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Abstract: Avian influenza (AI), caused by Alphainfluenzavirus (family Orthomyxoviridae),
poses significant threats to poultry, biodiversity, and public health. AI outbreaks in poul-
try lead to severe economic losses, while highly pathogenic strains (HPAIVs) severely
impact wild bird populations, with implications for biodiversity and potential zoonotic
risks. Similarly, arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) are
emerging zoonoses. WNV can cause severe neurological diseases in birds, humans, and
other animals, while USUV significantly affects blackbird populations and has zoonotic
potential, though human cases remain rare. This study investigated avian viruses in
1654 wild birds from 75 species that died at the Wildlife Rescue Center in Vanzago,
Lombardy, during 2023–2024. Necropsies were conducted, and virological analyses
were performed to detect avian influenza viruses, WNV, and USUV. Among the tested
birds, 15 were positive for H5N1 HPAIV clade 2.3.4.4b, all in 2023, including 13 Chroic-
ocephalus ridibundus, one Coturnix coturnix, and one Columba palumbus. Additionally,
16 tested positive for WNV (15 for lineage 2 and one for lineage 1), one for USUV, and
11 co-infections WNV/USUV were recorded in 2023–2024. These findings underscore
the importance of avian viral passive surveillance in identifying epidemiological trends
and preventing transmission to other species, including mammals and humans.

Keywords: avian influenza; West Nile virus; Usutu virus; H5N1; HPAIV clade 2.3.4.4b;
wild birds; passive surveillance

1. Introduction
The need for a deeper understanding of the epidemiology of critical zoonoses, essential

for safeguarding both human and animal health, alongside the development of increas-
ingly sensitive diagnostic systems, has ushered in a new era in wildlife infectious disease
surveillance. Over 70% of emerging zoonotic diseases originate from wildlife populations,
emphasizing even more the importance of targeted monitoring efforts [1].
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Among wildlife, avian species hold a central position in the ecology of numerous
pathogens, acting as both reservoirs and vectors of microorganisms that have significant
implications for public health and a high economic impact on the poultry production
system [2]. Several viral diseases affect wild birds, some of which are of particular concern.
Among these, avian influenza disease (AI) and vector-borne diseases such as those caused
by West Nile virus (WNV) and Usutu virus (USUV) have drawn significant attention due
to their zoonotic potential and economic impact [2–4].

Avian influenza, caused by viruses classified within the genus Alphainfluenzavirus of
the family Orthomyxoviridae [5,6], primarily infects birds but exhibits a broad host spectrum.
Viruses belonging to this genus are the most significant and widespread within the viral
family. They are classified into subtypes based on the antigenic properties of their surface
glycoproteins: haemagglutinin (HA) and neuraminidase (NA) [5,7,8]. To date, 18 HA and
11 NA subtypes have been identified. Of these, 16 HA and 9 NA subtypes are maintained
in wild bird populations, contributing to the natural circulation of avian influenza viruses
(AIVs) [5,8–10]. These viruses are further categorized into low pathogenicity (LPAIV) and high
pathogenic (HPAIV) strains based on the severity of clinical signs observed in birds, especially
in poultry, with HPAIV responsible for lethal systemic infections [3,11–13]. While HPAI viruses
infections have been considered as rarely occurring in wild birds, LPAIV strains have been
isolated in at least 105 wild bird species across 26 families [5,9], with species within the
orders Anseriformes (mainly ducks, geese, and swans) and Charadriiformes (gulls, terns, and
shorebirds) officially recognized as reservoirs of LPAIVs [9,11,14,15]. Moreover, given their
migratory behavior, birds belonging to these orders are considered principal contributors
to the global dissemination of AIVs and key vectors in transmitting these viruses to poultry
and mammalian hosts [3,9,14,16]. Considering that detecting H5/H7 HPAI in poultry
entails adopting strict veterinary police measures, with severe economic losses, it is crucial
to ensure the monitoring of AI [17,18]. Additionally, the identification of HPAI viruses with
genetic markers indicating potential adaptation for replication in mammals underscores
the importance of systematic surveillance systems [5,19,20].

Other avian viruses for which monitoring wild birds becomes essential for protecting
human and animal health are the West Nile virus and Usutu virus. Considered emerging
zoonoses in Europe and Italy, where they have now been endemic for more than a decade, the
West Nile disease (WND) and Usutu disease are caused by two distinct but related neurotropic
flaviviruses (genus Flavivirus; family Flaviviridae). These viruses are maintained in the environ-
ment through an enzootic transmission cycle involving wild birds, recognized as the reservoir
hosts, and mosquitoes, in particular Culex sp., as intermediate vectors [21–23]. While numerous
bird species are susceptible to WNV and USUV, members of the family Passeriformes (especially
house sparrows, corvids, and blackbirds) are identified as the most significant avian reservoir
in the epidemiology of WNV and Usutu virus in Europe and the Americas [24,25]. Humans
and other mammals, including horses, can be infected through bites of infected mosquitoes.
Still, they are considered spillovers and “dead-end” hosts, as they do not contribute to fur-
ther virus transmission [21,25,26]. Despite this, WNV is particularly concerning due to its
potential to cause lethal neurological forms in a low percentage of infected “dead-end” hosts.
Conversely, USUV appears to be more pathogenic in some wild bird species but rarely causes
severe disease in humans, typically resulting in asymptomatic infections [21,27,28]. How-
ever, growing evidence suggests that the public health risk associated with USUV circulation
should be reconsidered [29,30]. Since no effective therapies or vaccines exist for treating and
preventing these arboviruses in humans, establishing a rigorous monitoring system becomes
essential for preventing outbreaks [31,32]. In particular, since many infections in humans
could be asymptomatic, there is a need to avoid iatrogenic infections through blood and
organ donations [33–36].
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Given the ecological roles of wild birds in the distribution and persistence of AIVs,
WNV, and USUV, systematic surveillance of avian populations is essential. Monitoring wild
birds offers valuable insights into pathogen transmission and virus circulation, enabling
the early detection of outbreaks in food-producing animals and infection in companion
animals and humans [37]. In light of these considerations, national surveillance plans for
AI [38] and arbovirosis [39] are regularly performed in Italy.

In alignment with the Avian Influenza National Surveillance Plan and the National
Plan for the Prevention, Surveillance, and Response to Arbovirosis (PNA), the present
study aimed to conduct a post-mortem investigation of AIVs, WNV, and USUV in wild
birds deceased at a wildlife rescue center in Lombardy during 2023–2024. Given the
extensive regional coverage of wetland areas, Lombardy hosts a significant number of
resident and overwintering aquatic birds. In light of this, and considering the high density
of poultry farms in the region, monitoring wild bird populations holds strategic importance
for safeguarding both public health and the poultry production system.

2. Materials and Methods
2.1. Animals

The study was carried out from 2023 to 2024. During this time, wild birds belonging to
different species were monitored and subjected to subsequent virological control to detect
AIVs, WNV, and USUV. All wild birds considered died spontaneously or were humanely
euthanized at the Wildlife Rescue Center WWF of Vanzago (Lombardy region), a facility
dedicated to the sheltering and recovery of wild animals. The euthanasia protocol was
applied by the center’s veterinary medical director in accordance with animal welfare
regulations and legal requirements, in cases of severe illness, injury, or debilitation, or
when release into the wild was not feasible. Therefore, no animals were deliberately or
specifically sacrificed for the purposes of this study.

Birds were sampled consistently throughout the two-year period. Seasonal variation in
sample numbers reflects natural fluctuations in bird admissions associated with breeding, the
nestling season and migration periods. A graphical representation of the number of samples
collected per month in 2023 and 2024 is available in the Supplementary Materials (Figure S1).

At the Rescue Center of Vanzago, all wild animals undergo a medical assessment upon
admission. Each specimen is assigned a unique identifier, and a corresponding clinical record
is created. This record provides veterinarians and staff with detailed information on the
individual, including clinical data, anamnesis, and the date and location of discovery.

2.2. Samples Collection

Upon death, all wild birds were frozen at −20 ◦C and transported weekly to the De-
partment of Veterinary Medicine and Animal Sciences at the University of Milan, Lombardy,
Italy. Here, each specimen underwent a necropsy exam to collect tissue samples, including
the brain, trachea, lungs, heart, spleen, kidneys, and intestine. All organs collected from
each specimen were preserved in sealed Petri dishes (one dish per animal), labeled with
the species, and identified with the unique identification code assigned upon the animal’s
admission to the rescue center. The samples were then frozen at −20 ◦C and stored for
subsequent investigation for the presence of AIVs, WNV, and USUV. A dedicated document
labeled W02, titled “Surveillance of Resident Birds from Synanthropic Species—Monitoring
Mortality in Wild Birds”, was filled for every tissue sample. This document was specifically
designed by National Veterinary Authorities to ensure accurate tracking and handling
of samples throughout the collection and testing process as part of the West Nile disease
surveillance program.
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2.3. Detection of Viral Genomes

The collected samples were sent to the Virology Department of Istituto Zooprofilattico
Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, where they were
analyzed using molecular techniques.

Following mechanical homogenization of the organs collected from each individual,
viral RNA was extracted from each sample using the QiaSymphony SP/AS (Qiagen, Hilden,
Germany) with the DSP Virus/Pathogen mini kit (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol, with a final elution volume of 60 µL. The AIV genome detection
was performed using a real-time RT-PCR whose target is the M-gene, as described in [40].
Positive samples were subsequently analyzed using two real-time RT-PCR assays for the
detection of the H5 and H7 genomes [40,41]. Samples positive for H5 or H7 were sent to
the National Reference Laboratory for Avian influenza and Newcastle disease at the Istituto
Zooprofilattico Sperimentale delle Venezie (IZSVe) in Legnaro (Padua) for confirmation of
positivity and for genomic typing. Laboratory methods were performed in accordance with
internal procedures [42]. At this facility, neuraminidase subtyping of avian influenza-positive
samples was performed using real-time RT-PCR with multiple oligonucleotide sets (protocol
code PDPVIR1004) [43–45]. H5 pathotyping and clade definition were conducted using real-
time RT-PCR assays targeting the multi-basic cleavage site specific to highly pathogenic H5
strains (protocol codes PDPVIR1005 and PDPVIR125) [46].

Viral RNAs extracted from bird samples were further analyzed at the IZSLER for the
detection of WNV and USUV genome by two real-time RT-PCR assays [47,48]. WNV positive
samples from the first real-time RT-PCR were further tested using additional real-time RT-PCR
to identify WNV lineages L1 and L2 [49]. Samples positive for WNV and USUV were sent
to the National Reference Centre for Exotic Diseases (CESME) of the Istituto Zooprofilattico
Sperimentale dell’Abruzzo e del Molise (IZSAM) in Teramo for confirmation of positivity.

3. Results
During the two-year period, 1654 wild birds from 75 different species belonging to

19 orders were monitored for AIVs, WNV, and USUV. Of these, 815 (49.3%) specimens were
collected in 2023 and 839 (50.7%) were collected in 2024 (for more details see Table S1 in the
Supplementary Materials).

The majority of the specimens analyzed in this two-year period belonged to the orders
Passeriformes (n = 805, 49%), Columbiformes (n = 260, 16%), Apodiformes (n = 133, 8%), and
Anseriformes (n = 102, 6%), collectively accounting for approximately 79% of all individuals
examined in the study (Figure 1a). The remaining 21% consisted of 15 other orders, with the
orders Caprimulgiformes, Podicipediformes, Bucerotiformes, Ciconiiformes, Suliformes, Cuculiformes,
and Gruiformes as the most underrepresented in the sample (Figure 1b).

The Wildlife Rescue Center of Vanzago is the largest in northern Italy in terms of the
number of annual hospitalizations, serving as a reference facility for other Italian regions.
It usually admits animals from more than half of the provinces of Lombardy and covers
almost 70% of the regional territory. The birds that died in the rescue center included
in this study came from different provinces, among which the most representative were
Milan (n = 1092, 66%), Varese (n = 212, 13%), and Monza Brianza (n = 174, 10%) (Figure 2a).
The wild birds from these provinces constituted 89% of the total population sampled for
the present study. The remaining 11% (n = 176) consisted of specimens originating from
12 other provinces inside, i.e., Como (n = 93), Lodi (n = 49), Pavia (n = 13), Bergamo (n = 7),
Lecco (n = 2), Cremona (n = 2), Brescia (n = 1), and outside Lombardy, i.e., Novara (n = 4),
Verbania (n = 2), Macerata (n = 1), Lucca (n = 1), and Genova (n = 1) (Figure 2b).
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Figure 2. Provinces of origin of wild birds analyzed. (a) Provinces within Lombardy region con-
tributing to wild bird samples analyzed during 2023–2024, showing the most representative areas.
(b) Geographic origins of wild birds analyzed during 2023–2024, including provinces from both
Lombardy and neighboring Italian regions (“Other provinces” in (a))”.

3.1. Prevalence of AIVs

In total, 15 out of the 1654 samples tested for AIVs in this two-year period tested
positive for Alphainfluenzavirus. All positive samples were identified as subtype H5N1
HPAIV, clade 2.3.4.4b. These positive cases were recorded exclusively in 2023, with an
overall prevalence of 1.8% (n = 15/815) for that year. All positive cases were recorded in
February and March 2023 in the Lombardy provinces of Milan, Varese, and Monza Brianza
(Figure 3).
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Figure 3. Locations of avian influenza virus (H5N1 HPAIV clade 2.3.4.4b) positive cases in Lombardy,
detected in wild birds during February and March 2023 (QGIS 3.34.3 map).

Among the positive specimens, 13 were identified as Chroicocephalus ridibundus, one as
Coturnix coturnix, and one as Columba palumbus, as summarized in Table 1.

Table 1. Summary of avian influenza-positive cases (H5N1 HPAIV) by order and species detected
in 2023.

Order Species Total (2023) Positivities for AIV Type

Charadriiformes Black-headed Gull
(Chroicocephalus ridibundus) 17 13 pos H5N1 HPAIV, clade 2.3.4.4b

Galliformes Common Quail
(Coturnix coturnix) 1 1 pos H5N1 HPAIV, clade 2.3.4.4b

Columbiformes Common Woodpigeon
(Columba palumbus) 69 1 pos H5N1 HPAIV, clade 2.3.4.4b

Total 15

Considering the taxonomic orders of these specimens, AI prevalence was defined to
be 46% (n = 13/28) and 33% (n = 1/4) in the Charadriiformes order and in the Galliformes
order, respectively. Within the Columbiformes order, only one positive case was detected
among 118 specimens, resulting in a prevalence of 0.8%.
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3.2. Prevalence of WNV and USUV

In total, 28 out of the 1654 samples tested in 2023–2024 for WNV and USUV tested
positive for these arthropod-borne viruses, with an overall prevalence of 1.7% (n = 28/1654).

Passive surveillance for arboviruses performed in 2023 revealed 26 positive tissue
samples out of 815 specimens analyzed, originating from the Lombardy provinces of Milan,
Varese, Como, and Monza Brianza (Figure 4). Of these, 13 samples tested positive for WNV
lineage 2 (L2), one for WNV lineage 1 (L1), and one for USUV. Additionally, 11 cases of
co-infection with WNV L2 and USUV were detected (Figure 4).
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sampled in Lombardy during 2023–2024 (QGIS 3.34.3 map).

Table 2 summarizes the arboviruses-positive results recorded in 2023. All these positive
cases were detected between July and September 2023.

During the year 2023, the prevalence of WNV (including both L2 and L1) in the
sampled population was 1.7% (n = 14/815), while the prevalence of USUV was 0.1%
(n = 1/815). Co-infection with WNV L2 and USUV had a prevalence of 1.3% (n = 11/815).

When considering WNV, given the 14 positivities recorded, the highest number of
positive cases was observed in Passeriformes (n = 7/14), with the Corvidae family being the
most represented among the positive specimens, followed by Accipitriformes (n = 4/14),
Falconiformes (n = 2/14), and Apodiformes (n = 1/17). The prevalence of WNV in the order
Accipitriformes and Falconiformes was 28.6% (n = 4/14) and 7.4% (n = 2/27), respectively,
followed by Passeriformes with a prevalence of 1.8% (n = 7/397) and Apodiformes with a
prevalence of 1.6% (n = 1/63). The WNV L1 genome was identified in a single specimen of
Falco tinnunculus in August 2023, while all other positive cases involved WNV L2.
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Table 2. Summary of WNV and USUV positive cases in wild birds, including co-infections, recorded
in 2023.

Order Species Total (2023) Positivities for
WNV Only

Positivities for
USUV Only

Co-Infection
Condition

Accipitriformes

Northern Goshawk
(Accipiter gentilis) 7 4 pos WNV-L2 - -

Eurasian Buzzard
(Buteo buteo) 4 - - 1 pos WNV-L2

and USUV

Apodiformes Alpine Swift
(Tachymarptis melba) 9 1 pos WNV-L2 - 1 pos WNV-L2

and USUV

Columbiformes Common Woodpigeon
(Columba palumbus) 69 - - 1 pos WNV-L2

and USUV

Falconiformes Common Kestrel
(Falco tinnunculus) 25 1 pos WNV-L2

1 pos WNV-L1 - 1 pos WNV-L2
and USUV

Passeriformes

European Goldfinch
(Carduelis carduelis) 6 1 pos WNV-L2 - -

Hooded Crow
(Corvus cornix) 72 4 pos WNV-L2 - 3 pos WNV-L2

and USUV

Eurasian Magpie
(Pica pica) 51 2 pos WNV-L2 - 1 pos WNV-L2

and USUV

Common Blackbird
(Turdus merula) 130 - 1 pos 3 pos WNV-L2

and USUV

Total 14 1 11

During the same year, USUV was detected in only one specimen of Turdus merula,
resulting in a prevalence of 0.2% (n = 1/397) within the order Passeriformes.

Co-infection cases with WNV L2 and USUV were predominantly observed in the
Passeriformes order (n = 7/11), with three cases detected in Turdus merula, one in Pica
pica, and three in Corvus cornix. Co-infection prevalence within Passeriformes was 1.8%
(n = 7/397). Additional co-infection cases were recorded in one specimen each of Accipiter
gentilis, Falco tinnunculus, Columba palumbus, and Tachymarptis melba. The prevalence of
co-infection in these orders was 7% (n = 1/14), 3.7% (n = 1/27), 0.8% (n = 1/118), and 1.6%
(n = 1/63), respectively.

Out of 28 positivities for arboviruses detected in this two-year study, the remaining two
were identified in September 2024 in wild birds that came from the Lombardy province of
Milan (see Figure 4). Both resulted positive for WNV L2, with a total of 15 WNV L2-positive
specimens in 2023–2024. The overall prevalence of WNV in the sampled population in
2024 was 0.2% (n = 2/836). More in detail, one positivity was recorded in a Corvus cornix
specimen and one in a Garrulus glandarius specimen. Given this, in 2024, the prevalence of
WNV in Passeriformes order was 0.5% (n = 2/408).

4. Discussion
Data obtained from the passive surveillance of wild birds provided evidence of the

circulation of avian influenza virus, West Nile virus, and Usutu virus in free-living avian
species in the Lombardy region during 2023–2024.

With reference to the AI, molecular analysis identified the type H5N1 HPAIV, clade
2.3.4.4b, as the responsible agent for all of the 15 positive samples recorded in February and
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March 2023. During the early months of 2023, this AIV was confirmed as the causative agent
of numerous outbreaks affecting both domestic and wild birds across several European
countries [50]. In Italy, two HPAI virus outbreaks were reported in poultry, along with sig-
nificant circulation of the virus among colony-breeding seabird species and waterfowl [50].
Genetic analyses demonstrated that the virus persisted within resident free-living avian
species throughout the summer. Consequently, the 2022–2023 epidemiological year did not
exhibit a distinct onset of the HPAI epidemic season, with positive cases being detected even
during a traditionally “ low-risk “ period for AIV circulation [50]. In this two-year study,
the majority of the positive samples were found in Chroicocephalus ridibundus, aligning
with other Italian and European reports, documenting significant H5N1 HPAI outbreaks
and associated die-offs in seabirds during the same period [50–52]. Northern Italy, in
particular, experienced an unprecedented rise in black-headed gull mortality due to H5N1
HPAIV, clade 2.3.4.4b, particularly in wetland areas [50,51,53]. Given the large resident gull
populations in Italy [54–56], this scenario resulted in an increased risk of influenza virus
transmission to poultry, especially during spring when younger birds—known for higher
pathogen shedding—are more prevalent [51].

In 2024, the number of H5N1 HPAIV detections in both wild and domestic birds
was significantly lower compared to the same period in 2023 [50,57]. This decline may be
attributed, among other factors, to increased immunity within previously affected wild
bird populations, resulting in decreased transmission rates. This condition has led to
fewer mortality events in wild birds across Europe since the beginning of the 2023–2024
epidemiological year and a reduced number of outbreaks in poultry compared to the
same period in the previous year [57]. In light of this, data collected in the present study
confirmed the important role that members of the order Charadriiformes had in the spread
of H5N1 HPAIV, clade 2.3.4.4b, in 2023 in Italy.

The same HPAIV subtype has also been detected in outbreaks involving various
mammalian species worldwide [4,52]. Although the virus maintains a preferential binding
affinity for avian-like receptors, several mutations linked to an increased zoonotic potential
were identified [50,58].

Given the significant role of wild birds in transmitting influenza viruses to poultry
and the potential human health threat [59], the necessity of integrated surveillance plans be-
comes evident. Such plans require collaboration among various stakeholders, with wildlife
rescue centers playing a crucial role. These centers not only contribute to the conservation
of native fauna but also serve as epidemiological observatories for monitoring wild animals’
health. In this study, the involvement of a wildlife rescue center enabled the investigation
of species that are typically challenging to access, such as birds of prey. Moreover, this
collaboration facilitated the extension of the epidemiological survey to include species that
were not listed in the official European surveillance list, valid until 2023 [60]. Until the
recent update [61], the European Union’s surveillance list comprised fifty wild bird species
that were routinely monitored for H5 HPAI viruses. This list provides a framework for
operators to prioritize certain bird species for surveillance, thereby enhancing the early
warning system for AI [60,61]. In the present study, of the 67 species monitored in 2023,
only 10 were included in the European list in force at that time [60]. With these exceptions,
virological surveillance would not have been feasible for the other species without the
collaboration of the wildlife rescue center in Vanzago.

Positivity for H5N1 HPAIV, clade 2.3.4.4b, was also detected in a European Quail
(Coturnix coturnix) and a Common Woodpigeon (Columba palumbus). The European Quail
is well-documented as being susceptible to AIVs [62–64]. On the other hand, the role of
Columbiformes in the maintenance of AIVs remains less understood. Literature on natural
infections in Columbiformes is scarce, and these birds have demonstrated low susceptibility
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to AIVs in experimental settings [65–67]. Given the dynamic nature of HPAIV infection,
Columbiformes have been included in the recently updated European list of prioritized
species for effective AI surveillance [61] despite sporadic reports during the last two years.
This inclusion underscores the need for continued monitoring of this disease for human
and animal health protection.

For WNV and USUV, this study highlighted the predominance of WNV cases, with
16 samples testing positive compared to only one case of USUV during the two-year
period. WNV is one of the most widespread mosquito-borne flaviviruses globally [26,68].
First isolated in Uganda in 1937, in August 1999, it was identified in the United States
where, in the New York City area, it caused deaths in flocks of American Crows (Corvus
brachyrhynchos), as well as neurological forms in horses and people [69]. In Europe, WNV
is currently endemic in central and southeastern Europe [68], with circulating strains
belonging to L1 and L2, which are recognized as the most virulent [21]. In Italy, since 2014,
there has been a progressive increase in the circulation of WNV until 2018, an exceptional
year in terms of the number of cases of infection and disease in humans, equids, and
reservoir species [37,70]. In 2023, a total of 332 confirmed cases of WNV infection in
humans were reported in Italy, with the majority occurring in the Lombardy region [71]. By
comparison, the number of confirmed WNV cases in humans increased in the 2024 vector
season, but Lombardy was not the most affected region [72].

The lesser-known USUV was first observed in Europe in 2001 [73], even though
this virus has probably been present in Europe since 1996. Subsequently, USUV spread
throughout Europe, causing mortality in bird populations and, occasionally, severe human
neurological cases [32,74].

Concerning the reservoir hosts of WNV and USUV, several studies recognize the orders
Passeriformes (especially the families Corvidae, Fringillidae, and Passeridae), Charadriiformes
(family Laridae), Accipitriformes, Falconiformes, and Strigiformes as those comprising the
species most susceptible to these viruses [75–77]. In the present study, among the WNV-
positive cases, several species were identified as particularly susceptible, including Corvus
cornix, Pica pica, Carduelis carduelis, Accipiter gentilis, Falco tinnunculus, and Turdus merula.
The latter resulted particularly susceptible also to USUV infection [74], with the only
recognized case of positivity for this virus.

Most detected WNV cases involved L2, with the exception of a specimen of Falco
tinnunculus, which tested positive for WNV L1. WNV is currently classified into eight
distinct phylogenetic lineages, with L1 and L2 associated with severe clinical manifestations
in humans and horses [78]. Prior to 2011, WNV circulation in Italy was predominantly
attributed to L1 strains [79]. However, in 2011, the introduction of Eastern European
L2 was documented in northeastern Italy. This lineage rapidly disseminated across the
country, ultimately supplanting the previously circulating L1 strains [79,80]. Following
a decade-long absence, WNV L1 re-emerged in areas surrounding the Po River delta,
raising questions about whether it represented a reintroduction or the reoccurrence of
strains that had persisted undetected [79]. This reappearance has further complicated the
epidemiological landscape, as both L1 and L2 now co-circulate in several regions, increasing
the potential for overlapping outbreaks [71,72] and highlighting the importance of rigorous
WNV surveillance systems across Italy.

Although the results of this study confirm positivity in avian orders characterized
by species most susceptible to WNV and USUV infection, the high number of cases in
scavenging and predatory species is notable. Although the primary transmission cycle of
WNV and USUV involves the ‘mosquito–bird–mosquito’ pathway, studies have shown that
some bird species can also become infected through the ingestion of viremic prey [75,81].
The significance of oral transmission likely differs among raptor species, influenced by
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different factors such as the susceptibility of their prey to WNV. Despite this, various
studies suggest that raptors are among the avian species most frequently affected during
WNV outbreaks [82].

The fact that 14 out of 16 positives for WNV were recognized in Turdus merola, Pica pica,
and Corvus cornix is also in line with the literature. The documented feeding preference of
Culex mosquitoes for the Common Blackbird (Turdus merula) has significant epidemiological
implications. A decrease in the Turdus merula population due to migration or extensive an-
thropogenic changes in the environment has been associated with an increased incidence of
Culex blood meals on corvids [83]. Consequently, corvid species play a critical role in the epi-
demiology of WNV in Europe. In contrast, the other species identified as WNV-positive in
this study are infrequently implicated in disease outbreaks. This observation is particularly
relevant when considering the Common Woodpigeon (Columba palumbus). Species within
the order Columbiformes, as well as those belonging to Pelecaniformes, Psittaciformes, and
Galliformes, do not typically develop viremic levels sufficient to support the transmission of
the pathogen and, consequently, the ongoing virus circulation in the environment [75].

The detection of WNV in one specimen of Alpine Swifts (Tachymarptis melba) is also
interesting, given the fact that this species is recognized as potentially involved in the
introduction, amplification, and spread of the pathogen from southern Africa to Europe [84].

WNV and USUV co-circulate in Europe, sharing both vector hosts and some reservoir
hosts. The overlap of these arboviruses increases the likelihood of co-infection cases, which
in susceptible species have already been reported, although not as frequently, due to
antibody cross-reactivity [21,27,36,85,86]. Considering this, the finding of 11 co-infections
with WNV L2 and USUV within a short period (July–September 2023) is significant. It
highlights the need for more in-depth studies on this topic. Indeed, co-infections may
present a different outcome than mono-infections, thus having a different weight regarding
public health protection [21,86].

Lombardy hosts significant numbers of overwintering aquatic birds, and many of
its wetlands are of conservation importance, with a high degree of regional coverage.
Regarding surface area, 85% of the wetlands surveyed in Lombardy consist of natural
lakes, making it the Italian region most abundant in lakes, followed by rivers, which
account for 10.6%. Other types of wetlands, such as marshy areas, collectively cover
approximately 5% of the total wetland surface [87,88]. The abundance of water in the
region serves as a natural attractant for many species of wild aquatic birds, which use these
habitats as important stopover sites during migration. Over the two years considered in
this study, the International Waterbird Census (IWC) conducted in Lombardy recorded over
120,000 overwintering aquatic birds from various species [55,56]. Among these, Anatidae
and Laridae species populations are particularly well-represented, with the mallard (Anas
platyrhynchos) and the black-headed gull (Chroicocephalus ridibundus) being some of the most
abundant species [55,56]. These two species are key reservoirs of avian influenza viruses.

Furthermore, these wetlands, in particular marshy areas, meet the criteria for a success-
ful transmission cycle of West Nile virus and Usutu virus, as they are rich in mosquitoes,
often situated near equine and human populations, and, as previously mentioned, attract
large numbers of migratory birds [89]. Considering this, in the PNA, Lombardy is classi-
fied as a high-risk region for the circulation of WNV, where infection episodes have been
repeatedly observed over the years [39].

In light of these aspects, and given that the majority of poultry farms are located
in the northern regions of Italy—with Lombardy accounting for 15% of national poultry
farms and 11% of the total poultry population—the monitoring of wild bird populations
in Lombardy is of paramount importance [90]. Such surveillance allows for the rapid
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identification of the presence and circulation of avian viruses, thereby safeguarding both
the poultry sector and public health.

5. Conclusions
The observation of avian influenza outbreaks in wild birds and poultry is no longer

an uncommon phenomenon. Outbreaks in avian species have been established with
increasing frequency over the past 15 years, with at least ten H5 HPAI epidemic events
in Europe resulting in mass mortality events among poultry and free-living birds during
this period [91]. While prior to 2009, AI outbreaks were predominantly associated with
the H5N1 subtype, clade 2.2, the period from 2014 onward has seen a shift, with most
European outbreaks now driven by HPAI H5N1 clade 2.3.4.4b viruses. This lineage, which
has become predominant globally, is characterized by high pathogenicity and the presence
of genetic markers indicating a likely adaptation to mammals [4,50–52,92].

In parallel, Europe and Italy have witnessed an increase in the incidence of WNV and
USUV outbreaks in both wild birds and humans since 2020. Notably, in 2023, 709 human
cases of WNV were reported across nine EU countries, with 332 cases occurring in Italy [71].
Although this represents a decrease from the numbers reported in 2022 and 2018, the
broader geographical distribution of cases indicates the introduction and establishment of
the virus in new areas [70,93]. This expanding range, coupled with the increasing incidence
and severity of symptoms, underscores the need to view WNV and USUV as serious
emerging threats to public health [27].

To prevent outbreaks of AI, WND, and Usutu disease in livestock, pets, and humans,
the establishment of a comprehensive surveillance system targeting the bird population is
imperative. Such a system must incorporate both active and passive surveillance measures.
Monitoring wild birds plays a crucial role in this context, as it provides an early warning
system for potential or actual threats to reservoir populations [94–97].

While passive surveillance, as employed in the present study, has certain limitations—
such as procedural delays and potential sample heterogeneity due to variations in avian
species distribution [94,98]—the data generated are invaluable, and the findings of this
study demonstrate the utility of passive surveillance in identifying and assessing emerging
threats. However, integrating passive measures with those implemented in active surveil-
lance is essential for a more comprehensive epidemiological understanding of AI, WND,
and Usutu disease, as also reported by Trogu et al. [53]. In Lombardy, the integration of
passive and active surveillance in wild birds is already in place, as both approaches are man-
dated at the national level under the National Plan for Avian Influenza Surveillance [38].
This comprehensive surveillance framework constitutes a highly effective early warning
system, which is crucial not only for the protection of public health but also for safeguarding
the poultry industry. Moreover, the PNA 2020–2025 [39] further strengthens this approach
by incorporating entomological, human, and animal surveillance, with a specific focus on
wild birds as sentinels for arboviral circulation.

By ensuring the timely detection and assessment of these emerging threats, this
integrated strategy plays a fundamental role in mitigating potential zoonotic risks to both
human and animal populations [96,97].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms13050958/s1, Figure S1: Monthly distribution
of sampled wild birds (2023–2024); Table S1: Taxonomic orders and species of wild birds analyzed
during 2023–2024, with distribution by year.
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