadota are globally distributed and abundant
in microbial communities across various environments [1,2], playing a significant role in
driving biogeochemical cycling of biogenic elements such as carbon, nitrogen, and sulfur
on Earth [1,2]. Environmental 16S rRNA gene sequence surveys indicate that they inhabit a
wide range of ecosystems, including soil, polar regions, permafrost, rhizosphere, activated
sludge, deep-sea sediments, freshwater lakes, brackish estuaries, natural gas hydrates,
and marine sponge symbionts [3–7]. Gemmatimonadota rank among the eight most abun-
dant phyla in soil, comprising 6.5% of the total 16S rRNA gene sequences in soils [7,8].
Additionally, Gemmatimonadota are prevalent in wastewater treatment, biofilms, and
plant-associated environments [9]. Remarkably, Gemmatimonadota dominate the deep-
est oceanic trenches, such as the Mariana Trench and the Mussau Trench, where their
average relative abundances in rRNA and rDNA libraries are 13.30 and 9.93%, respec-
tively, indicating high potential activity among prokaryotic groups [10]. These studies
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underscore the extensive physiological diversity and significant ecological importance of
Gemmatimonadota, highlighting their presence in a wide range of natural environments.

Gemmatimonadota are not only widely distributed but also exhibit highly diverse
metabolic capabilities, contributing substantially to biogeochemical cycling [11]. Cultured
strains of Gemmatimonadota have been shown to oxidize methane (CH4) and reduce
nitrous oxide (N2O), thus playing a critical role in regulating greenhouse gas levels [12–14].
Furthermore, the abundance of Gemmatimonadota correlated positively with certain soil
nutrients, indicating their key role in soil ecosystems [15]. In high-concentration urea
wastewater treatment, Gemmatimonadota became the most abundant phylum associated
with potential intracellular urea hydrolysis, utilizing urea as both an energy source and
a crucial substrate [16]. Cultured Gemmatimonadota also showed antibiotic resistance
that was enabling their growth in the presence of ampicillin or penicillin, as well as
bacitracin and chloramphenicol [17–19]. Gemmatimonadota were also among the few
phyla capable of anoxygenic photosynthesis, harnessing photosynthesis for additional
energy acquisition [11,20]. Systematic analyses of existing Gemmatimonadota genomes (all
belonging to the class Gemmatimonadetes) indicated that these bacteria primarily engaged
in heterotrophic metabolism, capable of degrading various complex organic substrates [2],
thus playing vital roles in marine carbon cycling and other biogeochemical processes [10].

In line with their wide distribution and diverse metabolic capabilities, Gemmatimon-
adota also exhibit high species diversity. According to the SILVA classification (Version
1.1.11/138.1 SSU Ref NR) [21], the phylum Gemmatimonadota comprises seven classes.
However, only the classes Gemmatimonadetes and Longimicrobia have species that have
been cultivated in laboratory settings [9], and the majority of 16S rRNA gene sequences
are derived from uncultured species [22]. Gemmatimonadota from different habitats may
exhibit significant differences in morphology, function, and lifestyle. For example, Gem-
matimonadota in the lower layers of freshwater lakes are small, free-living cells, whereas
those in the epilimnion are larger and associate with diatoms and cyanobacteria [3]. These
adaptive traits may be reflected in their genomes. Indeed, pangenomic studies based on
existing genomes reveal that Gemmatimonadota genomes possess high expansibility, likely
due to their adaptation to diverse environments [2]. An extensive multi-environment
analysis of publicly available Gemmatimonadota genomes up to May 2021 further demon-
strated environment-specific features in gene composition (presence/absence) and general
genomic characteristics, such as genome size and the number of coding sequences [11].
However, with the great increase in Gemmatimonadota genomes in public databases (e.g.,
NCBI), the environmental preference of these lineages needs to be revisited. In addition,
the key genes and functions that facilitate their adaptation to different environments are
still not clear.

In this study, we systematically analyzed existing Gemmatimonadota genomes and
their environmental sources from public databases, elucidating the environmental pref-
erences in the phylogeny and genome functional profiles of Gemmatimonadota. The
bacteria of the class Gemmatimonadetes occupy the majority of known Gemmatimonadota
genomes, exhibiting significant differences in functions and species composition between
marine and non-marine groups. Functional metabolic differences further revealed the
adaptive mechanisms of Gemmatimonadota to marine and non-marine environments.
These findings provide a foundation for further understanding the ecological functions
of Gemmatimonadota and the internal mechanisms of bacterial adaptation to different
environmental conditions.

2. Materials and Methods
2.1. Data Acquisition

The genomes of Gemmatimonadota were downloaded from the NCBI database (14
August 2023). Briefly, all of the Gemmatimonadota genomes publicly available were
searched on the website (https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes,
accessed on 14 August 2023) using the term “Gemmatimonadota”, and the assembly
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options “Chromosome”, “Complete Genome”, “Scaffold”, and “Contig” were selected.
The genomes were then downloaded using BioSAK (v1.73.5, --dwnld_GenBank_genome),
which generated a dataset containing 1356 genomes.

2.2. Genome Dereplication and Taxonomic and Phylogenomic Analysis

The downloaded Gemmatimonadota genomes were dereplicated using dRep [23]
(v2021.4.99, -pa 0.9-sa 0.95-comp 90-con 5). Taxonomic identification of the dereplicated
Gemmatimonadota genomes was performed using GTDB-Tk [24] (v2.1.1, GTDB Release-
R207), and genomes not belonging to the phylum Gemmatimonadota were removed.
Completeness and contamination were assessed using CheckM [25] (v1.1.2), and only the
genomes > 95% completeness and <5% contamination were retained. After the above
processes, 213 high-quality and taxonomically confirmed Gemmatimonadota genomes
were selected for downstream analysis, and the information on the environmental source
of each Gemmatimonadota genome was retrieved from the NCBI database. A maximum
likelihood phylogenomic tree was constructed using TreeSAK [26] (v1.28.0, -GTDB_tree)
and tree visualization was performed using R.

2.3. Functional Annotation and Metabolic Reconstruction

Open reading frames (ORFs) within the non-redundant genomes were predicted using
Prodigal [27] (v2.6.3) with default parameters. All ORFs were annotated using the KEGG
(Kyoto Encyclopedia of Genes and Genomes) database [28] with GhostKOALA [29]. The
generated gene profiles (gene list and their copy numbers) of the genomes were utilized for
downstream comparison.

2.4. Comparison on Functional Profiles

The gene profiles (gene list and their copy numbers) from KEGG annotation were
utilized for comparison of functional compositions between different genomes. Briefly,
standardized gene profiles (gene copy number normalized by total copy number of the
profile) were pair-wise-compared and a Bray–Curtis similarity matrix was generated using
PRIMER 6 [30] (v6.1.10; PRIMER-E, Ivybridge, UK). Hierarchical clustering analysis and
nonparametric multidimensional scaling (nMDS) were conducted using PRIMER 6 to
show the differences between genomes from different taxonomies or different environment
sources. One-way analysis of similarity (ANOSIM) was performed to test the differences
between clusters or groups.

2.5. Identification of Functional Genes Related to Adaptation to Different Environments

The gene profiles of different groups were further compared and visualized with the
Statistical Analysis of Meta-genomic Profiles (STAMP) v2.1.3 software package [31], and the
genes with significant differences (p-value < 0.05, effect size > 0.1) between the compared
groups were further identified using Welch’s t-test.

3. Results and Discussion
3.1. Biogeography and Taxonomy Analysis of Gemmatimonadota

A total of 1356 genomes of Gemmatimonadota available in the NCBI database were
downloaded. After quality control (check M), dereplication (dRep [23], 95% ANI), and
taxonomic confirmation (GTDB-TK [24]), 213 high-quality and non-redundant Gemma-
timonadota genomes were retained (Table S1). These genomes were all with ≥95% com-
pleteness and ≤5% contamination (Table S1), and were retrieved from various habitats
worldwide, including freshwater/terrestrial sediments (25.8%), marine animals (18.7%),
soil (18.3%), activated sludge/sewage (11.7%), seawater/marine sediments (8.9%), alkaline
salt/hypersaline lake (7.9%), cold seeps/hydrothermal vents (1.4%) and other environ-
ments (4.2%, including biofilm, fossil, wood decay, bark surface of an Acer pictum subsp,
rock and aquaculture biofloc) (Figure S1). Genome sizes range from 1.82 to 7.48 Mb, with a
median of 3.71 Mb, and their GC content ranges from 57.90% to 69.10%, with a median of
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64.90% (Table S1). The variations in genome sizes and GC contents indicate high diversity
within the phylum Gemmatimonadota.

Based on phylogenomic analysis and GTDB taxonomies, the 213 representative Gem-
matimonadota genomes were classified into four orders, namely Gemmatimonadales
(118 genomes), Palauibacterales (18 genomes), Longimicrobiales (76 genomes), and GWA2–
58–10 (1 genome) (Figure 1; Table S1). These orders belong to two classes, i.e., Gemma-
timonadetes (212 genomes, 99.5% of the total genomes) and Glassbacteria (1 genome)
(Figure 1; Table S1). The results were consistent with previous studies, which showed
that the majority of the currently available Gemmatimonadota genomes belong to the
class Gemmatimonadetes [2,11]. In contrast to earlier studies, which included genomes
with highly varied qualities (completeness from 50% to 100%) [2,11], we only retained
high-quality genomes (completeness > 95%) in our study to enable a more a comprehensive
comparison. Comparison of the genomes revealed differences in genomic features and
environmental preference between different taxa. Within the class Gemmatimonadetes,
genomes of the order Longimicrobiales were phylogenomically close to Palauibacterales,
and both were distinct from the order Gemmatimonadales (Figure 1). Most Longimicro-
biales and Palauibacterales genomes were retrieved from marine environments or salt
lakes, while Gemmatimonadales genomes were predominantly sourced from non-marine
environments (Figure 1).

3.2. Environmental Preference of Gemmatimonadota Based on Functional Profiles

To explore whether different types of Gemmatimonadota exhibit habitat preferences
in terms of metabolic functions, we performed cluster analysis based on the similarities
between annotated gene profiles (gene list and their copy number proportion) of the
Gemmatimonadota genomes (Table S2).

Nine distinct groups were identified at a 65% similarity level, and most of these groups
exhibited clear habitat preferences (Figure 2A). Group 1 corresponded to the class Glass-
bacteria (order GWA2–58–10), which was from the cold seep (Figure 2A). The genomes of
groups 2–9 all belonged to the class Gemmatimonadetes, including the orders Gemmati-
monadales, Longimicrobiales, and Palauibacterales (Figure 2A). Among them, groups 5, 6,
and 9 were the largest clusters and they contained the majority of the analyzed genomes.
Group 6 was predominantly (90%) composed of genomes from marine environments
like seawater/marine sediments and marine organisms, and was therefore defined as
the marine group. Taxonomically, the genomes of group 6 mainly belonged to the orders
Longimicrobiales and Palauibacterales (Figure 2A). In contrast, group 9 was primarily (94%)
from non-marine environments such as activated sludge/sewage, freshwater/terrestrial
sediments, and soil, and was therefore defined as a non-marine group (Figure 2A). More-
over, group 5 was composed of genomes from alkaline salt lakes and hypersaline lakes, and
was therefore defined as another non-marine group. Among the two non-marine groups,
group 9 was mainly composed of genomes from the order Gemmatimonadales, while
group 5 was composed of genomes from the order Longimicrobiales, which was close to the
marine group (group 6) in hierarchical clustering. ANOSIM analysis further showed the
statistically significant differences between the identified marine and non-marine groups
(Figure 2, Figure S2), suggesting the existence of environment-specific genomic features.

3.3. Statistical Comparison of Genomic and Functional Features Related to Adaptations to
Marine Environment

The marine (group 6) and non-marine groups (group 5 and 9) involved the majority of
the currently available Gemmatimonadota genomes (99.1% of the 213 genomes) (Figure 2).
Significant differences existed between the gene profiles of group 6 and group 5 (Figure 2C),
as well as between those of group 6 and group 9 (Figure 2B), representing the metabolic
differences between Gemmatimonadota in marine and non-marine environments. By
statistically comparing the gene profile of the genomes from the marine group (group
6) and the two non-marine group (groups 5 and 9) using STAMP, the genes with effect
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sizes greater than 0.1 between these groups were identified (Figures 3 and 4). The genes
that were consistently enriched in the marine group in both the comparisons of group 6
vs. 5 and group 6 vs. 9 were further identified as functional genes that might be related
to the adaptation to the marine environments (Figure 5). The results showed that genes
enriched in genomes from marine environments were mainly related to energy acquisition,
nucleotide metabolism and genetic information regulation, electrolyte homeostasis, and
growth rate control (Figure 5; Table S3).
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genomes with the genomes of Acidobacteria (GCA_025685655.1 GCA_025685625.1) used as the root
of the tree. Bootstrap values were calculated with 100 replicates and values above 90% are indicated
at the corresponding branch nodes. Different orders of Gemmatimonadota are marked with different
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Figure 3. The differences in metabolism between marine (group 6) and non-marine groups (group 5).
The statistical test method used was Welch′s t-test, and the confidence interval method was DP:
Welch′s inverted, with a 95% confidence interval. The factors with effect values greater than 0.1 are
selected and arranged in descending order.

Most of the genes enriched in the genomes of the marine group encode enzymes
participating in pathways for energy acquisition, including those for carbon, nitrogen,
and sulfur compound metabolism (Figure 5, Table S3). Gemmatimonadetes genomes
from marine environments have higher levels of ggt gene, which encodes γ-glutamyl
transpeptidase/glutathione hydrolase (Figure 5). The enzyme catalyzes the hydrolysis of
γ-glutamyl compounds such as glutathione (GSH) and the transfer of γ-glutamyl groups
to amino acids and peptides [32]. As GSH is the most abundant thiol compound in cells,
its hydrolyzation can serve as an important sulfur source for bacteria [32]. The gene coxS
encoding carbon monoxide dehydrogenase was also significantly more abundant in marine
groups (Figure 5). Carbon monoxide dehydrogenase catalyzes the reversible oxidation
of carbon monoxide to carbon dioxide, allowing the organisms to utilize CO as source of
carbon and energy [33]. It has been shown that carbon monoxide serves as a major energy
source for the persistence of aerobic heterotrophic bacteria in nutrient-poor or variable
environments [34]. In addition, Gemmatimonadetes genomes from marine environments
have higher levels of abgB, amiE, and E3.5.1.81 genes, encoding p-aminobenzoyl-glutamate
hydrolase, amidase, and N-acyl-D-amino acid deacylase, respectively (Figure 5). All of
the three enzymes were hydrolases acting on amide bonds [35–37], a process that breaks
down amides into their corresponding acids and amines. The amine compounds produced
from amide hydrolysis can serve as a nitrogen source, and the generated organic acids can
be utilized as a carbon source for microorganisms [38,39]. Hence, the hydrolysis of amide
bonds plays vital roles in carbon and nitrogen metabolism in microorganisms [40]. Overall,
by enhancing the capability for the hydrolysis of glutamyl compounds and amides, or the
oxidation of carbon monoxide, Gemmatimonadetes might be able to acquire energy from
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diverse substrates to support their survival in the ocean. However, the roles of these genes
in the adaptation of the marine group Gemmatimonadetes need to be further explored.
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Moreover, Gemmatimonadetes genomes from marine environments have higher levels
of fic, recG, xanP, and pyrC genes, encoding adenylyltransferase, ATP-dependent DNA
helicase, and xanthine permease, respectively (Figure 5). These enzymes were involved
in nucleotide metabolism and genetic information processing: the ATP-dependent DNA
helicase encoded by recG can promote DNA unwinding [41], while the adenylyltransferase
encoded by the fic gene can catalyze the addition of adenosine monophosphate (AMP) to
Rho GTPases, preventing their interaction with downstream effectors and thereby inacti-
vating them [42,43]. The xanthine permease encoded by xanP is involved in the transfer
of xanthine, which is a purine formed during the catabolism of guanine [44]. The gene
pyrC encodes dihydroorotase, which is involved in pyrimidine metabolism and cofactor
biosynthesis within the cell [45]. Enhanced helicase activity in microorganisms allows
more rapid and efficient DNA repair, thereby reducing gene mutations [46]. Additionally,
many marine microorganisms acquire new genes through horizontal gene transfer [47],
and helicases aid in the integration of foreign DNA, which promotes genetic diversity and
adaptive evolution [48]. However, due to the lack of information about gene mutation and
horizontal gene transfer in marine Gemmatimonadetes, the roles of these genes in aiding
the adaption of the bacteria to marine environments need to be further studied.
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The genomes of the marine groups showed enrichment of the mnhB gene encoding Na+
transport proteins (TC.SSS) [49] (Figure 5). These proteins drive Na+ coupling, flagellar
rotation, pH regulation, and cell volume regulation in alkaline environments [50]. The
genomes of the marine group also harbored a higher level of genes encoding voltage-gated
potassium channels (Kch, TrkA, MthK, Pch) (Figure 5), which are prokaryotic potassium
channels that can be selectively activated by Ca2+, Mg2+, Mn2+, and Ni2+ [51]. These
channels are central to various biological processes, including electrical signal transduction,
electrolyte homeostasis, and cell volume regulation [51]. The higher level of genes encoding
proteins related to the transportation of different ions is important for Gemmatimonadota
for adaptation to the salty conditions of the marine environment.

The genomes of marine Gemmatimonadota also showed elevated levels of genes
higA−1, fitB, fitA, and vapC (Figure 5), which were associated with the production of
toxins and antitoxins involved in growth rate regulation. fitA is likely a DNA-binding
protein that may regulate cell replication [52]. fitB is a potent toxin that can inhibit bacte-
rial growth, while higA is an antitoxin that counteracts fitB′s toxicity by co-expression or
delayed production, thereby preventing fitB-induced growth inhibition [53]. Additionally,
vapC, which encodes a magnesium-dependent ribonuclease, plays a crucial role in regulat-
ing growth rates and toxicity among different bacterial species [54]. The product of vapC
can display toxicity in vivo under conditional expression and plays an important role in
switching between rapid and slow growth rates of bacteria [54]. The observed capacity
for self-regulation of cellular growth may be a crucial feature of the adaptation of Gem-
matimondota to the challenging conditions of marine environments, as Gemmatimondota
have been speculated to maintain their metabolic activity and resistance to environmental
stresses by sustaining a low growth rate [9].



Microorganisms 2024, 12, 2198 10 of 12

4. Conclusions

In this study, we conducted a comprehensive analysis on the environmental preference
and adaptive features of the phylum Gemmatimonadota by examining publicly available
high-quality, non-redundant genomes from a variety of global habitats. Phylogenomic
and functional profiling of these genomes revealed clear habitat preferences among dif-
ferent lineages of Gemmatimonadota. Specifically, genomes from marine environments
primarily belonged to the orders Longimicrobiales and Palauibacterales, and exhibited
increased gene contents for energy acquisition, nucleotide metabolism, ion transport, and
growth regulation. These adaptations likely enable their survival in the oligotrophic and
variable conditions of marine habitats. Overall, the findings underscore the remarkable
functional diversity within the phylum Gemmatimonadota and highlight the ecological sig-
nificance of its adaptations to various environments. The results from this study can serve
as valuable references for generating hypotheses and validating experiments related to the
adaptation mechanisms of microorganisms. However, the currently available genomes
of Gemmatimonadota are primarily restricted to a limited number of taxa (e.g., the class
Gemmatimonadetes) and environments. Further exploration of Gemmatimonadota, par-
ticularly from the under-represented taxa and habitats, is crucial for uncovering the full
extent of their metabolic versatility and evolutionary history.
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annotation results and gene copy number; Table S3: Functions from the literature and simplified
functional classification.
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