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Abstract: This research targets straw return in Farm 852’s albic soil, China. The soil is
nutrient-poor with few microbes and slow straw decomposition. Through fixed-point
sampling and bacterial screening, an actinomycete consortium consisting of four strains
was assembled, and two of them were identified as new actinomycetes. After 7 days of
fermentation, the lignocellulose degradation rates of this consortium outstripped those
of single strains, with cellulose degraded at 69.07%, hemicellulose at 64.98%, and lignin
at 68.95%. FTIR, XRD, and SEM verified the damage inflicted on the straw structure.
Lab simulations found group D (with the consortium) had a higher straw weight loss
rate than group C (with commercialized microbial agents) and controls. The compound
actinomycetes stepped up the bacterial abundance with the passage of time. In contrast,
their effect on fungal abundance was hardly noticeable, but they had markedly ameliorated
the soil fertility. These findings prove that the microbial consortium effectively accelerates
straw decomposition and boosts soil microbe abundance and fertility in albic soil. It shows
great potential for straw return and provides a microbial solution for this field.

Keywords: albic soil; straw return; bacteria screening; actinomycetes; straw degradation

1. Introduction
Albic soil, confronted with notable low-productivity challenges and diverse obsta-

cles [1,2], retains considerable importance in the realm of global grain production. In China,
the total area of albic soil is approximately 5.96 million hectares [3]. In the Sanjiang Plain of
Northeast China, one-quarter of the agricultural land is comprised of albic soil [4]. Albic
soil is classified as low-yield soil due to the rapid depletion of organic matter content
caused by its thin humus layer. These soils form under distinct climate: annual rainfall of
500–600 mm, cumulative temperature (≥10 ◦C) of 2000–2500 ◦C, freezing depth of 1–2 m,
and 150–170 frozen days. Their parent material is chiefly Quaternary clay sediment. The
groundwater table is 8–10 m deep [5]. In this context, wetting and drying cycles lead
to the alternation of the oxidation–reduction process, resulting in the whitening of the
sub-surface of the soil (a phenomenon known as leaching) [5]. High acidity and poor
permeability are the main factors contributing to its low fertility (a condition termed soil
degradation) [6]. Hence, improving low-yield albic soil holds significant strategic impor-
tance for ensuring food security. As previously reported, researchers have made strenuous
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efforts to rehabilitate albic soil and, consequently, enhance crop yield. Primarily, this has
been achieved by increasing the concentrations of organic matter in the Ap horizon and
the depth of available topsoil. For example, Albic soil has been remediated through the
application of straw [7], biochar [8] and organic fertilizers [9], with the objective of elevating
organic matter concentrations and facilitating the availability of more nutrients to plants.
Furthermore, subsoiling and super subsoiling have been widely employed in agricultural
production in albic soil areas [10], since they possess the capability to enhance soil nutrients
and crop output [11].

Straw application is a commonly employed agronomic measure in developed countries.
Conversely, in China, burning and discarding still account for a significant portion of straw
disposal [12]. These improper agronomic practices have not only led to nutrient losses [13]
but have also presented environmental challenges. For instance, the open burning of crop
straw has become a major source of concern regarding air pollution [14]. In Northeast
China, the annual output of corn straw is approximately 150 million tons. As a technical
measure for safeguarding black soil in Northeast China, returning corn straw to the field is
of utmost significance in terms of enhancing productivity, optimizing resource utilization,
and protecting the environment. However, the elevated carbon-to-nitrogen (C/N) ratio in
straw, coupled with the presence of polymers such as cellulose and lignin, substantially
hampers its degradation process. In frigid regions such as northern China, the combined
effects of high latitudes and climate change further impede straw decomposition [15–17].
Undecomposed straw not only disrupts crop germination and root development but also
has a cascading effect on the yield and quality of subsequent crops [18]. Moreover, it
furnishes an ideal milieu for the multiplication of pathogens and the survival of pest eggs.
This scenario markedly heightens the risk of crop-related pests and diseases, including
corn root rot, wheat sharp eyespot, and corn borer infestation [19–21]. In addition, due
to the frigid climate of this region, the degradation of straw directly returned to the field
is sluggish [22]. The one-year degradation rate is merely 45–60%, and the cumulative
degradation rate in three years is only 80–90%. Hence, expediting the decomposition of
straw is an effective means for returning straw to the field to boost soil fertility.

Microorganisms are essential for straw decomposition. Among them, actinomycetes
stand out with their crucial role. Many studies have examined the changes in microbial
communities during this process [23,24]. Research on lignocellulose-degrading microor-
ganisms indicates that fungi are sensitive to environmental conditions and not ideal for
large-scale production [25,26]. Bacteria have a relatively lower lignin degradation ability
compared to fungi [27]. Actinomycetes, however, have a significant impact by successfully
breaking the intractable bonds between the diverse components of straw and notably
reducing the content of active substances in corn straw [28]. Moreover, although different
microorganisms can produce lignocellulases, actinomycetes are the most advantageous
producers as they not only generate abundant hydrolytic enzymes but also exhibit strong
tolerance and adaptability to extreme environments such as acidic, alkaline, hypersaline,
and hyperthermal ones [29–31]. Therefore, bioprospecting for novel actinomycetes taxa is
important for industrial and agricultural production.

This study aims to tackle issues such as sluggish straw decomposition and under-
nourished albic soil during the straw returning process in the albic soil area of Sanjiang
Plain, China (Farm 852). Through screening actinomycetes possessing straw decomposition
potential and employing methods like culture identification and analyses of straw decom-
position ability, an actinomycete consortium suitable for straw returning in albic soil was
constructed and refined. By simulating the field albic soil environment in the laboratory,
the straw decomposition ability of the specially prepared actinomycete consortium was
analyzed, and the impact on the main nutrient components of the soil was examined. This
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work offers an actinomycete consortium scheme for enhancing the effect of straw returning
in albic soil.

2. Materials and Methods
2.1. Characteristics of Albic Soil and Corn Straw

Albic soil samples were collected from the albic soil in the typical area of Farm 852
(132◦28′ E, 46◦26′ N) in Heilongjiang Province, China, in April 2023. A random five-point
sampling method was adopted. The collected samples were then mixed into a single
composite sample. Three replicate samples were randomly taken. The samples were
collected at depths of 0–20 cm (Ap—topsoil layer) and 20–40 cm (Aw—albic soil layer),
respectively [32]. The corn straw used in the experiment was collected from the Science
and Technology Park of Heilongjiang Academy of Agricultural Sciences after the harvest in
autumn 2023.

2.2. Isolation and Characterization of Lignocellulose-Degrading Actinomycetes

To obtain in situ strains having the ability to decompose corn straw in alpine regions
characterized by Albic soil, three soil sample collection sites were designated in this study:
Sample 1 was collected from the albic horizons (Aw) in albic soil area of Farm 852 in October,
2022; soil Sample 2 was collected from the straw pile in albic soil area of Farm 852 in April
2022; and soil Sample 3 was collected from the straw pile of Mohe (121◦12′ E, 52◦10′ N) in
April 2023, in Heilongjiang Province, Northeast China. In each region, 5 sampling sites
were selected. From each of these sites, 5 points were randomly chosen, and the samples
were combined for processing. The soil sample was naturally air-dried in a shaded location.
After being ground into fine powder within a mortar, it was placed in a triangular flask.
An appropriate quantity of sterilized glass beads was added. Subsequently, the mixture
was agitated in an air oscillator operating at 180 rpm for 0.5 h. Then, it was diluted and
spread on the surface of ISP2 medium for separation. The ISP2 medium was composed of
0.4% glucose, 1% malt extract, 0.4% yeast extract, 2% agar, and had a pH range from 7.0 to
7.4. The culture was incubated in an inverted position in a 28 ◦C incubator.

The above-mentioned strains were pure-cultured, sub-cultured for 3–5 generations,
and stained with Congo red [33]. Strains with larger transparent circles were selected
for subsequent experiments. In the filter-paper disintegration experiment, performed
according to the relevant literature methods [34], strains capable of reducing the filter paper
to a pulpy consistency were designated as “+++”. Strains that exhibited a certain degree
of degradation effect on the filter paper were labeled as “++”, while those that caused no
obvious damage to the filter paper were marked as “+”.

2.3. Molecular Biological Identification of Lignocellulosic Degrading Actinomycetes

Reference methods for molecular biological identification: in ISP2 medium, the cell
biomass for DNA extraction was obtained by culturing at 28 ◦C. Standard procedures
were employed to extract genomic DNA and amplify the 16S rRNA gene by PCR. The
PCR products were purified, cloned into vector pMD18-T (Takara, Dalian, China), and
sequenced using the Applied Biosystems DNA sequencer (Model 3730XL). The complete
16S rRNA gene sequence was obtained and compared with several sequences in the
GenBank/EMBL/DDBJ database.

The determination of phylogenetic neighbors and similarity analysis was achieved
using the EzBioCloud server [35]. Multiple alignments of the 16S rRNA sequences of the
tested strains were conducted with the representative sequences of closely related organ-
isms in the genus Streptomyces obtained from the GenBank/EMBL/DDBJ databases using
Clustal X 1.83 software. Phylogenetic trees were generated with the neighbor-joining [36]
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algorithms using the Molecular Evolutionary Genetics Analysis (MEGA) software, version
7.0. Bootstrap analysis was carried out based on 1000 resampling to ensure the stability of
the resulting tree topologies [37].

2.4. Construction of Actinomycetes Community

To validate the adaptability of strains originating from diverse sources (non-albic soil
samples) within the albic soil environment, strain Streptomyces sp. NC5T (patented strain
number: GDMCC 63431) was isolated from the soil beneath the Heihe soil straw stack
in 2021, exhibiting superior cellulose degradation performance. The propagation of the
cellulose-degrading strain Streptomyces sp. NC5T in the soil was ascertained through a
colonization test. The characteristics of strain Streptomyces sp. NC5T and the experiments
on colonization of albic soil are shown in Figure S1.

For the purpose of constructing a compound microbial community, a confrontation
culture was initially conducted on diverse strains possessing lignocellulose degradation
capabilities. Two distinct purified single strains were streaked onto ISP2 solid medium and
then incubated at 30 ◦C for a period of five days. Subsequently, the growth status of the
colonies was observed.

To determine the ability of lignocellulose-degrading actinomycetes, active strains were
analyzed for their degradation ability in terms of enzyme activity and degradation of
straw’s lignocellulosic components. Enzyme activity indicators included FDA (filter paper
activity), cellulase (endoglucanase, exoglucanase, and β-1,4-glucanase), hemicellulase
(xylanase), and ligninase (laccase). The determination methods refer to our previous
studies [28,38]. The production of 1 µg of glucose per minute is defined as one unit of
enzyme activity. The determination of cellulose, hemicellulose, and lignin in corn straw
refers to the VanSoest washing method [39].

In light of the experimental outcomes presented above, specific actinomycetes were
meticulously selected and assembled to evaluate their enzymatic activity and straw degra-
dation proficiency.

2.5. Decomposition Effect of Specific Actinomycetes on Corn Stalk

The straw was obtained from corn stalks. It was first flattened and then cut into
segments with a length of 1 cm. After that, it was dried for further applications. The culture
medium for mixed actinomycetes was composed of 0.3% yeast extract, 0.3% dipotassium
hydrogen phosphate, 0.03% magnesium sulfate, 0.01% ferrous sulfate, 0.04% zinc sulfate,
0.01% calcium chloride, and 15 µL Tween 20. Using corn straw as the sole carbon source, the
formulation of the IPS2 liquid medium was optimized as follows: 2% (w/v) corn straw and
0.4% (w/v) yeast extract, while maintaining the pH within the range of 7.0. The cultivation
was carried out in shake flasks at 30 ◦C for 7 days, with an inoculation amount of 3%
(w/w) of dry matter. For each sampling time point, three flasks were randomly selected for
subsequent analyses.

Fourier Transform Infrared Spectroscopy (FTIR, Instrument Models: Thermo Nicolet
IS5/IS10) analysis was conducted to explore the structural and compositional alterations of
corn straw samples following degradation by different experimental groups. Specifically,
1 mg of corn straw was meticulously pulverized in combination with 400 mg of KBr and
then compressed into pellets. The scanning wavelength ranged from 4000 to 400 cm−1.
An X-ray diffractometer (XRD, Instrument Model: Bruker D8, Standard Number: JY/T
0587-2020, Bruker AXS, Karlsruhe, Germany) was utilized to record the crystallinity of the
straw samples. The angular range was set from 5 to 90◦ (2θ) with stepwise scanning. The
radiation source was Nickel-filtered Cu-K (λ = 0.15417 nm), and the scanning conditions
were a voltage of 40 kV and a current of 30 mA. The crystallinity index (CrI) of the Residual
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Straw Fiber (RSF) was calculated in accordance with the Segal empirical method [40,41].
An XRD test was commissioned to Shanghai Weipu Testing Technology Group Co., Ltd.,
Shanghai, China (https://www.weipugroup.com/, accessed on 26 January 2025). The
Hitachi - manufactured S - 3400 - N Scanning Electron Microscope (SEM) (Hitachi High-
Tech, Tokyo, Japan) with a 5 - volt acceleration voltage was utilized for the morphological
characterization of the materials. The samples were examined under an acceleration voltage
of 5 kV, and 1000× images were obtained to precisely depict the structural and interfacial
modifications of the corn straw samples.

2.6. Laboratory Simulation: The Influence of Actinomycetes on Albic Soil with Straw Returned
2.6.1. Experimental Design

To precisely analyze the impacts of specially formulated mixed actinomycetes on albic
soil under the circumstance of straw return, four distinct treatment plans were carefully
devised via laboratory simulation experiments, detailed as follows:

Treatment A: “Aw soil”. The soil was dried and sieved through a 40-mesh sieve.
Treatment B: “Aw soil + straw”. Using the same soil as in Treatment A, the straw was

dried, pulverized, and then sieved through a 40-mesh screen.
Treatment C: “Aw soil + straw + Woobao”. It combined pretreated white soil and

straw. Woobao, a powdered commercial lignocellulose decomposition agent, was applied
at 2 kg per mu. Given a straw application rate of 800 kg per mu, 0.25 g of Woobao was
added per 100 g of straw.

Treatment D: “Aw soil + straw + actinomycetes (inoculation amount: 3% of dry
matter)”. Using the same Aw soil and straw as previous treatments, after crushing corn
straw, 60 g of Aw soil and 1.8 g of straw were placed in each 250 mL conical flask, with the
water content adjusted to 60%.

Controls were established, including a straw-free control (Treatment A) and a straw-
degrading-bacteria-free control (Treatment B). By comparing the degradation effect of
commercial straw decomposition agents, the degradation capacity of the specially prepared
actinomycete flora could be more intuitively observed. Sampling was done at weeks 2, 4,
6, 8, 10, 12, and 14 of cultivation. Then, the samples were put into sterile sealed bags for
index determination.

2.6.2. Analysis of Soil Chemical Properties

To verify the impact of the addition of exogenous microorganisms on the chemical
properties of the soil during the process of straw return to the field, the primary testing in-
dices focused on were soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP),
total potassium (TK), and pH. Various soil samples were subjected to measurement, and the
specific measurement methodologies were as follows: For SOM, refer to “Soil Agrochemical
Analysis (Third Edition)”, edited by Bao Shidan, published by China Agriculture Press
in 2000, pages 34–35 (the method of potassium. For the determination of Total Nitrogen
(TN), the LY/T 1228-2015 standard, which was specifically designed for the Determination
of Nitrogen in Forest Soils, was adopted and implemented. Regarding TP and TK, the
HJ 832-2017 standard (Soil and Sediment Total Metal Element Digestion by Microwave
Digestion and ICP Determination) was adopted. For pH, the NY/T 1121.2-2006 Soil Testing
Part 2: Determination of Soil pH was used. The ambient temperature during the test was
21.5 ◦C, and the relative humidity was 35%. All the test work was commissioned to the
National Energy R&D Center for Biomass (NECB) of China Agricultural University.

2.6.3. Microbial Diversity Analysis

The microbial diversity analysis was performed using the Illumina HiSeq sequencing
platform and the Paired-End approach to build small-fragment libraries for sequencing. Via

https://www.weipugroup.com/
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filtering, clustering or denoising, species annotation, and abundance analysis of Reads, the
species composition of the samples was disclosed [42,43]. This task was accomplished by
Shanghai Majorbio Bio-Pharm Technology Co., Ltd. in Shanghai, China, through Majorbio
Cloud (https://cloud.majorbio.com/, accessed on 26 January 2025).

2.7. Statistic Analysis

In the previously described experiments, three replicate samples were set up, and the
mean was calculated. The mean’s standard error (±) was computed via three repeated
measurements using Microsoft Office Excel 2010, and the mean values of treatment groups
were compared at p < 0.05 using the LSD method. Data plotting was done with Origin 2021.

3. Results and Discussion
3.1. Characteristics of Albic Soil Samples and Corn Straw

Based on the determination of relevant indicators in different soil layers of the albic
soil area in Farm 852 of the Sanjiang Plain, the results are shown in Table 1. All indicators
in the albic horizon were relatively low. The total organic matter (SOM) content ranged
from 9.34 to 15.32 g/kg, the TN content was between 0.69 and 1.01 g/g, the TP content
was from 0.29 to 0.35 mg/g, and the TK content was within 16.20–17.36 mg/g, all of which
were lower than those in the black soil layer. The typical poor chemical properties of albic
soil have also been confirmed in soil samples from other regions [44]. This suggests that
the Aw soil exhibits a state of nutrient depletion and insufficiency, creating an adverse
environment that severely restricts crop growth and development. Given this situation, the
remediation and enhancement of the nutritional profile within the albic horizon of the albic
soil becomes an imperative and crucial task. Through comprehensive soil improvement
measures, such as precise nutrient supplementation, organic matter addition, and soil
structure optimization, it is possible to rectify the nutrient imbalance, enhance soil fertility,
and ultimately create a more hospitable substrate for sustainable crop production, which is
vital for ensuring agricultural productivity and food security.

Table 1. Characteristics of albic soil in Farm 852.

Sample SOM
(g/kg)

TN
(g/100 g)

TP
(mg/g)

TK
(mg/g) pH

Ap-H
(0–10) 36.13 ± 0.12 a 1.88 ± 0.02 a 0.73 ± 0.01 a 18.71 ± 0.21 a 4.77

Ap-L
(10–20) 34.22 ± 0.21 a 1.95 ± 0.01 a 0.61 ± 0.00 b 18.64 ± 0.09 a 4.64

Aw-H
(20–30) 15.32 ± 0.07 b 1.01 ± 0.00 b 0.35 ± 0.00 c 16.20 ± 0.26 b 5.38

Aw-L
(30–40) 9.43 ± 0.13 c 0.69 ± 0.01 c 0.29 ± 0.00 d 17.36 ± 0.12 a 5.03

“H” and “L” indicate the upper and lower regions of the layer; the numbers represent depth of soil layer, cm.
The values are presented as mean ± standard error (n = 3). Different letters signify significant differences among
treatments (p < 0.05).

The main components of straw had the following contents: cellulose at 39.7%, hemi-
cellulose at 29.1%, lignin at 8.6%, and other matters at 22.6%.

3.2. Screening of Actinomycetes with Lignin-Degrading Ability of Straw
3.2.1. Preliminary Screening of Active Actinomycetes

A total of 383 single actinomycetes colonies were isolated from the soil samples.
Specifically, 76 colonies were screened from Sample 1, 204 from Sample 2, and 103 from
Sample 3. The naming convention was as follows: the letters such as A, NC, and MD

https://cloud.majorbio.com/
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denoted the names of the screening media, while the numbers 3, 4, and 5 corresponded to
the dilution multiples of the soil sample coating, namely 10−3, 10−4, and 10−5, respectively.
The selected strains were numbered in sequence and then transferred to the oatmeal Agar
medium. These strains were incubated at 28 ◦C for 15 days. Subsequently, the morphology
of the single colonies was photographed and counted. It was found that there were
84 strains possessing lignocellulose degradation ability. The ratio of the diameter of the
transparent circle to that of the colony for the 84 active strains with cellulose degrading
ability was calculated, as presented in Table S1.

3.2.2. Disintegrating Ability of Filter Paper Strip

For the purpose of assessing the secretion of cellulase, 17 strains with a ratio of
transparent circle diameter to colony diameter exceeding 3.93, along with a novel strain
Streptomyces sp. NC5T (patent strain number: GDMCC No. 63641), were selected for filter
strip decomposition analysis. The outcomes of filter paper decomposition are presented
in Table 2. The strain numbers CP82, MD15, MD31, MD50, MD55, MD63, MD68, JD30,
NC5, JSTG24, and GS9 exhibited excellent performance (+++), where the filter paper lost its
original shape and was nearly disintegrated into a pulpy consistency. Strain numbers SY6,
MD43, and MD53 demonstrated a certain degree of degradation effect on the filter paper
(+ +), yet the degradation was restricted, with the filter paper merely being bent rather
than reaching a pulpy state. Strain numbers MD7, MDB7, MD44, and MD28 were capable
of degrading (+), but the degradation efficacy was relatively suboptimal (Figure S2). The
strains with outstanding performance (+++) were designated for subsequent experiments.

Table 2. Disintegration experiment of strain filter strip.

Strain Disintegration of Filter Paper

CP82 +++
MD7 +

MDB7 +
MD15 +++
MD31 +++

SY6 ++
MD43 ++
MD44 +
MD50 +++
MD53 ++
MD55 +++
MD28 +
MD63 +++
MD68 +++
JD30 +++
NC5 +++

JSTG24 +++
GS9 +++

Strains capable of reducing the filter paper to a pulpy consistency were designated as “+++”. Strains that exhibited
a certain degree of degradation effect on the filter paper were labeled as “++”, while those that caused no obvious
damage to the filter paper were marked as “+”.

3.2.3. Enzyme Activity of the Strains

Microbial degradation of straw principally transpires through enzymatic exuda-
tion [45]. The strains exhibiting the maximal filter paper activity (FPA) were NC5, CP82,
JD30, and MD63, with their corresponding enzymatic efficacies reaching 172.74, 153.77,
151.67, and 151.16 U/mL, respectively (Figure 1). The strains JSTG24, MD68, and MD55
evinced the supreme laccase activity, with their enzymatic intensities being 152.30, 96.40,
and 74.00 U/mL, respectively (Figure 2). With regard to xylanase activity, the strains
JSTG24, MD68, and MD31 manifested the zenith values, with enzymatic potencies of
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712.74, 515.09, and 422.84 U/mL, respectively (Figure 3). NC5, CP82, MD63, and GS9
exhibited the foremost exoglucanase activity, with enzymatic magnitudes of 76.02, 66.52,
65.25, and 65.18 U/mL, respectively (Figure 4). CP82, JD30, GS9, and MD55 harbored the
preponderant endoglucanase activity, and their enzymatic intensities were 142.76, 138.99,
138.98, and 135.33 U/mL, respectively (Figure 5). JD30, MD63, GS9, and MD55 demon-
strated the preeminent activity of β-1,4-glucosidase, with enzymatic capacities of 267.24,
266.26, 235.28, and 229.58 U/mL, respectively (Figure 6).
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3.2.4. Changes in Straw Component Degradation by Different Strains

Corn straw is principally constituted by cellulose, hemicellulose, and lignin. The
degradation capabilities of diverse strains with respect to the distinct constituent elements
of the straw were explored. In accordance with the experimental outcomes, the strains
MD63, NC5, and MD68 exhibited the highest cellulose degradation capacity, with cellulose
degradation rates amounting to 63.4%, 62.97%, and 61.01%, respectively. The strains JSTG24,
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MD68, and MD31 manifested the highest degradation rates of hemicellulose, which were
55.36%, 54.54%, and 48.35%, respectively. Regarding the degradation rates of lignin, they
were 71.16% for JSTG24, 59.88% for MD68, and 50.35% for MD55, respectively (Table 3).

Table 3. Degradation effects of different strains on the main components of straw.

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

MD68 61.01 ± 1.29 c 54.54 ± 1.01 b 59.88 ± 2.31 c
NC5 62.97 ± 2.03 b 38.63 ± 2.11 42.09 ± 1.41

MD55 53.20 ± 0.79 46.60 ± 3.12 50.35 ± 1.67 d
MD63 63.40 ± 1.01 b 31.58 ± 1.29 44.88 ± 1.91
GS9 57.15 ± 0.81 31.07 ± 1.33 47.56 ± 2.22

MD31 45.82 ± 1.11 48.35 ± 2.07 c 40.00 ± 1.53
JD30 52.75 ± 1.72 30.00 ± 0.62 44.19 ± 1.01

JSTG24 26.15 ± 0.21 55.36 ± 1.81 b 71.16 ± 1.35 a
MD15 45.16 ± 1.91 28.87 ± 2.37 45.58 ± 1.87
CP82 44.58 ± 1.37 28.08 ± 1.19 22.33 ± 1.44

Mixed actinomycetes 69.07 ± 1.98 a 64.98 ± 2.11 a 68.95 ± 1.58 b
The values are presented as mean ± standard error (n = 3). Different letters signify significant differences among
treatments (p < 0.05). Among them, the significance difference was marked only for the four groups of data with
the highest values for each indicator.

3.2.5. Molecular Biological Identification of Strains

Based on the experimental results regarding enzyme activity and straw degrada-
tion ability as described above, a total of 10 strains with relatively high lignocellulosic
degradation ability were isolated and identified. Molecular biological identification was
carried out on these 10 active strains. The specific details are presented as follows: the
CP82 strain belonged to Nonomuraea zeae; the JD30 strain was affiliated with Streptomyces
broussonetiae; the MD31 strain belonged to Streptomvces canus; the MD55 strain belonged
to Streptomyces fagopyri; the MD63 strain belonged to Streptomyces cinnabarigriseus; the
MD15 strain belonged to Streptomyces phaeochromogenes; the JNC5 strain belonged to Strep-
tomvces malavsiense; the JSTG24 strain belonged to Streptomvces barringtoniae; the GS9 strain
belonged to Streptomyces rishiriensis; the MD68 strain belonged to Pseudomonas migulae.
The detailed content regarding the sequencing results of the active strains is presented in
Table 4.

Table 4. Sequencing results of active strains.

Strain Similar Strains Label of Similar
Strains

Similarity
Degree Taxonomic Classification Hierarchy

CP82 Nonomuraea zeae DSM 100528 99.72% Bacteria; Actinobacteria; Actinomycetia;
Streptosporangiales; Streptosporangiaceae; Nonomuraea

JD30 Streptomyces
broussonetiae T44 99.24%

Bacteria; Actinobacteria; Actinomycetia;
Streptomycetaes; Streptomycetaceae; Steptomyces

MD31 Streptomvces canus DSM 40017 99.64%
MD55 Streptomyces fagopyri QMT-28 98.77%

MD63 Streptomyces
cinnabarigriseus JS360 99.28%

MD15 Streptomyces
phaeochromogenes NBRC 3180 99.28%

JNC5 Streptomvces malavsiense MUSC 136 99.42%

JSTG24 Streptomvces
barringtoniae JA03 98.90%

GS9 Streptomyces rishiriensis NBRC 13407 99.01%

MD68 Pseudomonas migulae CIP 105470 99.57% Bacteria; Proteobacteria; Gammaproteobacteria;
Pseudomonadaies; Pseudomonadaceae; Pseudomonas
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Fortunately, following the identification process, it has been clearly established that
the strain labeled CP82 is a newly discovered strain, and its taxonomic classification falls
under Nonomuraea sp. The preservation protocol for this novel strain has been success-
fully concluded, and it has been assigned the preservation numbers GDMMCC 4.350 and
JMC36661. The phylogenetic tree and colony morphology of the Nonomuraea sp. CP82T

strain can be referred to in Figure S3.

3.3. Construction of Mixed Actinomycetes for Degrading Lignocellulose
3.3.1. Confrontation Test

There are interactions such as nutrient competition, antagonism, or inhibition among
different microbial strains [46]. To confirm the antagonistic effects among the strains, a
confrontation test was conducted on the 11 strains with relatively good cellulose degra-
dation effects screened in this study. The results are shown in Table S2. It can be seen
that some strains exhibited antagonistic effects, such as NC5 and JSTG24. Notably, MD50,
with slow growth, was excluded from compound microbial inoculum candidates. Based
on the experimental results aforementioned, the microbial community was composed of
NC5 and CP82 (two novel actinomycetes), along with JD30 and MD68 (low-temperature
active degrading bacteria, whose detailed experimental data have not been provided in
this study). NC5, CP82, and JD30 were, respectively, the strains that displayed the highest
cellulolytic enzyme activities. In contrast, MD68 was a strain with relatively high activities
of hemicellulase and ligninase (As shown in Figures 2 and 3, respectively). The prominent
characteristic of this compound microbial community was that it incorporated the strains
with the optimal cellulose degradation capabilities. Moreover, the enzyme activities among
the strains within the community were capable of mutually complementing each other.
Different bacterial strains within this microbial community possessed diverse features.
The rare actinomycetes NC5 and CP82 had specific straw-degrading abilities, and the low-
temperature degrading bacteria JD30 and MD68 were able to participate in the degradation
process under specific environmental conditions.

3.3.2. Analysis of Degradation Effect of Straw with the Mixed Actinomycetes

In accordance with the results presented in Table 3, the corresponding degradation
rates of cellulose, hemicellulose, and lignin by the mixed actinomycetes were 69.07%,
64.98%, and 68.95%, respectively. The capacity of the mixed actinomycetes in degrading
cellulose were manifestly superior to those of the individual strains, namely MD63, NC5,
and MD68, which, respectively, displayed cellulose degradation rates of 63.4%, 62.97%, and
61.01%. In the context of hemicellulose degradation, the mixed actinomycetes exhibited a
considerably enhanced capacity and competence as opposed to the single strains JSTG24,
MD68, and MD31, with degradation rates of 55.36%, 54.54%, and 48.35%, respectively.
Nevertheless, in the sphere of lignin degradation, although the mixed actinomycetes
showed a relatively attenuated degradation capacity in comparison to JSTG24 (exhibiting
a degradation rate of 71.16%), they still held a preponderant position over the other
remaining strains.

The experimental outcomes unequivocally validated that the mixed actinomycetes
possessed a decidedly prominent lignocellulose degradation potential when contrasted
with the single strain, thereby highlighting and underscoring the distinct and remarkable
advantage of the mixed form in the process of lignocellulose disintegration and decomposi-
tion. Employing scanning electron microscopy (SEM) to characterize the straw architecture
enabled direct apprehension of the microstructural modifications within the straw un-
der disparate treatment regimens. CK refers to the untreated corn straw. As shown in
Figure 7A,B, its surface was smooth, dense and gapless, with a waxy layer. This compact
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surface impedes the degradation process of cellulose [47]. In the experimental group
(Figure 7C,D), the surface was rough, the gaps enlarged into pores, and the internal struc-
ture was irregular and had many small voids, which was distinctly different from the
control. Based on the observation, the compound actinomycetes consortium was capable
of disrupting the outer surface and exerting an effect on the internal structure of the straw,
thereby actively facilitating the degradation of the straw.
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In order to thoroughly understand the impact of microbial communities on the struc-
ture and properties of corn straw, we utilized Fourier Transform Infrared Spectroscopy
(FTIR) to analyze the chemical changes within the samples of corn straw. Typically,
the characteristic absorption peaks of cellulose emerge in regions like approximately
1000–1200 cm−1, 1300–1400 cm−1, and 1600–1700 cm−1 [48]. As illustrated in Figure 8,
the absorption peak at 1042 cm−1 corresponded to the asymmetric stretching vibration of
the C-O-C bond in cellulose, while the peak close to 1370 cm−1 was associated with the
C-H bending vibration of cellulose. The peaks at 3387 cm−1 and 1716 cm−1, respectively,
corresponded to the O-H stretching vibration and the C=O stretching vibration in cellulose.
The absorption peak positions of hemicellulose showed a certain degree of overlap with
those of cellulose; nevertheless, it also had its own distinctive characteristic peaks. For
instance, the absorption peak around 1716 cm−1 could be ascribed to the C=O stretching
vibration of acetyl groups and uronic acids in hemicellulose. The characteristic absorption
peaks of lignin in the FTIR spectrum were relatively intricate and mainly appeared in
regions such as 1500–1600 cm−1, 1400–1500 cm−1, and 1200–1300 cm−1. Among them,
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the peaks near 1532 cm−1 and 1625 cm−1, respectively, corresponded to the benzene ring
vibration and the C=O stretching vibration in lignin [49]. By virtue of the degradation
data of straw components, the impact of mixed actinomycetes on straw could also be
substantiated (Table 3). Compared with the control group, the sharpness of each peak was
lower, indicating that the content of cellulose, hemicellulose, and lignin in the straw of the
experimental group (microbiome treatment) was reduced [50]. The results showed that the
addition of microbial agent promoted the degradation of straw components.
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Crystallinity serves as a crucial indicator for assessing the characteristics of cellulose,
as it mirrors the extent of crystallization during the cellulose aggregation process [51].
Upon undergoing diverse pretreatments, with the elimination of specific constituents in
the straw, alterations occur in both the structure and crystallinity of the straw. The X-ray
diffraction (XRD) pattern, as depicted in Figure 9, exhibited main peaks and secondary
peaks at 22.0◦ and 15.0◦. These peaks, respectively, demonstrated the diffraction intensity of
the crystalline and amorphous regions. Results indicated that after 7 days of fermentation
treatment, the crystallinity of the straw control group (CK) was 23.5%, while the crystallinity
of the experimental group (microbiota treatment) was 24.7%, exceeding that of the control
group. In the course of biodegradation, the cellulase secreted eliminated a certain amount
of lignin and a relatively larger quantity of hemicellulose components. This led to an
elevation in the cellulose content and, consequently, a substantial augmentation in the
overall crystallinity [52], which potentially accounted for this observed phenomenon. The
data exhibited in Table 3, with a hemicellulose degradation rate of 64.98% and a lignin
degradation rate of 65.85%, could potentially serve as evidence. They also imply that the
supplementation of the microbial inoculant had a positive impact on the decomposition
of straw.
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3.4. Laboratory Simulation: Effect of Mixed Actinomycetes on Straw Returning Albic Soil
3.4.1. Changes of Straw Weight Loss Rate in Different Treatment Samples

For the purpose of more precisely assessing the straw degradation capacity of the
compound actinomycetes, an experimental simulation of straw incorporation into albic
soil was conducted within a laboratory setting. Three experimental groups and one blank
control group were established. The dynamic alterations in the weight loss rate of corn
straw are depicted in Figure 10. As the treatment duration was extended, the degradation
rate of straw exhibited a remarkable augmentation. Commencing from the sixth week, the
ascending tendency of the treatment in Group D was prominent, with Group C following.
Nevertheless, during the period from the 10th to the 14th week, the upward trends of
the degradation rates in both Group C and Group D decelerated. Initiating from the 14th
week and persisting to the 16th week, the degradation efficiency once again manifested a
conspicuous elevation. From an overall perspective, as time elapsed, the degradation rate
of straw progressively increased. The comprehensive performance of Group D surpassed
that of the addition of commercial microbial agents. In comparison with the control group,
the degradation efficacy was substantially enhanced. The aforementioned experimental
outcomes robustly indicate that the screened actinomycetes were capable of secreting a
substantial quantity of highly efficient biodegradation enzymes. These enzymes actively en-
gaged in the decomposition process of plant lignocellulose. Through their catalytic actions,
they caused substantial disruption to the structure of macromolecular polysaccharides
present within the straw. Additionally, the scanning electron microscopy (SEM) results, as
illustrated in Figure 7C,D, provided conclusive evidence of the destructive impact of the
actinomycete flora on the straw’s structure. It was also potentially correlated with the ex-
tensive environmental adaptability of actinomycetes since actinomycetes possess a certain
degree of tolerance to some extreme environments (such as alkaline, high temperature or
low temperature and other extreme environments) [53].
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agent Wooboo, and D represents Aw soil added with straw and mixed actinomycetes. Error bars are
the standard error (n = 3).

3.4.2. Changes of Soil Organic Matter (SOM), Total Nitrogen (TN), Total Phosphorus (TP),
TK, and pH in Different Samples

The addition of straw and exogenous microorganisms will bring about different
changes to the chemical properties of the albic soil. In all samples (Table 5), SOM in the
experimental group with special actinobacteria added (D6–D14) showed an increasing
trend with the extension of culture time and reached 19.47 g/kg when the culture reached
14 weeks, which was the highest among all samples. Compared with the soil blank groups
(A6–A14), the addition of straw increased SOM level as a whole, especially the addition of
special actinomycetes significantly increased SOM content, indicating that the addition of
actinomycetes promoted the decomposition of straw [54]. In all experimental groups, the
alterations in total nitrogen (TN) and total phosphorus (TP) levels were not pronounced.
This could potentially be attributed to a multitude of factors, including the specific nutrient
release properties of straw and the intricate nature of the soil ecosystem. These aspects
jointly contribute to the challenge of achieving significant changes in the contents of total
nitrogen and total phosphorus within a short time frame [55]. The content of TK in blank
control A6 was 7.84 mg/g, but decreased gradually with the extension of culture time, and
reached 6.54 mg/g after 14 weeks of culture. The addition of straw (B6–B14) accelerated
the decrease of TK content, showing an extremely significant trend. This might potentially
be attributed to the incorporation of straw, which has served to stimulate the growth of
soil microorganisms and expedite the metabolism of potassium (K) within the soil [56];
in addition, the addition of bacteriotics (C6–C14, D6–D14) gradually increased the total
TK content and showed a gradual increasing trend with the culture time; compared with
control group B, both showed a very significant trend. It may be due to the addition
of exogenous microbial agents that the decomposition of straw was accelerated and the
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chemical components within the straw were released [57]. With the addition of straw and
bactericide, the pH as a whole showed a weak acidity (5.06–5.17), and each component was
not significant.

Table 5. Changes of soil organic matter (SOM), TN, TP, TK and pH in different samples.

Sample SOM
(g/kg)

TN
(g/100 g)

TP
(mg/g)

TK
(mg/g) pH

A6 11.62 ± 0.22 c 0.18 ± 0.00 b 0.35 ± 0.01 b 7.84 ± 0.30 a 5.37
B6 14.22 ± 0.13 a 0.20 ± 0.01 a 0.37 ± 0.00 a 6.54 ± 0.09 c 5.17
C6 14.05 ± 0.09 a 0.19 ± 0.01 a 0.39 ± 0.01 a 6.52 ± 0.25 d 5.08
D6 13.80 ± 0.02 b 0.20 ± 0.01 a 0.39 ± 0.01 a 7.14 ± 0.07 b 5.12

A10 11.88 ± 0.41 b 0.17 ± 0.00 b 0.35 ± 0.01 b 6.86 ± 0.06 a 5.52
B10 14.10 ± 0.29 a 0.20 ± 0.01 a 0.38 ± 0.01 a 6.85 ± 0.26 a 5.13
C10 13.86 ± 0.30 a 0.21 ± 0.01 a 0.39 ± 0.01 a 6.52 ± 0.07 b 5.15
D10 13.46 ± 0.18 a 0.20 ± 0.01 a 0.36 ± 0.00 b 7.31 ± 0.26 a 5.10

A14 11.55 ± 0.24 d 0.19 ± 0.00 b 0.34 ± 0.01 b 6.51 ± 0.21 b 5.52
B14 13.42 ± 0.20 c 0.21 ± 0.00 a 0.38 ± 0.00 a 6.05 ± 0.08 c 5.15
C14 14.53 ± 0.15 b 0.21 ± 0.00 a 0.38 ± 0.02 a 7.38 ± 0.06 a 5.16
D14 19.47 ± 0.15 a 0.19 ± 0.01 b 0.36 ± 0.01 b 7.18 ± 0.12 a 5.06

In the indoor simulated straw-returning experiment, A, B, C, and D denote different experimental groups. A is
Aw soil, and B is Aw soil with added straw (both A and B serve as controls). C is Aw soil with straw and
the commercial microbial agent Wooboo, while D is Aw soil with straw and mixed actinomycetes; 6, 10, and
14 epresent sampling times in weeks. The values are presented as mean ± standard error (n = 3). Different letters
signify significant differences among treatments (p < 0.05).

Based on the experimental results, it is evident that albic soil is characterized by poor
soil nutrition, which poses an obstacle to crop growth [23]. Straw incorporation into the
field proves to be an effective means to enhance the content of organic matter [23,58]. The
supplementation of either commercial microbial agents (such as Woobao) or actinomycete
flora led to alterations in soil chemical parameters. This is potentially attributable to the
accelerated decomposition of straw. Particularly, the addition of actinomycete flora, as
demonstrated by the data, exerted a notably positive impact on straw decomposition.
Consequently, it can be concluded that the actinomycete flora holds definite application
prospects and is applicable in the albic soil regions where straw is returned.

3.4.3. OTUs Analysis in Different Experimental Groups

As illustrated in the Figure 11, regarding the soil microorganisms sampled from the
albic horizon soil, the bacterial abundance exhibited a gradual decline over the course of
time. The quantity of OTUs diminished from 1393 in A6 to 1178 in A14. Subsequent to
the incorporation of straw, the bacterial OTUs marginally augmented from 1413 in B6 to
1531 in B10. Nevertheless, by the 14th week (B14), a slight reduction was observed, yet it
remained higher than that of A14, attaining 1443. This substantiates that the addition of
straw can effectively enhance the soil species abundance [59]. In the experimental group
C6 with the supplementation of the commercial microbial agent Woobao, the abundance
was inferior to that of the soil in B6, amounting to 1138. This might be attributed to
the introduction of dominant microbial communities, leading to nutrient competition.
However, the abundance escalated by the 10th week (C10) and stabilized by the 14th
week (C14), reaching 1365. Analogous to the experimental group with the addition of
the commercial microbial agent, in group D with the addition of the specially prepared
actinomycete flora, the bacterial abundances at corresponding time points were all greater
than those in group C, with 1152 in D6 and remaining constant at 1501 from D10 to D14. It is
particularly noteworthy that when the treatment reached 14 weeks, the species abundance
in D14 was the pinnacle among all experimental groups.
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Figure 11. Different samples of OTU number of bacteria. In the indoor simulated straw-returning
experiment, A, B, C, and D represent different experimental groups. A is Aw soil, B is Aw soil with
added straw (both A and B are controls), C is Aw soil with straw and the commercial microbial agent
Wooboo, and D is Aw soil with straw and mixed actinomycetes; 6, 10, and 14 represent different
sampling times, and the unit is week.

Concerning the fungal abundance (Figure 12), the OTU of the albic horizon soil sample
did not manifest a significant alteration, fluctuating within the range of 236–246 in A6–A14.
Following the addition of straw, the OUT data in B6 were not substantially disparate
from that in A6. However, by the 10th week (B10), a pronounced decrease in abundance
was witnessed, reaching 157. By the 14th week (B14), a minor elevation was detected,
attaining 208. With the addition of the commercial microbial agent, in comparison with A6
and B6, the abundance was conspicuously diminished, reaching 171 in C6 and remaining
stable at 175 by the 14th week (C14). Distinct from the other three groups, the addition
of the specially prepared actinomycete flora (D6–D14) significantly curtailed the fungal
abundance, remaining steady within the range of 148–168. Based on the comprehensive
experimental outcomes, it can be deduced that the addition of the specially prepared
actinomycete flora could effectively augment the bacterial abundance in the albic horizon
of the albic soil with straw return, albeit the fungal abundance was moderately reduced.
Compared with other types of soils, the albic horizon of albic soil had a lower microbial
species abundance and a smaller number of active organisms [60,61].
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Figure 12. Different samples of OTU number of fungi. In the indoor simulated straw-returning
experiment, A, B, C, and D represent different experimental groups. A is Aw soil, B is Aw soil with
added straw (both A and B are controls), C is Aw soil with straw and the commercial microbial agent
Wooboo, and D is Aw soil with straw and mixed actinomycetes; 6, 10, and 14 represent different
sampling times, and the unit is week.

3.4.4. Analysis of Microbial Diversity in Different Experimental Groups

Circos was utilized to illustrate the relationship between samples and species. It can
not only reflect the proportion of dominant species within each sample but also show
the distribution of different dominant species among various samples. At the phylum
level, significant differences in bacterial quantity were observed among different treatments
(Figure 13). In the soil blank control groups (A6, A10, A14), Actinobacteria (with a proportion
ranging from 31.51% to 52.39%) and Chloroflexi (from 24.51% to 30.95%) were the most
abundant microorganisms, and the fluctuations with sampling time (6–14 weeks) were not
obvious. After adding straw, notable changes occurred in the dominant microorganisms of
the control groups (B6, B10, B14). In the samples collected in the sixth week, Actinobacteria
(42.44%), Chloroflexi (24.74%) and Proteobacteria (11.73%) were predominant. In the 10th
week samples, their abundances changed significantly. From the 10th to 14th week, the
abundance of Proteobacteria increased to 37.31–42.25%, that of Actinobacteria decreased to
21.96–24.94%, and Chloroflexi’s abundance declined to 12.08–14.55%. The laboratory groups
(C6, C10, C14) with the addition of the commercial microbial agent “Woobao” differed
from the previous control groups. The dominant microbial groups were Proteobacteria (from
32.13% to 54.11%) and Actinobacteria (from 19.21% to 29.06%).

In the experimental groups (D6, D10, D14) with a special Actinobacteria flora, com-
pared to the blank control groups (A6, A10, A14), the abundance of Proteobacteria increased
remarkably (from 24.76% to 39.18%). Proteobacteria is a eutrophic bacterium [62] and has
a large proportion in soil community composition and relative abundance [8], while the
abundance of Actinobacteria remained stable at 18.94–20.94%. As a Gram-positive bac-
terium, Actinobacteria is crucial for organic matter turnover, including cellulose and chitin
decomposition [63]. The results of the straw weight loss rate (Figure 10) also confirmed
Actinobacteria’s significant contribution to straw decomposition. Starting from the sixth
week, the straw weight loss rate rose sharply and was the highest among all experimental
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groups, which further proved that the specially prepared mixed Actinobacteria flora had
a positive promoting effect on straw decomposition. The abundance of Acidobacteria was
stable at 8.93–11.12%. Most Acidobacteria are acidophilic, and their abundance is inversely
related to soil pH. In a soil environment with a relatively low pH, the abundance of Aci-
dobacteria reaches its maximum [64], which is verified by the pH results in Table 5. With the
extension of incubation time, the abundance of Firmicutes increased significantly.
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proportion of bacteria. A, B, C, and D correspond to the experimental groups of indoor simulated
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At the phylum level, notable disparities in the fungal quantity were also manifested
among diverse treatment modalities (Figure 14). In the soil blank control groups (A6,
A10, A14), the microorganisms exhibiting the highest abundances were Ascomycota (with
the proportion spanning from 76.13% to 90.01%), Basidiomycota (ranging from 5.40% to
16.35%), and Mortierellomycota (ranging from 4.16% to 6.66%). Certain species within
Mortierellomycota are significant saprophytic fungi, being capable of decomposing complex
organic matter in the soil, such as cellulose and chitin, among others [65]. With the
prolongation of the sampling period, no conspicuous alterations were discerned in the
soil blank control groups. In contrast, in the soil samples with the addition of straw, the
relative abundance progressively declined from the peak value in the sixth week. This
could be attributed to the introduction of a substantial amount of straw carbon source,
thereby giving rise to nutritional competition between the dominant cellulose-degrading
microbial populations and the microorganisms of this phylum. Among all the experimental
groups, with the exception of the B6 group with the addition of straw, whose abundance
was relatively proximate to that of the A6 group in the soil blank group, no evident changes
were observable in the other experimental groups. They all took Ascomycota as the dominant
microorganism, and its abundance was above 92%.
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Figure 14. The sample and species relationship diagram, which shows the relative abundance and
proportion of Fungi. A, B, C, and D correspond to the experimental groups of indoor simulated
straw-returning settings, respectively; 6, 10, and 14 represent different sampling times in weeks.

During the exploration of the influence of time on species abundance, a significant
negative correlation between pH value and species abundance was manifested [66]. As
presented in Table 1, at the D14 time point within the experimental group, the measured
pH value was 5.06, which was marginally lower than the 5.16 recorded at C14 of the
same experimental cohort. Concurrently, the quantity of operational taxonomic units
(OTUs), serving as an indicator of bacterial species abundance, attained 1501 at D14 of
the experimental group, exceeding the 1356 OTUs at C14. In the control group A14, the
pH value was 5.52, accompanied by a corresponding OTU number of 1178. Similarly, the
variation trend of fungal abundance was in accordance with that of bacteria [67]. Moreover,
the total nitrogen content exhibited a positive correlation with the pH value. This observed
phenomenon is congruent with the outcomes of other research studies [68,69].

4. Conclusions
4.1. Characteristics of Albic Soil and Straw Returning in Farm 852

Albic soil, with its poor nutrition, impedes crop growth and undermines national
food security and yield-boosting strategies. Straw returning is a viable solution, but in
Northeast China, low temperatures, limited effective accumulated temperature, and scarce
microbial abundance slow down straw decomposition. Statistically, the annual degradation
rate is only 45–60%, and the three-year cumulative rate is 80–90%. Experimental results
showed that the albic soil in Farm 852 was nutritionally poor. Within the soil profile from
the surface layer down to a depth ranging from 0 to 40 cm, the nutrient content exhibited a
progressive decline. Soil organic matter (SOM) dropped from 36.13 g/kg to 9.43 g/kg, total
nitrogen (TN) from 1.88 g/100 g to 0.69 g/100 g, total phosphorus (TP) from 0.73 mg/g to
0.29 mg/g, and total potassium (TK) from 18.71 mg/g to 17.36 mg/g. Conversely, the soil
pH rose slightly from 4.77 to 5.03.
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4.2. Screening of Actinomycetes and Construction of Microbial Community

This study isolated 10 excellent straw-degrading strains from Farm 852’s albic soil,
including a newly identified strain Nonomuraea sp. CP82T, which were well suited to the
local soil environment. Another new strain, Streptomyces sp. NC5T, sourced from other soil
samples, also showed strong straw-degrading potential. A composite strain consortium
of mixed actinomycetes, incorporating Streptomyces sp. NC5T, Nonomuraea sp. CP82T,
Streptomyces sp. JD3, and Pseudomonas sp. MD68, was successfully constructed. After
7 days of fermentation, it achieved remarkable degradation rates: 69.07% for cellulose,
64.98% for hemicellulose, and 68.95% for lignin, outperforming single strains. FTIR, XRD,
and SEM analyses confirmed its structural damage to straw, indicating its potential to
hasten decomposition.

4.3. Effect of Actinomycete Flora in Albic Soil with Straw Returning in Laboratory
Simulation Experiments

Laboratory simulations of straw returning to albic soil further validated the con-
sortium’s capabilities and its impact on soil. Against commercial microbial agents as a
benchmark, adding the mixed actinomycetes proved more effective in degrading straw,
with a peak 16-week straw weight loss rate of 38.78%. After 14 weeks, the D14 group with
mixed actinomycetes significantly enhanced soil microbial abundance. The bacterial OTUs
hit 1501, the highest among groups, while fungal OTUs were 168, the lowest, suggesting
bacteria as the main drivers of straw degradation. Compared to the B14 group, Group D
maximized the soil organic matter (SOM) content at 19.47 g/kg. Although TN and TK
levels showed no clear trends, the TP content in Group C and D was generally higher than
the control, likely due to exogenous microbes accelerating straw component release.

In conclusion, the mixed actinomycete consortium holds great promise for improving
straw decomposition and soil quality in albic soil regions, offering a practical approach to
agricultural waste management and soil remediation.
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