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Abstract: Fluorite is an important strategic mineral. In general, fluorite ores will contain a certain
amount of calcite gangue mineral. Thus, they need to be separated from each other. For an economic
separation, a reverse flotation process is used to float calcite gangue from fluorite. However, little
information on the separation is available. In this study, a novel reagent schedule using citric acid
(CA) as the depressant, sodium fluoride (NaF) as the regulator and sulfoleic acid (SOA) as the
collector, was developed to separate calcite from fluorite. The results demonstrated a high selectivity
for the flotation of calcite from fluorite using this new reagent schedule. The best selective separation
for a single mineral and mixed binary minerals was obtained when 200 mg/L of NaF, 50 mg/L of
CA, and 6 mg/L of SOA were used at pH 9. In addition, a batch flotation experiment was carried out
using a run-of-mine feed material. Selective separation was achieved with 85.18% calcite removal
while only 11.2% of fluorite was lost. An attempt was made to understand the effect of the new
reagent schedule on the flotation of calcite. The results from both microflotation and bench scale
flotation demonstrated a great potential for industrial application using this novel reagent schedule
to upgrade fluorite ore.
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1. Introduction

Fluorite (CaF2), which is a major resource of fluorine, has been considered to be an important
strategic mineral in recent years. Fluorite mineral are often associated with calcite (CaCO3), and needs
to be separated from each other by flotation. A fluorite-rich-ore usually contains 30% of fluorite and
10%–20% or less calcite. For an economic separation, a reverse flotation of calcite while depressing
fluorite is generally considered according to the principle of “float less and depress more” [1].
However, little information was reported for this separation.

Fluorite and calcite have the same surface Ca2+ ions and hence have similar flotation response
to commonly used fatty acid collectors [2,3]. Therefore, it is not practical to achieve their separation
using a traditional flotation reagent. It is necessary to develop new reagents for efficient flotation of
calcite from fluorite. However, there has been little information reported about reagents scheme in
this system.

Previous work showed that citric acid (CA) does not have a significant depressive effect on the
oleate flotation of calcite [4,5] but can moderately depress fluorite [6]. Furthermore, the depressive
effect of CA is not affected by the hardness of water due to its strong chelating capacity with Ca2+ or
Mg2+ [7]. Therefore, CA might be a depressant in the flotation of calcite from fluorite.

It was also reported that NaF depresses fluorapatite (Ca5F(PO4)3), which also contains fluorine [8].
However, for collophanite (Ca10(PO4)6(OH) with no fluorine, NaF can activate its flotation since
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the chemisorption of fluoride at surface Ca sites can produce a fluoroapatite-type compound on its
surface [9]. In this regard, it was expected that NaF can be used as a selective regulator to depress the
fluorite and to activate the calcite flotation.

In this study, using depressant CA and regulator NaF, a novel reagent schedule for the flotation of
calcite from fluorite was evaluated by flotation experiments using a single mineral sample flotation
test. This new reagent schedule was further evaluated in the flotation experiments using the mixed
binary mineral sample and run-of-mine ore sample. The mechanism of the selective separation was
investigated through zeta potential measurement.

2. Materials and Methods

2.1. Pure Minerals and Reagents

Pure calcite and fluorite minerals were obtained from Xinyuan Mine, Chenzhou, Hunan, China.
These minerals were ground in a porcelain ball mill with zirconia balls. The X-ray diffraction (XRD)
spectrums (Figure 1) confirmed that the fluorite and calcite samples were over 99% and 99% pure,
respectively. The −74 + 37 µm milled samples were used for the flotation experiment. Samples further
finely ground in a mortar and pestle to –2 µm were used for zeta potential measurement.
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Industrial grade sulfoleic acid (SOA, CH3(CH2)8CH(SO4H)(CH2)7COOH) was supplied by
Zhuzhou Chemical Industry Research Institute, Zhuzhou, China. Analytically pure CA (C6H8O7)
was provided by Huihong Reagent Co., Ltd, Changsha, Hunan, China. Analytically pure NaF was
purchased from Xilong Chemical Co., Ltd, Shantou, Guangdong, China. The pH was adjusted with
sodium hydroxide (NaOH) or hydrochloric acid (HCl) stock solutions. Deionized (DI) water with a
resistivity of over 18 MΩ × cm was used throughout the experiments.

2.2. Flotation Experiment

An XFG flotation machine (Figure 2) (Exploring Machinery Plant, Changchun, China) with a
40 mL cell was used for flotation tests of single mineral and mixed binary minerals, while a 1.5 L
cell was used for run-of-mine ore, at an impeller speed of 1700 rpm. The flotation pulp for single
and mixed binary minerals was prepared by adding 2 g of mineral samples to 35 mL of DI water,
while the pulp of run-of-mine ore was obtained by 500 g samples and 1000 mL DI water. The pulp
was conditioned for 2 min, followed by 3 min of conditioning after the pH of the mineral suspension
was adjusted to the desired value. A depressant was then added and the pulp conditioned for 3 min,
followed by the addition of SOA and 3 min of conditioning. The stable value of pH was recorded
before flotation. For single mineral flotation, the products were collected, dried, and weighed, and the
recovery was calculated. For flotation tests of mixed minerals and run-of-mine ore, the concentrates
and tails were assayed for W and Ca. At least 3 flotation tests were made for a confirmed experimental
condition, and the average recovery and the standard deviation were calculated.
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2.3. Zeta Potential Measurement

Zeta potential measurements were conducted at 20 ◦C using a Nano-ZS90 zeta potential analyzer
(Malvern Instruments, Malvern, UK). A dilute mineral suspension was prepared by adding 0.02 g of
mineral sample to 40 mL KCl (0.01 mol/L) solution. Then, the desired reagent(s) was added as the
same order of flotation experiment, and the pH was adjusted and measured. The mineral suspension
was magnetically stirred for 10 min. After standing for 5 min, the supernatant liquid of the mineral
suspension was sucked out and used for zeta potential measurement. At least 3 measurements were
made for every confirmed experimental condition, and the average zeta potential and the standard
deviation were calculated.

3. Results and Discussions

3.1. Single Mineral Flotation Experiment Results

Previous reports showed that oleic acid (OA) has a stronger collecting power for fluorite than for
calcite [10–12]. In this work, SOA was used to improve its collecting power for calcite. The flotation
behavior of calcite and fluorite using SOA as the collector was evaluated by the single mineral flotation.
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Figure 3a shows the effect of SOA dosage on flotation recoveries of calcite and fluorite. It can
be seen that the recoveries of two minerals increase steadily with the increasing of SOA dosage at
pH 9.0, and reach the maximum of 95.6% and 86.02%, respectively, when the SOA dosage is 6 mg/L.
Figure 3b shows the effect of pH on flotation recoveries of calcite and fluorite. It can be seen that the
recoveries for two minerals are virtually unchanged in the range of pH 8.0–11.5 at an SOA dosage of
6 mg/L. These results indicate that SOA has a slightly stronger collecting power for calcite than for
fluorite, but using SOA collector alone cannot achieve the selective separation of calcite from fluorite.
A selective depressant for fluorite is needed. An SOA dosage of 6 mg/L was preferred for all other
flotation experiments.
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Figure 3. Effect of SOA dosage (a) and pH (b) on flotation recoveries of calcite and fluorite minerals
using SOA as the collector.

CA was used as a depressant for the flotation test. Figure 4a shows the effect of CA dosage on
flotation recoveries of calcite and fluorite using the SOA collector. It is observed that the recovery of
fluorite decreases more rapidly than that of calcite as the CA dosage increases. These results indicate
that using a combination of CA + SOA can achieve the selective separation of calcite from fluorite at
pH 9 and a CA dosage of over 50 mg/L. However, the calcite recovery is only about 62%. Figure 4b
shows the effect of pH on flotation recoveries of calcite and fluorite using CA + SOA. It can be seen that
the fluorite recovery increases from 11.32% to 48.53% with the pH increasing from 9 to 11, indicating
that an increasing pH level can lower the depressing ability of CA for fluorite and has a detrimental
effect on the separation performance. Therefore, a CA dosage of 50 mg/L and pH 9 were preferred in
the following flotation tests.
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Regulator NaF was also used for a flotation test. Figure 5a shows the effect of NaF dosage on
flotation recoveries of calcite and fluorite using the SOA collector. It was observed that as the NaF
dosage increases, the calcite recovery approaches 100%, but the fluorite recovery decreases from 86%
to 75%. The results suggest that NaF has a weak depressing effect on fluorite flotation and some
activation effect on calcite flotation. Figure 5b shows the effect of pH on flotation recoveries of calcite
and fluorite using NaF + SOA. It can be seen that while increasing pH level can reduce the depressing
effect of NaF on fluorite flotation it has little influence on the activation effect on calcite flotation.
Thus, pH 9 was used for the following flotation tests.
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Using the combination of CA + SOA can strongly depress the fluorite flotation and reduce the
calcite flotation moderately. However, using the combination of NaF + SOA can partly activate calcite
flotation and depress fluorite flotation. Therefore, using a depressant CA, regulator NaF and collector
SOA, the flotation behavior of calcite and fluorite was investigated at pH 9. Figure 6 shows the effect
of NaF dosage and order of addition of NaF and CA on flotation recoveries of calcite and fluorite.
It can be seen that calcite recovery stays over 88% while that of fluorite is only 1.8% when the NaF
dosage is above 200 mg/L. It is interesting to notice that the addition order of NaF and CA has little
effect on the separation performance. Thus, the novel reagent combination of CA (50 mg/L) + NaF
(200 mg/L) + SOA (6 mg/L) at pH 9 can be a desirable reagent schedule for the flotation separation of
calcite from fluorite.
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It should be noted that the reagent schedule of “CA (50 mg/L) + NaF (200 mg/L) + SOA (6 mg/L)
at pH 9” was developed by one-factor-at-a-time (OFAT) methodology. Orthogonal array design
(OAD) is to incorporate the advantages of simplex method and factorial design [13]. This method
arranges different factors for effective optimization of experimental conditions. To evaluate the
interactions among those four factors and effects on the flotation recoveries of fluorite and calcite,
a design of experiment based on OAD was used, L25(56) [14], (where for four factors, five levels
for each factor, the total number of factors and responses is six. The total experiment is 25 runs).
The detailed design of experiment and results of orthogonal experiment were presented in Tables S1–S3
in the Supplementary Material. The results showed that the reagent schedule developed by OFAT
methodology was adequate.

3.2. Mixed Binary Mineral Flotation Experiment Results

A flotation test on mixed binary minerals of calcite (0.33 g) and fluorite (1.67 g) was carried out
to evaluate the separation performance of the novel reagent schedule, the results are presented in
Table 1. Table 1 shows that in the calcite concentrate, the calcite recovery was 88.1% while that of
fluorite was only 6.5%. These results indicate that, using the novel reagent schedule, a high separation
efficiency between calcite and fluorite can be achieved with a fluorite concentrate having low calcite
contaminations. The novel reagent scheme can be used to remove the calcite from a binary mineral
mixture of calcite and fluorite.

Table 1. The results of mixed binary minerals (a) and run-of-mine fluorite ore (b) flotation tests using
the reagent schedule of CA + NaF + SOA at pH 9.

Weight (g) Grade (%) Recovery (%)

(a) (b)
(a) (b) (a) (b)

Fluorite Calcite Fluorite Calcite Fluorite Calcite Fluorite Calcite

Concentrate 0.4 (0.02) 121.6 (2.3) 27.07 (1.7) 72.93 (2.1) 18.59 (1.1) 66.67 (1.3) 6.5 (0.2) 88.1 (1.5) 11.2 (0.9) 85.2 (1.9)
Tailings 1.6 (0.08) 373.4 (3.4) 97.57 (2.3) 2.43 (0.12) 48.01 (1.5) 3.78 (0.4) 93.5 (2.1) 11.9 (0.8) 88.8 (2.0) 14.8 (0.7)

Total 2.0 495 (2.8) 66.7 33.3 40.78 (1.4) 19.23 (0.6) 100.00 100.00 100.00 100.00

Note: the number in parentheses shows the standard deviation.

3.3. Run-of-Mine Ore Batch Flotation Test Results

Batch flotation practice on a run-of-mine fluorite ore was carried out. A feed ore contains 39.97%
fluorite and 17.87% calcite, with the other main components being 36.69% micaceous minerals and
3.35% limonite. The grinding fineness was 93% −74 µm. The reagent schedule was as follows: pH 9,
CA 3000 g/t, NaF 8000 g/t and SOA 150 g/t. The flotation results are presented in Table 1. It can
be seen that, in calcite concentrate, the calcite recovery is up to 85.2% while fluorite has a very low
recovery of 11.2%. A tailing with 48.01% of fluorite and 3.78% of calcite was produced and further
processed to obtain a high grade fluorite concentrate. Those results indicate that using this novel
reagent scheme can selectively remove calcite from a fluorite–calcite ore.

3.4. Zeta Potential Measurement Results

The mechanism of the selective separation was investigated through zeta potential measurement.
Zeta potentials of calcite and fluorite minerals in the absence and presence of flotation reagents were
measured, and the results are shown in Figure 7. It can be observed that in the absence of any reagent,
isoelectric points (IEPs) of pH 9.1 and pH 10.6 were obtained for fluorite and calcite, respectively,
which are in agreement with previous reports [15–20]. Figure 7 also shows that, at pH 9, the addition
of SOA causes a greater decrease, by 35 mV, for calcite zeta potential compared with 20 mV for fluorite.
Those results indicate that at pH 9 anionic SOA can interact more strongly on the positively charged
calcite surface than on the fluorite surface, which agrees well with the flotation results (Figure 3).

Figure 7a shows that at pH 9, the addition of CA or CA + SOA causes a similar change to
the fluorite zeta potential, indicating that SOA cannot favorably adsorb on “fluorite + CA” surface
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(i.e., fluorite surface with pre-adsorbed CA). Figure 7b shows that SOA addition shifts the zeta potential
of “calcite + CA” surface to a more negative value by 6 mV, indicating that SOA can adsorb on the
“calcite + CA” surface. The difference of SOA adsorption on “fluorite + CA” and “calcite + CA”
surfaces can explain relatively high calcite recovery and a low fluorite recovery using CA + SOA
reagent schedule (Figure 4).
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It is also seen that, at pH 9, the addition of CA + NaF reverses the zeta potentials of fluorite and
calcite from positive to negative almost to the same degree. The adding of SOA causes a slight increase
for the zeta potential of the “fluorite + CA + NaF” surface (Figure 7a), indicating that SOA cannot
readily adsorb on the “fluorite + CA + NaF” surface. For calcite, SOA addition shifts the zeta potential
of the “calcite + CA + NaF” surface to a more negative value by 16 mV (Figure 7b), suggesting that SOA
can further favorably adsorb on the “calcite + CA + NaF” surface. The difference of SOA adsorption
on “fluorite + CA + NaF” and “calcite + CA + NaF” surfaces can explain a high calcite recovery and
absolute depressed flotation of fluorite using a “CA + NaF + SOA” reagent schedule (Figure 6).

It is interesting to notice that the decrease by 16 mV from the zeta potential of the
“calcite + CA + NaF” surface to that of “calcite + CA + NaF + SOA”, is much higher than the decline
by 6 mV from the zeta potential of “calcite + CA” surface to that of “calcite + CA + SOA”. These results
indicated that NaF plays an important role in the enhanced adsorption of SOA on the “calcite + CA”
surface, which agrees well with the higher calcite recovery using “CA + NaF + SOA” (Figure 6) than
using “CA + SOA” (Figure 4).

4. Conclusions

A novel reagent schedule of depressant CA, regulator NaF and collector SOA was developed in
this work. It demonstrates a high selectivity for the flotation removal of calcite from fluorite–calcite
ore. The addition order of NaF and CA has little impact on the adsorption of SOA on calcite and
fluorite surfaces. Flotation tests on a single mineral and mixed binary minerals showed that the reagent
schedule of CA 50 mg/L, NaF 200 mg/L and SOA 6 mg/L at pH 9 could achieve selective flotation of
calcite from fluorite. Batch flotation tests on a run-of-mine fluorite–calcite ore indicated that, using
this reagent schedule, the calcite removal rate could reach above 85% while fluorite has a loss rate of
below 11%. The novel reagent schedule of “CA + NaF + SOA” exhibits great potential for industrial
application in the flotation of fluorite–calcite ore.
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experimental results; Table S3: Results of range analysis.

Acknowledgments: This work is financially supported by the National Natural Science Foundation of China
(51404300), the China Postdoctoral Science Foundation (2015M570689 and 2016T90762), the Natural Science

www.mdpi.com/2075-163X/6/4/114/s1


Minerals 2016, 6, 114 8 of 8

Foundation of Hunan Province of China (2015JJ3141), the National 111 Project (B14034), and the Open-End Fund
for the Valuable and Precision Instruments of Central South University (CSUZC201605).

Author Contributions: Zhiyong Gao and Wei Sun conceived and designed the experiments; Yiyang Zhu and
Yuesheng Gao performed the experiments; Zhiyong Gao and Yuehua Hu analyzed the data; Zhiyong Gao wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhao, Q.; Miller, J.D.; Wang, X. Recent developments in the beneficiation of Chinese bauxite. Min. Process.
Extr. Metall. Rev. 2010, 31, 111–119. [CrossRef]

2. Pradip Rai, B.; Rao, T.K.; Krishnamurthy, S.; Vetrivel, R.; Mielczarski, J. Molecular modeling of interactions
of alkyl hydroxamates with calcium minerals. J. Colloid Interf. Sci. 2002, 256, 106–113. [CrossRef]

3. Pradip Rai, B.; Rao, T.K.; Krishnamurthy, S.; Vetrivel, R.; Mielczarski, J. Molecular modeling of interactions
of diphosphonic acid based surfactants with calcium minerals. Langmuir 2002, 18, 932–940. [CrossRef]

4. Liu, Y.; Liu, Q. Flotation separation of carbonate from sulfide minerals, I: Flotation of single minerals and
mineral mixtures. Miner. Eng. 2004, 17, 855–863. [CrossRef]

5. Liu, Y.; Liu, Q. Flotation separation of carbonate from sulfide minerals, II: Mechanisms of flotation depression
of sulfide minerals by thioglycollic acid and citric acid. Miner. Eng. 2004, 17, 865–878. [CrossRef]

6. Sis, H.; Chander, S. Reagents used in the flotation of phosphate ores: A critical review. Miner. Eng. 2003, 16,
577–585. [CrossRef]

7. Liu, Q.; Zhang, Y. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena
using dextrin. Miner. Eng. 2000, 13, 1405–1416. [CrossRef]

8. Dos Santos, M.A.; Santana, R.C.; Capponi, F.; Ataíde, C.H.; Barrozo, M. Effect of ionic species on the
performance of apatite flotation. Sep. Purif. Technol. 2010, 76, 15–20. [CrossRef]

9. Miller, J.D.; Misra, M.; Yehia, A.; Hu, J.S. Fluoride activation in oleate flotation of collophanite.
Miner. Metall. Process. 1987, 8, 133–140.

10. Marinakis, K.I.; Shergold, H.L. The mechanism of fatty acid adsorption in the presence of fluorite, calcite
and barite. Int. J. Miner. Process. 1985, 14, 161–176. [CrossRef]

11. De Leeuw, N.H.; Parker, S.C.; Rao, K.H. Modeling the competitive adsorption of water and methanoic acid
on calcite and fluorite surfaces. Langmuir 1998, 14, 5900–5906. [CrossRef]

12. Fa, K.; Jiang, T.; Nalaskowski, J.; Miller, J.D. Interaction forces between a calcium dioleate sphere and
calcite/fluorite surfaces and their significance in flotation. Langmuir 2003, 19, 10523–10530. [CrossRef]

13. Chee, K.K.; Lan, W.G.; Wong, M.K.; Lee, H.K. Optimization of liquid chromatographic parameters for the
separation of priority phenols by using mixed-level orthogonal array design. Anal. Chim. Acta 1995, 312,
271–280. [CrossRef]

14. Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2008.
15. Hu, Y.; Chi, R.; Xu, Z. Solution chemistry study of salt-type mineral flotation systems: Role of inorganic

dispersants. Ind. Eng. Chem. Res. 2003, 42, 1641–1647.
16. Miller, J.D.; Fa, K.; Calara, J.V.; Paruchuri, V.K. The surface charge of fluorite in the absence of surface

carbonation. Colloids Surf. A Physicochem. Metall. Eng. 2004, 238, 91–97.
17. Gao, Z.; Sun, W.; Hu, Y. New insights into the dodecylamine adsorption on scheelite and calcite:

An adsorption model. Miner. Eng. 2015, 79, 54–61. [CrossRef]
18. Gao, Z.; Bai, D.; Sun, W.; Cao, X.; Hu, Y. Selective flotation of scheelite from calcite and fluorite using a

collector mixture. Miner. Eng. 2015, 72, 23–26. [CrossRef]
19. Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J.

Miner. Process. 2016, 154, 10–15. [CrossRef]
20. Wang, J.; Gao, Z.; Gao, Y.; Hu, Y.; Sun, W. Flotation separation of scheelite from calcite using mixed

cationic/anionic collectors. Miner. Eng. 2016, 98, 261–263. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/08827500903404997
http://dx.doi.org/10.1006/jcis.2001.7994
http://dx.doi.org/10.1021/la010625q
http://dx.doi.org/10.1016/j.mineng.2004.03.006
http://dx.doi.org/10.1016/j.mineng.2004.03.007
http://dx.doi.org/10.1016/S0892-6875(03)00131-6
http://dx.doi.org/10.1016/S0892-6875(00)00122-9
http://dx.doi.org/10.1016/j.seppur.2010.09.014
http://dx.doi.org/10.1016/0301-7516(85)90001-8
http://dx.doi.org/10.1021/la980269k
http://dx.doi.org/10.1021/la035335j
http://dx.doi.org/10.1016/0003-2670(95)00214-K
http://dx.doi.org/10.1016/j.mineng.2015.05.011
http://dx.doi.org/10.1016/j.mineng.2014.12.025
http://dx.doi.org/10.1016/j.minpro.2016.06.010
http://dx.doi.org/10.1016/j.mineng.2016.09.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Pure Minerals and Reagents 
	Flotation Experiment 
	Zeta Potential Measurement 

	Results and Discussions 
	Single Mineral Flotation Experiment Results 
	Mixed Binary Mineral Flotation Experiment Results 
	Run-of-Mine Ore Batch Flotation Test Results 
	Zeta Potential Measurement Results 

	Conclusions 

