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Abstract: Stara Planina (also known as the Balkan mountain range) is known for numerous
occurrences and deposits of uranium and associated radionuclides. It is also famous for its
geodiversity. The geologic framework is highly complex. The mountain is situated between
the latitudes of 43◦ and 44◦ N and the longitudes from 22◦16′ to 23◦00′ E. Uranium exploration
and radioactivity testing on Stara Planina began back in 1948. Uranium has also been mined
in the zone of Kalna, within the Janja granite intrusive. The naturally radioactive geologic
units of Stara Planina are presented in detail in this paper. The main sources of radioactivity
on Stara Planina can be classified as: 1. Granitic endogenous—syngenetic–epigenetic deposits
and occurrences; 2. Metamorphogenic—syngenetic; and 3. Sedimentary, including occurrences
of uranium deposition and fluctuation caused by water in different types of sedimentary rocks
formed in a continental setting, which could be classified under epigenetic types. The area of
Stara Planina with increased radioactivity (higher than 200 cps), measured by airborne gamma
spectrometry, is about 380 square kilometers. The highest values of measured radioactivity and
uranium grade were obtained from a sample taken from the Mezdreja uranium mine tailing dump,
where 226Ra measures 2600 ± 100 Bq/kg and the uranium grade is from 76.54 to 77.65 ppm U.
The highest uranium (and lead) concentration, among all samples, is measured in graphitic schist
with high concentrations of organic (graphitic) material from the Inovska Series—99.47 ppm U and
107.69 ppm Pb. Thorium related radioactivity is the highest in granite samples from the Janja granite
in the vicinity of the Mezdreja granite mine and the Gabrovnica granite mine tailing dump, and it
is the same—250 ± 10 Bq/kg for 232Th, while the thorium grade varies from 30.82 to 60.27 ppm Th.
In gray siltstones with a small amount of organic material, the highest radioactivity is related to
potassium—2080 ± 90 Bq/kg for 40K.
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1. Introduction

The objective of this paper is to provide an overview of the naturally radioactive geologic units in
known areas of Stara Planina (also known as the Balkan mountain range). The studied localities include
Mezdreja and Gabrovnica (abandoned mines in the Janja granites), graphitic schists of the Paleozoic
“Inovo Series”, and early Triassic sedimentary units in the Dojkinci–Jelovica area. These occurrences
are known and have been described in papers, reports and books, largely from the perspective of
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mineral exploration, origin or ecology. This paper aims to characterize naturally radioactive units, with
regard to their location, macroscopic and microscopic features, chemical composition, and radioactivity
of a specific sample determined both in situ and in the laboratory. In other words, the objective is to
provide answers to the questions: which are the particular geologic units? What are their petrologic,
mineralogic, geochemical and radiometric characteristics? How did they come about? The paper
presents the outcomes of research conducted in the part of Stara Planina in Serbia.

Natural radioactivity is a widely explored subject. On planet Earth, all living beings are exposed
to radioactivity. The origin of natural radioactivity is from various rocks enriched with radio elements
(uranium 238 and uranium 235, thorium 232 and potassium 40), generated in stars and from cosmic
rays [1]. In China and Brazil natural exposure can be up to 10 to 20 mSv/year. Uranium is widely
distributed in nature; it is found in significant concentrations in many rocks and the oceans, as well as
in lunar rocks and meteorites. In the Earth’s crust, it is more prevalent than silver, bismuth, cadmium
or mercury (it is the 38th most common element). In general, the “Clarke” abundance of uranium is
0.003 ppm in ultramafic, 0.5 ppm in mafic, 1.8 ppm in intermediate, 3.5 ppm in acidic ingneous and up
to 60 ppm in alkaline rocks. Also, the uranium content of soils can be up to 1 ppm [2].

Collection of data on natural radioactivity in the former Yugoslavia began in 1948 at the national
Geological Institute (Geoinstitute). Among the voluminous data on the radioactivity of rocks, waters
(groundwater and surface water resources), soils, alluvions (recent riverine sediments), and air, most
are in their original, or a certain type of interpreted form (such as statistical data), preserved in annual or
periodic geological exploration reports, studies, papers, publications, and the like. They are accessible
from the archives of Geoinstitute (now the Geological Survey of Serbia), but it is a challenge to unify
and convert the data into current units, given that the units have since been changed several times.

Prospecting and exploration of nuclear minerals in Serbia, at different levels of detail, encompassed
large areas. The number of data points is on the order of several hundred thousand. So far, the most
extensive exploration was conducted in the geographical region of Šumadija (Mt. Bukulja zone)
and in Stara Planina, Mt. Cer and Mt. Iverak, where uranium deposits have been identified and
reserves estimated.

Uranium exploration on Stara Planina Mt. began in 1949. Extensive slick probe prospecting
and walk-over radiometric prospecting were undertaken from 1949 to 1956. Geologic maps were
produced on a scale of 1:50,000, and within the zones of the Aldina River and Mezdreja on a scale
of 1:10,000. In late 1956 [3], vein bodies were explored on the Mezdreja locality. Between 1957 and
1966, a geologic-structural map was produced for the Janja granite and exploration conducted on the
sediments of the so-called Multicolored Series, of the dispersion aureoles on the Mezdreja locality and
later, of the geological-mining operations at Gabrovnica and Mezdreja. Exploration was suspended
from the early 1970s to 1978, and from 1978 to the early 1990s it was generally conducted within the
area of the Multicolored Series and in the fault zones of the Janja granite.

Since 2000, there has been non-systematic/thematic exploration, generally of radioactivity and its
impact on the environment on certain localities on Stara Planina Mt. [4–6] (also the methodology in
Bai et al. [7] was considered for future work).

2. Geological Settings

Stara Planina Mt. can be viewed from several perspectives, as a nature park and in terms of
geography, geology and geodiversity. The present paper addresses areas of interest from the viewpoint
of radioactivity. From the east (ridges) and south, the area is bounded by the border with Bulgaria and
from the west (north to south) by several rivers: the Beli Timok, the Trgoviški Timok, the Stanjanska,
the Klajča, the Temska and the Nišava. In general terms, only a small part of the mountain range is
located in Serbia. The remainder is in Bulgaria and extends all the way to the Black Sea.

On the base geological map of the former Yugoslavia (scale 1:100,000), the area of interest is
depicted in the sections on: Bor, Zaječar, Knjaževac and Belogradcig [8], and in addition Pirot and
Breznik [9]. On the geological map of the Republic of Serbia, at a scale of 1:200,000 [10], the area of
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interest is shown in the sections on Knjaževac–Zaječar and Priština–Niš. Both maps were used to
produce overview schematic maps of the geologic units discussed in the paper (Figure 1).

Minerals 2017, 8, 6  3 of 17 

 

Breznik [9]. On the geological map of the Republic of Serbia, at a scale of 1:200,000 [10], the area of 
interest is shown in the sections on Knjaževac–Zaječar and Priština–Niš. Both maps were used to 
produce overview schematic maps of the geologic units discussed in the paper (Figure 1). 

Generally speaking, Stara Planina Mt. is a complex geologic system, built up of different 
geologic units (with regard to the composition, characteristics and origin). From the north, where the 
geologic units are separated by structures and where granite and granodiorite intrusions begin, the 
area is defined by faults that separate the Late Jurassic in the south from the Early Cretaceous in the 
north. Towards the south, there is a complex geotectonic assemblage made up of the Janja (Figure 1), 
Radičevo and Ravno Bučja granites; the Zaglavak gabbro massif; Paleozoic metamorphic rocks 
(Proterozoic–Cambrian, Silurian–Devonian, the Inovo Series and others); and Permian red 
sandstones and conglomerates. To the south, there are Mesozoic formations: Triassic 
(Kopren–Gostuša–Dojkinci), Jurassic (Basara, Odorovci), and Early Cretaceous (Visočka Ržana, 
Dimitrovgrad). In the southern part of the Mesozoic block the Jurassic and the Cretaceous are 
intersected by structures running from the northwest to the southeast. The northern boundary of 
Stara Planina is not clearly defined and can be followed on the Zaječar and Bor maps along 
Cretaceous formations and intrusions over a length of about 30 km northward and farther via 
Brusnik and Brestovac to Negotin, but this is not the subject of the present paper. 

In 1997, Stara Planina was designated a nature park, where there are a number of unique 
examples of geodiversity.  

The following genetic types of uranium deposits and occurrences can be distinguished on Stara 
Planina after Gertik [11] and Kovacevic [3]: 1. Uranium mineralization in pegmatites; 2. Uranium 
mineralization related to auto-metasomatic hydrothermal processes in granite; 3. Sedimentary 
infiltration deposits and occurrences; and 4. Metamorphogenic occurrences. 

 
Figure 1. Schematic geological map of Stara Planina Mt. with areas of elevated radioactivity (pink). 

The map in Figure 1 includes a schematic representation of the geology and distribution of 
radioactivity on Stara Planina. In general terms and based on Geoinstitute’s activities [3], two levels 
of radioactivity have been identified: (1) about 200 cps, divided into three zones whose total surface 
area is 307.5 km2; and (2) greater than 200 and up to 500 cps (mostly greater than 200 cps but rarely 
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Generally speaking, Stara Planina Mt. is a complex geologic system, built up of different geologic
units (with regard to the composition, characteristics and origin). From the north, where the geologic
units are separated by structures and where granite and granodiorite intrusions begin, the area
is defined by faults that separate the Late Jurassic in the south from the Early Cretaceous in the
north. Towards the south, there is a complex geotectonic assemblage made up of the Janja (Figure 1),
Radičevo and Ravno Bučja granites; the Zaglavak gabbro massif; Paleozoic metamorphic rocks
(Proterozoic–Cambrian, Silurian–Devonian, the Inovo Series and others); and Permian red sandstones
and conglomerates. To the south, there are Mesozoic formations: Triassic (Kopren–Gostuša–Dojkinci),
Jurassic (Basara, Odorovci), and Early Cretaceous (Visočka Ržana, Dimitrovgrad). In the southern part
of the Mesozoic block the Jurassic and the Cretaceous are intersected by structures running from the
northwest to the southeast. The northern boundary of Stara Planina is not clearly defined and can be
followed on the Zaječar and Bor maps along Cretaceous formations and intrusions over a length of
about 30 km northward and farther via Brusnik and Brestovac to Negotin, but this is not the subject of
the present paper.

In 1997, Stara Planina was designated a nature park, where there are a number of unique examples
of geodiversity.

The following genetic types of uranium deposits and occurrences can be distinguished on Stara Planina
after Gertik [11] and Kovacevic [3]: 1. Uranium mineralization in pegmatites; 2. Uranium mineralization
related to auto-metasomatic hydrothermal processes in granite; 3. Sedimentary infiltration deposits and
occurrences; and 4. Metamorphogenic occurrences.
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The map in Figure 1 includes a schematic representation of the geology and distribution of
radioactivity on Stara Planina. In general terms and based on Geoinstitute’s activities [3], two levels of
radioactivity have been identified: (1) about 200 cps, divided into three zones whose total surface area
is 307.5 km2; and (2) greater than 200 and up to 500 cps (mostly greater than 200 cps but rarely 500 cps),
divided into four zones whose surface area is 70.84 km2. The zones were explored by airborne gamma
spectrometry during 1981. The methodology of airborne gamma survey consisted of the following:
flights was carried out along the straight-line profiles that were at a distance of 250 m from each other.
The flight height of a plane was between 100 and 200 m above the surface of the terrain. Detectors used
in the airborne gamma survey were crystals of NaJ “GR-800D” activated by a thallium, dimension of
crystals was 10 cm × 10 cm × 40 cm [12].

In essence, the main sources of radioactivity on Stara Planina can be classified as: 1. Granitic endogenous,
syngenetic–epigenetic deposits and occurrences; 2. Metamorphogenic, syngenetic; and 3. Sedimentary,
including occurrences of uranium deposition and fluctuation caused by water in different types of
sedimentary rocks formed in a continental setting, which could be classified under epigenetic types.

2.1. Geological Characteristics of the Janja Granite

The Janja granite massif has intruded into Late Proterozoic and Cambrian crystalline schists.
The crystalline schists feature thermo-contact and metasomatic alterations. The primary structural
elements include fractures filled with aplite, pegmatite and quartz veins. In places, the fractures
trending NW–SE, concentrated on the fringes of the massif, exhibit white mica alteration.

In its north-western part, the massif bifurcates into two masses separated by amphibolites,
amphibole schists, gneisses and mica gneisses. Peripherally there are alteration zones developed
around the contacts characterized by silification, biotitization and local deposition of feldspar [8].
The Janja granite is overall calc-alkaline in composition, but with variations such as monzonite–akerite
fringes, and an alkaline granite core. Deformations and secondary alterations have been noted in the
entire massif, particularly on the fringes. They are represented by a schistose texture, crushed minerals
and crystallization of secondary minerals. The primary components are quartz, oligoclase, K-feldspar
(microcline, rarely orthoclase), and biotite. The accessory components are sphene, apatite, zircon and
magnetite, and the secondary components sericite, chlorite, epidote, calcite, limonite and a clayey
substance. There are syenite diorites in the periphery of the Janja granite and on its fringes. Their
origin is attributed to contact metasomatic processes in the syenite diorites.

Pegmatite veins are made up of quartz, plagioclase (albite–oligoclase) enriched with U [13],
microcline, biotite and muscovite. The accessory components are apatite, zircon, alanite and metallic
minerals. There are quartz veins inside and around the massif. Their thickness is up to several meters
and they are up to 200 m long. In addition to quartz, they contain tourmaline and metallic minerals.

Typical naturally-radioactive geologic representatives were tested within the Janja granite.
Samples of granite, the host rock at Mezdreja and Gabrovnica, were of primary interest (Figure 2A,B).
In addition to granite, tailing dump samples from Mezdreja (clayey material with cataclazed granite
fragments), silicified batches with limonite stains and fragments of contact gabbroid with coarse
(1.5 cm) K-feldspar were examined.

According to Radusinović [14], in the areas of the uranium mines of Mezdreja and Gabrovnica,
the following ore minerals were observed: uraninite and Th-uraninite, pitchblende, thorite,
monazite–alanite phases, pyrite, pyrrhotyte, chalcopyrite, valerite, arsenopyrite, galenite, sphalerite,
tetraedrite, bismuth, sulpho salts of bismuth and copper, molybdenite, magnetite, hematite and
scheelite. Secondary minerals included: malachite, azurite, covellite and limonite, and gangue minerals:
quartz, chalcedony, barite, strontianite, kalcite and dolomite.

Detailed information about granite and radioactivity in general is available in Mayers [15], Rorers et al. [16]
and René and Dolníček [17].
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Figure 2. Samples from Mezdreja mine and Gabrovnica mine areas. (A) Granite from the vicinity of
the Mezdreja mine portal; (B) granite form the Gabrovnica mine dump; (C) white mica developed in
a granite sample from Mezdreja; (D) white mica developed in a granite sample from Ganbrovnica;
(E) gabbroid with large pink K feldspar; (F) material from the Mezdeja mine dump.

2.2. Geological Characteristics of Graphitic Schists from the Inovo Series

The Inovo Series transgresses the south-western part of the Janja granite–metamorphic system.
Metaconglomerates and metasandstones are the base of the metamorphic-sediment domain. They are
overlain by metasandstones containing argillophyllites, with schists in the upper part. The sequence
is built up of chlorite–phyllite schists, green schists, amphibolites, graphitic schists, greywackes and
conglomerates [8].

The Inovo Series graphite-bearing schist is located in relative proximity to the Gabrovnica mine,
2.5 km southeast and 1.3 km southwest of the closest mapped point of the Janja granite (Figure 1).

The Inovska River occurrence is situated in the river (on the riverbanks), developed in fractured,
altered and brecciated metasandstones with interbeds and lenses of black graphitic schists (Figure 3A–C),
from 50 to 70 m thick.

The upper part of the domain contains layers of coarse-grained and fine-grained metasandstones
with black clayey schist intercalations. In the lower part there are brecciated arkose metasandstones.
The package dips to the northeast at an angle of 70◦–80◦.
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Figure 3. (A) Outcrop of graphitic schist from the Inovska Reka occurrence; (B) variety with more
petrogenic minerals; (C) variety with more graphitic material; (D) thin section of the sample shown in (C).

Uranium mineralization is in the form of elongated lenses in the direction of the dip, following
layers of metasediments between coarse-grained metasandstones and black clayey schists [11].
The lens-like ore body runs along the dip to about 30 m. Ore bodies are built up of carbonitized,
pyritized, chloritized and sericitized microconglomerates to arkose sandstones with traces of
chalcopyrite and galenite.

2.3. Geological Characteristics of the Multicolored Series

The observation points within the Multicolored Series are located in an area defined as Early
Triassic. Known places where elevated uranium concentrations have been detected are in the part
of the terrain called Dojkinci–Jelovica (Figure 1). The area is known as that of “clastic rocks of Stara
Planina”, a formation that features clearly defined continuous sedimentation in continental warm and
humid climate conditions. The geology is represented by continental formations built up of fragments
of crystalline schists and granites, light-red quartz conglomerates, red and gray sandstones, and gray to
grayish-pink siltstones [9]. The upper part of the Multicolored Series includes Middle Triassic marls and
sandy limestones. Uranium mineralization is usually found in the form of pitchblende [3]. The color
of the sandstones varies from red (usually; Figure 4A,B) to light green-gray (rarely). All siltstones
exhibited elevated concentrations of uranium. From the north, the Early Triassic (Permo-Triassic)
sediments of the Multicolored Series are in contact with Ripheo–Cambrian schists.
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of red and gray siltstone; (D) gray siltstone with coaly-organic material.

3. Methodology

1. The samples were collected at pre-determined locations. The goal was to find representative
samples of naturally radioactive rocks. The sampling points are shown in the UTM system, zone
34N, ellipsoid WGS84.The weight of the samples was from 2 to 2.5 kg.

2. Thin sections were made from granite and schist samples, and where ore minerals were detected
polished sections were also made. The samples were viewed macroscopically and microscopically
on a Leitz Ortholux Pol 2 microscope (Wetzlar, Germany), at the Geological Survey of Serbia.
The structure of the samples was examined using a Bresser binocular magnifier (Rhede, Germany).

3. On the ground, the radioactivity of the terrain and at the observation points was measured by
a Radiation Detector Explouranium 110 (Mississauga, ON, Canada) in cps and Gamma-Scout
(Newark, DE, USA) in µSv/h. The results are included in the descriptions of the tested samples.
The values were recorded after a period of ten minutes, when they stabilized on the display
and when there were no ±10% fluctuations. The data is presented in the paper in intervals
characteristic of the tested location.

4. The samples were ground to 70 µm. Chemical analyses of powder were performed on an XRF
Thermo Fisher Scientific Niton Xl3t Goldd+ analyzer (Waltham, MA, USA), at the University of
Belgrade, Faculty of Civil Engineering. Each sample was tested two or three times, for about
180–190 s in the Soil mode, and checked by Test Allgeo. Some of the samples were analyzed in
their solid state, for example schist; assays were performed on plate and schistosity in resection.
The following elements were measured: Mo, Zr, Sr, U, Rb, Th, Pb, Au, Se, As, Hg, W, Cu, Ni, Co.,
Fe, Mn, Ba, Sb, Sn, Cd, Pd, Ag, Nb, Bi, Re, Ta, Hf, Cr, V, Ti, Ca, K, Sc, S, Cs and Te.
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5. The radioactivity of the samples (226Ra, 232Th, 40K and 137Cs) was measured at Vinča Nuclear
Institute. Homogenized samples were dried in an oven at 105 ◦C to constant weight, placed in
plastic Marinelli beakers, sealed and left for four weeks to reach radioactive equilibrium [18].
Each prepared sample was placed in an HPGe detector and measured for 90,000 s. Gamma
background in the laboratory was determined prior to testing, by measuring an empty Marinelli
baker under identical conditions. The counting time for background measurement was 240,000 s.
It was later subtracted from the measured gamma spectra of each sample.

The activity of the samples was measured using a high-resolution coaxial semiconductor detector
with high-purity germanium crystal HPGe ORTEC GEM 50 and 50% relative efficiency at 1332 keV.
The detector was shielded by lead in order to achieve the lowest possible background level.

Energy and efficiency calibration was undertaken before measurement. The calibration source
used was a commercially available gamma standard, with mixed radionuclides-type MBSS 2 in
Marinelli geometry of 0.5 L, developed by the Inspectorate for Ionizing Radiation of the Czech
Metrological Institute, with the isotopes: 241Am, 109Cd, 57Co, 139Ce, 113Sn, 85Sr, 137Cs, 88Y, 203Hg,
and 60Co. The energy of gamma lines of these radionuclides is highly suitable for calibration and
covers the region of interest, i.e., from 30 to 3000 keV. Quality assurance of the measurements was
carried out by daily efficiency and energy calibration, repeating each sample measurement.

Correction for radioactive decay and background, as well as analysis of the results, were conducted
using dedicated software ORTEC Gamma Vision-32 Model A66-B32 Version 6.01 (Oak Ridge, TN, USA).

The 226Ra activity was determined by its decay products: 214Pb (295.22 keV, 351.93 keV) and
214Bi (609.31 keV, 1120.29 keV). In the case of 232Th, two photopeaks of 228Ac (911.20 and 698.97 keV)
were used. The activities of 40K and 137Cs were derived from 1460.83 keV and 661.66 keV gamma
lines, respectively.

4. Geological Observations, Geochemical and Radiometric Results

The main characteristics and results of geological observations, measured radioactivity of
typical petrologic representatives and the concentrations of U, Th, Pb and Sr are presented below in
a from-to-form, given that measurements were repeated several times to obtain concentration ranges
of powdered and solid samples and to also check for any large variations.

4.1. Mezdreja and Gabrovnica Uranium Mines

4.1.1. Mezdreja Mine Area

Mezdreja is located in the southern part of the Janja igneous metamorphic complex. It is defined
by two fault zones, so-called zones 0 and 1 [11].

Fault zone 0 trending NW–SE is 1300 m long and has vertically been explored from 200 to 600 m.
The following zonality has been noted in the vertical profile: kaolinized, white mica altered and
chloritized zones in the upper parts, and silification, pyritization and hematitization in the lower parts.
The ore is developed in the form of lenses that locally form columns. Uranium mineralization is finely
dispersed in crushed and hydrothermally altered granite or in the form of veinlets, coatings and stains
of pitchblende visible to the eye. Non-uranium-bearing parts of the fault zone are filled with sericite
and chalcopyrite. Fault zone 1 is developed adjacent to metagabbroid rocks (Figure 2E). The form and
extent are similar to those of Zone 0. Mineralization is of the vein/lens type at the point of contract
with the metagabbros. Along Zones 0 and 1 there are biotite granites and metamorphic gabbros.
Uranium is mineralized in the form of impregnations of veinlets and stains, and is represented by
pitchblende and secondary pitchblende.

Four samples were acquired from the Mezdreja site:

1. A granite sample was collected near the pit and radioactivity measured by GR110 in situ was
520 cps at the sampling point and 420 cps and 0.322 µSv/h at the mine portal. The pit has
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caved and could not be accessed. The rock is partially fractured. The predominant components
are pink K-feldspar and white plagioclase, both fractured with white mica and kaolinized to
different degrees. The dimensions were up to 0.5–1.5 cm (Figure 2A). There was also chloritization,
occasionally accompanied by magnetite grains developed at a later date during short hydrothermal
or auto-metasomatic episodes.

2. In the area between the mine portal and dump, there were small outcrops of silicified material
with occurrences of ore impregnation and limonitization. Radioactivity measured 320 cps and
0.182 µSv/h.

3. The mine dump contained crushed granite material, clayey, kaolinized and chloritized (Figure 2F).
Radioactivity measured up to 1250 cps and 0.421 µSv/h.

4. A sample with large pink K-feldspar was collected from the point of contact between granitic
and gabbroid rocks. Radioactivity measured 120 cps and 0.192 µSv/h. The K-feldspar shown in
Figure 2E was separately tested by XRF. The results are shown further below.

Tables 1 and 2 show radioactivity concentrations (Table 1) and grades of U, Th, Pb and Sr (Table 2),
in samples from the Mezdreja mine area.

Table 1. Radioactivity of characteristic samples from the Mezdreja mine area.

Label Mass(g)
Activity Concentration (Bq/kg)

226Ra 232Th 40K 137Cs

Mezdreja_granite_mine1 524.30 142 ± 7 250 ± 10 1420 ± 60 <0.4
Mezdreja_silicified_lim1 359.84 400 ± 20 188 ± 9 600 ± 30 <0.6

Mezdreja_granite2 459.73 116 ± 5 230 ± 10 1020 ± 50 <0.4
Mzdreja_clay_tailings1 554.85 2600 ± 100 169 ± 8 1240 ± 60 10.8 ± 0.5

Table 2. Assays from the Mezdreja mine area (values are in ppm).

Assays_Igneous Rocks U Th Pb Sr

Mezdreja_granite_mine1 12.37 36.63 53.03 636.69
Mezdreja_granite_mine2 14.39 60.27 42.39 827.62

Mezdreja_granite1 12.85 37.01 54.15 634.69
Mezdreja_granite2 12.21 55.44 44.68 840.98

Mezdreja_K-feldspar_plate 6.5 4.56 61.74 655.11
Mezdreja_K-feldspar_section 6.99 9.72 46.64 665.36

Mezdreja_silif_lim1 0 30.25 104.22 1962.7
Mezdreja_silif_lim2 0 28.42 94.31 1850.88

Mezdreja_clay_tailings1 76.54 52.91 97.48 590.66
Mezdreja_clay_tailings2 77.65 43.17 103.06 749.37

4.1.2. Gabrovnica Mine Area

The origin of the deposits is similar to that of Mezdreja. The only difference is that there are
eight fault zones that can be divided into two groups: (1) diabase dikes in granites and milky white
quartz; and (2) crushed granites. Uranium ore is developed in chloritized phyllonites and crushed
granites. Solid and non-tectonized domains are barren to weakly mineralized. The fault zones are
highly tectonized by post-ore tectonics. The origin of the uranium is similar to that at Mezdreja.

Fresh granite near the pit and granite (Figure 2B) from the mine dump were sampled as
representative of the locality. Radioactivity measured 240 cps and 0.210 µSv/h at the mine portal and
360 cps and 0.248 µSv/h at the mine dump.

Tables 3 and 4 show radioactivity concentrations (Table 3) and grades of U, Th, Pb and Sr (Table 4)
in samples from the Gabrovnica mine area.
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Table 3. Radioactivity of characteristic samples from the Gabrovnica mine area.

Label Mass (g)
Activity Concentration (Bq/kg)

226Ra 232Th 40K 137Cs

Gabrovnica_mine1 552.72 58 ± 3 163 ± 8 1700 ± 80 2.3 ± 0.1
Gabrovnica_tailings1 603.55 206 ± 9 250 ± 10 1690 ± 80 4.8 ± 0.3

Table 4. Assays from Gabrovnica mine area (values are in ppm).

Assays_Igneous Rocks U Th Pb Sr

Gabrovnica_granite_mine1 13.8 32.99 67.75 308.1
Gabrovnica_granite_mine2 11.61 30.82 64.27 288.82

Gabrovnica_granite_tailings1 20.69 31.84 74.66 186.94
Gabrovnica_granite_tailings2 21.09 38.66 69.47 189.56

4.2. Inovska Reka Occurrence

A number of samples were collected from the site (Figure 3A). Those shown here contain small
and large amounts of graphitic material, respectively. Niton XRF Goldd+ analyses showed that the
sample with more graphitic material carried a larger amount of uranium. Also, that sample was brittle,
with limonitic stains (Figure 3C,D) along the directions of shearing. Radioactivity at the sampling site
measured 650 cps and 0.279 µSv/h.

With regard to the thin sections, the lighter and harder variety had more petrogenic minerals and
less graphitic material, and also contained limonitic stains (Figure 3B).

Since these two samples were collected in relative proximity and their alterations varied at
a decimeter level, radioactivity was measured at the Vinča Institute lab, using homogenized samples
of the two varieties of graphitic schists of the Inovo Series.

Tables 5 and 6 show radioactivity concentrations (Table 5) and grades of U, Th, Pb and Sr (Table 6)
in graphite schist samples from the Inovska Reka occurrence.

Table 5. Radioactivity of characteristic samples from the Inovska Reka occurrence.

Label Mass (g)
Activity Concentration (Bq/kg)

226Ra 232Th 40K 137Cs

Schist_graphitic_silicified1 505.77 220 ± 10 141 ± 7 1420 ± 60 <0.4
Schist_graphitic2 439.11 380 ± 20 169 ± 8 900 ± 40 3.7 ± 0.2

Table 6. Assays related to graphitic schists—Inovska Reka occurrence (values are in ppm).

Assays of Graphite Schist U Th Pb Sr

Schist_graphitic1 99.47 42.01 107.69 88.88
Schist_graphitic2 20.99 19.29 51.55 115

Schist_graphitic_silicified1 27.31 14.35 51.11 119.65
Schist_graphitic_silicified2 14.69 27.06 47.33 244.78

Schist_graphitic_compopowder 12.52 20.66 50.42 237.61

4.3. Dojkinci and Jelovica Area

A typical sample of the Multicolored Series sandstone was dark “hematite” red to pink-gray
(Figure 4A), built up of mainly quartz (Figure 4B), orthoclase, plagioclase, muscovite, biotite,
apatite, epidote, chlorite and fragments of metamorphic rocks. The grains were several tens to
100 and exceptionally 300 µm. The grains were highly altered into clay minerals and white mica.
The plagioclases are white mica altered as well as calcitized. The quartz, orthoclase and plagioclase
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are angular. The micas exhibited linear orientation and locally built nest-like forms. The apatite was
rounded. Zircon was noted locally in the quartz. The epidote was developed as independent entities.
The cement is of the iron-carbonate type. The sample was collected as a “representative” from the
direction of contact with metamorphic rocks, before the gray siltstones. The sampling point measured
120 cps and 0.172 µSv/h.

The sample of the gray siltstone was pelitic, fine-grained and compact. It was built up mainly of
clay-sericitic material. There was also fine sharp-edged quartz with thin plates of muscovite and biotite,
turning into an iron substance and chlorite. Rare metallic minerals and fragments of coaly-organic
material (Figure 4D) were also found. The amounts of the gray siltstone were not large and they were
likely created from the sediments of small local lakes and wetlands. The sample of gray siltstone was
collected at the redox contact between the red siltstone and reddish sandstone (Figure 4C), where
the grain sizes of the fragments increased from the sampling point to the substrate (road level).
Radioactivity in the redox zone measured 280 cps and 0.429 µSv/h.

Tables 7 and 8 show radioactivity concentrations (Table 7) and grades of U, Th, Pb and Sr (Table 8)
in graphite schist samples from “Multicolored Series” sediments.

Table 7. Radioactivity of characteristic samples from “Multicolored Series” sediments.

Label Mass (g)
Activity Concentration (Bq/kg)

226Ra 232Th 40K 137Cs

Siltstone_gray1 465.30 102 ± 5 97 ± 5 2080 ± 90 <0.5
Sandstone_red2 495.80 28 ± 1 52 ± 3 1270 ± 60 1.6 ± 0.1

Table 8. Assays related to “Multicolored Series” sediments (values are in ppm).

Sample U Th Pb Sr

Siltstone_gray1 49.36 11.83 11.85 95.84
Siltstone_gray2 49.94 12.46 11.59 92.71

Siltstone_redox1 54.43 13.13 12.34 96.74
Siltstone_redox2 52.02 12.88 16.13 93.59

Siltstone_redox_gray1 22.93 10.77 18.18 117.28
Siltstone_redox_gray2 29.31 13.7 16.45 110.23

Sandstone_red1 7.78 3.56 11.81 91.08
Sandstone_red2 12.64 4.76 10.35 51.46

Sandstone_red_orange1 8.7 3.42 10.94 47.29
Sandstone_red_orange2 9.15 9.25 8.42 97.77

Sandstone_orange 9.73 7.65 10.79 94.71

5. Discussion

The occurrences described in this paper can be grouped into two geological-structural blocks [19,20]
(Figure 1): A. an intrusive metamorphic block, and B. a sedimentary block.

A. In the intrusive metamorphic block, the elevated radioactivity is associated with the Janja
granite and Aldinac grandiorite porphyritic rocks, as well as graphitic schists of the Inovo Series, over
a surface area of about 195 km2.

B. The radioactivity in the sedimentary block is associated with both secondary deposition of
minerals and reddish Fe-rich cement. Elevated radioactivity has particularly been noted at points
of contact between gray and red siltstones, where the gray parts have been deposited as lenses of
different sizes in the basal reddish mass of continental sediments. The surface area is approx. 97 km2.

Figure 5 shows graphics of activity concentrations of 226Ra, 232Th and 40K and of U, Th and Pb
grades. They refer to the text that follows.
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The concentrations of uranium in the granite samples from Mezdreja and Gabrovnica were always
lower than those of thorium by a factor of 3–4. At Mezdreja, the uranium concentrations varied from
12.21 to 14.39 ppm and those of thorium from 36.63 to 60.27 ppm. Radioactivity (226Ra in Bq/kg) of
the granites near the Mezdreja mine and at the mine portal measured 116 ± 5 and 142 ± 7, while
232Th was 230 ± 10 to 250 ± 10 Bq/kg. At Gabrovnica, the concentrations of uranium were from 11.61
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to 21.09 ppm and of thorium from 30.82 to 38.66 ppm. Here the radioactivity (226Ra) of the granite
samples from the mine portal area were 58± 3 and of the granite samples from the mine dump 206± 9.
The measured 232Th radioactivity of the mine portal granite was 163 ± 8 Bq/kg and of the mine dump
granite 250 ± 10 Bq/kg. Hence, in both cases (Mezdreja and Gabrovnica), the thorium concentrations
and radioactivity were higher than those of uranium. It should be noted that the concentrations of
Pb at Gabrovnica were somewhat higher (from 64.27 to 74.66 ppm) than at Mezdreja (from 42.39 to
54.15 ppm). The grades of U and Th in the granite samples from Mezdreja and Gabrovnica were
higher than in samples from volcanic islands of the Southern Tyrrhenian Sea, where U varied from
8.2 to 9.8 ppm and Th from 20.6 to 27.8 ppm [21]. It should be noted that Stromboli, Salina, Filicuidi
and Panarea are Late Quarternary and the Janja granite is Silurian. In addition, in eastern Mongolia
(Berkh region) uranium anomaly No. 246 is alkaline biotite granite porphyry of middle-to-late Jurassic
age, with 67 ppm U and 23 ppm Th [22], including silicified and kaolin altered parts like in the Janja
granite deposits.

Assays of coarse-grained pink K-feldspar sampled at Mezdreja, from the point of contact between
the gabbroids and granites, showed that the concentrations of uranium were low (from 6.5 to 6.99 ppm),
while those of Th varied from 4.56 to 9.72 ppm. The sample was a 2-cm solid grain, tested at the basis
and section.

The concentrations of uranium in the clayey and kaolinized material from the Mezdreja mine
tailings were higher than in fresh granites, but still lower than in the graphite-rich schist. The values
ranged from 76.54 to 77.65 ppm of U. In this case there was less Th than U; Th concentrations were
from 43.17 to 52.91 ppm. The concentrations of lead were nearly double those in granites, from 97.48
to 103.06 ppm. With regard to radioactivity, this material measured the highest equivalent values
for uranium 226Ra—2600 ± 100 Bq/kg. The radioactivity of 232Th was 169 ± 2 Bq/kg and correlated
with the values measured in the Mezdreje and Gabrovnica granites. This particular sample exhibited
the highest radioactivity of 137Cs (10.8 ± 0.5 Bq/kg), compared to all the other samples tested in the
research. In the granites, 137Cs measured 2.3 ± 0.1 at the pit and 4.8 ± 0.3 Bq/kg at the mine dump.
The values of 137Cs at Mezdreja were low (less than 0.6 Bq/kg). In clay minerals, U enrichments are in
illite-bearing uranium ore from Baiyanghe [23] and the uranium mineralization is located near the
fracture zone, which represents the center of hydrothermal fluid activity or mineralization, similar to
the Mezdreja mine.

No uranium (LOD) was found in a sample of silicified-limonitic material from Mezdreja (slcf/lim
on Figure 5B). The concentration of thorium was from 28.42 to 30.25 ppm, and of lead from 94.31 to
104.22 (i.e., higher than in the other endogenous products tested). It is interesting to note that this
sample measured the highest concentrations of cadmium (311.72–352.69 ppm). The radioactivity of
226Ra was 400 ± 20 Bq/kg and of 232Th 188 ± 9.

A highly-silicified sample from Mezdreja measured the highest concentration of strontium—from
1850.9 to 1962.7 ppm. In the samples from Mezdreja and of the monomineral pink K-feldspar,
the concentrations were from 634.69 to 840.98 ppm and from 655.11 to 665.36 ppm, respectively.
The Sr concentrations in the Gabrovnica granites were lower and ranged from 186.94 to 308.1 ppm.

In the endogenous group, specifically in the case of the Mezdreja and Gabrovnica granites and
ore deposits, feldspar and mica minerals are the most important in terms of uranium concentrations.
Given that the concentrations of uranium in the main petrogenic minerals are rather low, and the
total amounts of such minerals and their spread large, they represent sources from which “hot”
granites leach considerable concentrations of uranium. Uranium occurs as U4+ in biotite, muscovite
and minerals from the feldspar group. If these minerals have been altered under the influence of
oxygen-rich hydrothermal or meteoric waters [24], uranium in the form of U6+ (as the U6+O2 ion)
might be present in them, as well as in accessory minerals: sphene, zircon, monazite, ortite, xenotime,
apatite, tourmaline, apatite [25] and others.

Since uranium is remobilized from the primary granite at Mezdreja and Gabrovnica, it should
be noted that in the presence of water and the H+ ion: (1) kaolinite, the K+ ion, U4+ uranium ion and
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orthosilicilic acid are created from the primary “uranium-bearing” K-feldspar; and (2) sericite, K+ ion,
UO2

2+ uranyl ion and again orthosilicilic acid might be formed. White mica (sericite) alteration has
been observed in petrologic samples from Mezdreja and Gabrovnica (Figure 2C,D). In the samples
collected as part of the present research, sericitization was more pronounced at Mezdreja than at
Gabrovnica. Biotite, another primary “uranium-bearing” mineral in granite, can also be transformed in
two ways: (1) when the negative OH− ion is present, creating sericite, silicon dioxide, water, aluminum
silicate (which may occur as andalusite, kyanite or sillimanite), K+ ion and U4+ uranium ion; and (2) in
the presence of water and the H+ ion creating sericite, aluminosilicate, K+ ion and UO2

2+ uranyl ion.
The highest concentration of uranium in all samples was measured in the graphitic schist of

the Inovo Series, rich in graphitic (organic) material (Figure 3C,D), and it amounted to 99.47 ppm,
as opposed to the schist samples from the same sequence that were richer in silicate material (Figure 5B),
which measured less uranium by a factor of nearly 4 (20.99–27.31 ppm). The concentration of Th was
generally lower than that of U. The graphite-rich samples had nearly half the Th.

The samples that contained more silicate material had Th concentrations varying from the ratio
1:2 in favor of uranium to the same ratio in favor of thorium. The highest measured concentration of Th
was 42.01 ppm in a graphite-rich sample. The concentration of lead varied from 47.33 to 51.55 ppm and
was similar to the lead concentrations in the granites, particularly at Mezdreja where 107.69 ppm of Pb
was exceptionally measured in graphitic schists (which exhibited the highest uranium concentrations).
Radioactivity was measured in both cases. In the graphite-rich schist 226Ra was 380 ± 20 and in the
graphite-poor schist 220 ± 10 Bq/kg, which correlated with the concentrations of U measured by
XRF. The radioactivity of 232Th in the graphite-rich schist was 169 ± 8 and in the graphite-poor schist
141 ± 7 Bq/kg. The radioactivity of 137Cs was 3.7 ± 0.2 in the graphite-poor sample.

It should be noted that a household water well is located approximately 200 m from the
observation point, in the vicinity of a river, so that the water should be tested for uranium as carried
out in Montana [26].

The highest Sr concentrations were noted in the graphitic schists of the Inovo Series with less
organic material and the grade was 244.78 ppm.

Elevated concentrations of uranium in graphite schist are a result of redistribution of ore components
under dynamic-thermal metamorphism conditions.

All the gray siltstones of the Multicolored Series measured uranium concentrations from 49.36 to
54.43 ppm. In this case the concentrations of thorium were lower by a factor of about 4 (from 11.83
to 13.13 ppm). Lead concentrations were similar to those of Th and ranged from 11.59 to 18.18 ppm.
These samples exhibited somewhat elevated concentrations of Ba (from 590.14 to 603.42 ppm).
The radioactivity of 226Ra was relatively low (102 ± 5 Bq/kg) and 232Th measured 97 ± 5 Bq/kg.
The radioactivity of 40K was relatively high (2080 ± 90 Bq/kg). The values of 40K of the other samples
were lower and ranged from 900 ± 40 to 1700 ± 80 Bq/kg (the lowest in the case of a highly silicified
sample with limonite stains collected near Mezdreja).

The red sandstones of the Multicolored Series measured relatively low concentrations of uranium
(Figure 5B), from 7.78 to 12.64 ppm, and of thorium from 3.42 to 9.25 ppm. Lead concentrations varied
from 8.42 to 11.81 ppm. These samples measured the lowest radioactivity of 226Ra—28 ± 1, and 232Th
was 52 ± 3 Bq/kg.

In all sedimentary units the concentrations of strontium were much lower (in relation to granite
and graphite schist samples) and generally varied from 90 to 120 ppm.

By way of an explanation of the uranium concentrations in the red members (mainly sandstone)
of the Multicolored Series, it should be noted that the reduction of mobile uranium (U6+) to insoluble
uranium (U4+), such as uraninite, takes place when the fugasity of oxygen in solution drops.
This reaction occurs on account of iron or sulfur oxidation. When the solution (water) is rich in
oxygen, bivalent iron will oxidize into trivalent iron, but if there is an excess of Fe2+ relative to the
oxygen, the oxygen will be spent and the uranyl ion is the one to convert bivalent iron into trivalent,
or sulfides to sulfates, and is itself precipitated as uraninite. It is known in geology that iron oxidation in
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nature can result in uranium-bearing hematite [27]. The typical red color is attributed to Fe hydroxides,
largely deposited as cement. Their widespread presence suggests considerable incoming Fe from the
Zaglavak gabbroids (granites carry a much smaller amount of Fe).

Uranium concentrations in the case of “Multicolored Series” sediments (gray siltstone) are
attributable to adsorption to clays and organic-coaly material (well described in Wang et al. [28]).
This process takes place in the presence of specific adsorbents such as clay minerals, limonite, carbonate
sediments or organic substances, humic acid or caustobiolites, with which the uranium-bearing solution
comes into contact. Muto et al. [29] tested uranium adsorption to the clays commonly found in nature:
montmorillonite, haloizite and kaolin. The results they reported show that uranium is fixed most
efficiently at pH from 6.1 to 6.2.

In the Dojkinci area, pH measured in the river was about seven, locally 7.4. In addition, in
the Dojkinci–Jelovica area uranium migrativity and a reduction environment have been noted [30].
Uranium is being deposited in a reduction environment, after the change of redox conditions. Organic
substances are the major reducers of uranium, followed by iron compounds and clay minerals [31].
In the zone of the geochemical barrier in Permo-Triassic sediments, pH levels of water recently
measured about seven and Eh about 140 mV.

6. Conclusions

One of the major causes of elevation of naturally occurring radionuclide material concentrations
on the Earth’s surface is mining [32]. All the above-mentioned occurrences can conditionally be
deemed natural. Still, the Mezdreja and Gabrovnica mine dumps carried non-processed material.
It is also a fact that these areas are relatively large and that the radioactive material of the described
samples is continuously drained into watercourses. According to Dragović et al. [33], the total gamma
dose rate in the areas of Mezdreja and Gabrovnica is double the world average.

The samples shown in Figure 4A,C were collected next to a road. Peng et al. [34] show that the
groundwater from an oxidizing aquifer with a high dissolved oxygen concentration (O2), like in the
case of the Jelovička and Dojkinčka rivers is enriched in U. The material from this and similar outcrops
is regularly washed out by runoff after heavy rainfall or snowmelt, into the Jelovička River (a tributary
of the Dojkinačka).

There is widespread contamination of the environment due to natural and anthropogenic
enrichment of radionuclides in the world. In soil samples and alluvial sediments from Gabrovnica and
Mezdreja mines, an increased concentration of uranium in relation to natural background levels was
noted [35]. In the Niger Delta [36], for example, the highest activity concentration in all fish species of
gamma emitting radionuclides was observed for 40K, followed by 238U, 232Th and 226Ra. Exploring
the Gawib River floodplain in Namibia, Abive and Shaduka 2017 concluded that the radioactive
contaminants can spread into the deeper aquifer system through major structures such as joints and
faults [37].

The study area in Serbia used to be well-known for livestock breeding and the production of
cheese and meat, especially between the two world wars. However, since the 1970s the population has
been migrating to industrial centres. Now, some of the villages are completely abandoned and the
average age of the sparse population is above 60. There has never been any systematic monitoring
of the impact of naturally elevated radioactivity on human and animal health, such that no data has
been compiled.
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4. Momčilović, M.; Kovačević, J.; Dragović, S. Population doses from terrestrial exposure in the vicinity of

abandoned uranium mines in Serbia. Radiat. Meas. 2010, 45, 225–230. [CrossRef]
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24. Gržetić, I.; Jelenković, R. Natural radioactive elements, geological origin and forms of appearing and
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