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Abstract: Fluorine (F) is the most abundant halogen in the bulk silicate Earth. F plays an important
role in geochemical and biological systems, but its abundance and distribution in the terrestrial mantle
are still unclear. Recent studies suggested that F reservoirs in the deep mantle are potentially hosted
in terrestrial oxide minerals, especially in aluminous bridgmanite. However, the knowledge about
the formation and stability field of fluoride in the Earth’s interior is rare. In this study, we combine
in situ laser-heated diamond anvil cell, synchrotron X-ray diffraction, and first-principles structure
search to show that a new tetragonal structure of FeF3 is stable at pressures of 78–130 GPa and
temperatures up to ~1900 K. Simulation predicted the tetragonal phase takes a much denser structure
due to the rotation of FeF6 octahedral units. The equations of states of tetragonal FeF3 are determined
by experiment and verified by simulation. Our results indicate that FeF3 can be a potential key phase
for storing F in the Earth’s lower mantle and may explain some mantle-derived magma with high
F concentration.

Keywords: iron fluoride; Earth’s lower mantle; laser-heated diamond anvil cell; high pressure–
temperature

1. Introduction

The halogens (F, Cl, Br, and I) are important volatile elements but their behaviors are much less
constrained than their peer volatile elements, such as carbon and hydrogen. Here, we focus on fluorine
(F), which is the most abundant and lightest halogen in the Earth’s mantle [1]. Previous studies show
that the presence of F in the mantle can significantly affect the chemical and physical properties of the
silicate melt, including magma viscosity [2] and melting temperature [3].

The F content in the bulk silicate Earth (BSE) is estimated to be ~25 ppm based on concentrations
measured in natural basalts and peridotites, which is lower than that in carbonaceous chondrites
(~60 ppm) [1]. Previous experiments observed that some mantle-derived magma (e.g., oceanic island
basalt (OIB)) contains ~55 ppm of F [4,5], which is higher than the value of BSE. Moreover, Koga and
Rose-Koga [6] summarized that F has surprisingly lower content than its neighboring elements like
C, N, O, Ne, and Na based on atomic numbers and the depletion of F might be stored in deep Earth.
All the above statements indicate that the distribution of F might be heterogeneous and there could
be a potential F reservoir in the deep mantle. This hypothesis was implied by some terrestrial oxide
mineral samples, which can contain several thousand ppm F [7–12]. There are also known F-containing
minerals in the lower mantle, such as oskarssonite AlF3, parascandolaite KMgF3, and a new, unnamed
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fluoride, (Ba,Sr)AlF3 [13,14]. Du et al. [15] predicted that the heavy halogens (Cl, Br, and I) can stay in
the Earth’s core through the formation of Fe-halides based on the first-principles structural searches up
to 360 GPa. Since a large Fe3+ excess in the lower mantle can be created by the disproportionation of Fe2+

combined with removal of Fe0 droplets to the core [16,17], FeF3 could become an important F carrier in
the deep mantle. Although an X-ray diffraction study on FeF3 up to 23 GPa at room temperature has
been performed [18], there is no study about FeF3 at the Earth’s lower-mantle conditions. In this study,
we investigate the structure and stability of FeF3 at high pressure and high temperature corresponding
to the conditions from the middle to lowermost mantle (78–130 GPa and up to ~1900 K).

2. Methods

Global structural optimization was performed using the CALYPSO (Crystal structure AnaLYsis
by Particle Swarm Optimization) code [19,20] with the particle swarm optimization algorithm, which
has successfully predicted structures of various systems ranging from elements to binary and ternary
compounds [21–23]. The total energy calculations were carried out using density functional theory
within the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation [24] as implemented
in the VASP (Vienna Ab initio Simulation Package) code [25]. We used projector augmented waves [26]
with 3s23p63d64s2 and 2s22p5 as valence electrons for Fe and F atoms, respectively. The use of a
plane-wave kinetic energy cutoff of 550 eV and adoption of dense k-point sampling were shown to give
excellent convergence of total energies. To determine the dynamical stability of the studied structures,
we performed phonon calculations by using the finite displacement approach, as implemented in the
PHONOPY code [27].

A mixture of FeF3 (amorphous, 1 µm grain size, purity 99.999%) and Au powder was ground in a
ball mill for 2 h. The mixture of the amorphous FeF3 and Au powder was cold pressed into a thin foil
about ~30 × 30 µm2 in size and ~10 µm in thickness. The sample foil was loaded in a 55 µm diameter
hole in a rhenium gasket indented by diamond anvils with 100 µm culet diameter in a symmetric
Mao-Bell diamond anvil cell [28]. Neon gas was used as pressure medium in our experiments. Samples
were heated in a double-sided laser-heated diamond anvil cell (DAC) [29] and examined in situ at
high pressures and temperatures by synchrotron X-ray powder diffraction at beamline 16-IDB of the
Advanced Photon Source, Argonne National Laboratory. The X-ray beam size was 4.2 × 5.3 µm2 with
a wavelength of 0.4066 Å. For laser heating, the diameter of a laser heating spot was up to ~40 µm
at ~1900 K in the flat top area created with two focused ytterbium fiber lasers from both sides of the
sample that minimized both radial and axial temperature gradients. Temperatures were determined
by fitting the thermal radiation from the central portion of the heated sample to the Planck radiation
function [30]. About 2 wt.% Au powder was added to the mixture for infrared laser absorption in the
laser-heating experiment. Pressures were determined before and after heating by the self-consistent
equation of states (EOS) of the doped Au [31], and the error bar of calibrated pressure is estimated to
be of the order 1 to 2 GPa.

3. Results

We first performed structure predictions containing up to four formula units (f.u.) in the simulation
cell over a wide range of pressures (0, 100, and 200 GPa). At ambient pressure, we found that the
most stable structure was the R-3c phase, in agreement with the previous experiments [18]. At both
100 and 200 GPa, we uncovered a group of new structures, indicating potential new phases induced
by pressure. Among them, the tetragonal P42212 structure was found to be the most stable at
200 GPa. The calculated enthalpy curves (relative to the R-3c structure, Figure 1a) illustrate the relative
thermodynamic stabilities of the structures. Our results show that, up to 136 GPa, the ambient R-3c
structure is the most stable one. Beyond 136 GPa and up to 200 GPa, the predicted P42212 structure
becomes more stable. The phase transition from the ambient R-3c to the tetragonal P42212 involves
rotation of FeF6 octahedrons. This enables the structure to pack closely and, consequently, results in
larger volume reduction across the phase transition at high pressure. To further understand the effect
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of pressure, we also plotted the enthalpy components (internal energy term U and pressure-volume,
pV, terms) of the P42212 structure relative to the R-3c structure in Figure 1a. The R-3c structure
has the lowest internal energy over the entire pressure range calculated in this work. However,
beyond 136 GPa, the enthalpy of the P42212 structure becomes lower than that of the R-3c structure.
The main contribution to the enthalpy at high pressure is the pV term. At 136 GPa, the relative volume
reduction of the P42212 structure is 1.6% per formula unit, becoming large enough to compensate
for the internal energy difference. The dynamic stabilities of the newly predicted P42212 structure
was examined by calculating the phonon spectra using the supercell method. No imaginary phonon
frequencies were found in the whole Brillouin zone over the studied pressure range, establishing the
dynamical stability of the P42212 structure (Figure 1b).
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Figure 1. Enthalpy curves and phonon dispersion of the P42212 structure. (a) The difference in enthalpy,
internal energy U, and the pV term between the P42212 structure and the R-3c structure per formula
unit as a function of pressure. (b) Calculated phonon dispersion of the P42212 structure at 140 GPa.

We then conducted high-pressure experiments in search of the simulated structure. The mixture of
the amorphous FeF3 and Au powder was first compressed to 78 GPa at room temperature with Au as
an internal pressure standard [31]. The sample was then heated using a double-sided laser system and
held at target temperatures for ~10 min at ~1900 K. At 78 GPa and 1900 K, we observed the formation
of the predicted tetragonal P42212 phase. The sample was subsequently compressed to 130 GPa at
room temperature in nine pressure steps (Table 1). At each pressure step, the sample was annealed
for 10 min at ~1800 K, and in situ X-ray diffraction (XRD) spectra were acquired before and after the
annealing. The diffraction data show that the tetragonal P42212 phase was stable in the pressure range
from 78 to 130 GPa and up to 1800 K. It is worth mentioning that our experimental temperatures were
lower than an average geotherm of the lowermost mantle, although they were closer to that of the
cold slab subduction regions [32]. In Figure 2, we show an XRD pattern collected at 119 GPa after
laser heating to 1800 K. All peaks indexed to the calculated tetragonal unit cell are assigned in the
XRD pattern with a few minor peaks indexed to a pyrite-type FeF2 (Figure 2), which is also a stable
structure based on our calculation. The minor pyrite-FeF2 phase could be formed by releasing F from
FeF3 under high temperature or due to the lack of F in the starting composition. Unit cell parameters of
the tetragonal P42212 phase acquired at 300 K from 78–130 GPa are summarized in Table 1, and the PV
data are plotted in Figure 3. We fit the PV data to the third-order Birch–Murnaghan equation of state:
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and determined K0 = 109(10) GPa and K0′ = 3.9(2). The tetragonal P42212 phase of FeF3 is more
compressible than iron and iron hydrides [33] but less than FeH5 [34]. We also calculated the equation
of state of the tetragonal FeF3, and listed the result in Table 2 from the first-principles simulation and
plotted in Figure 3 together with the experimentally measured data for comparison.
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Table 1. Lattice parameters of tetragonal FeF3 up to 130 GPa and 1900 K.

P (GPa) a (Å) c (Å) V/(Å3/f.u.) Density (g/cm3)

78 4.010(2) 6.992(2) 28.11(2) 6.501(5)
81 3.993(2) 6.980(2) 27.83(3) 6.567(7)
90 3.983(2) 6.939(4) 27.52(2) 6.639(5)
98 3.949(2) 6.896(3) 26.88(2) 6.799(5)
106 3.919(1) 6.836(4) 26.25(2) 6.962(5)
110 3.910(1) 6.806(4) 26.01(2) 7.026(5)
118 3.905(1) 6.778(3) 25.84(2) 7.072(6)
122 3.884(1) 6.765(4) 25.69(2) 7.113(6)
126 3.878(1) 6.756(4) 25.40(2) 7.193(6)
130 3.854(1) 6.725(4) 24.98(2) 7.316(6)
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Figure 3. Measured FeF3 unit cell volumes at high pressure and 300 K. Open purple circles from this
study show pressures based on the Au pressure calibration (the error bar of ±2 GPa). The solid curve at
relatively high pressures from 78 to 130 GPa shows the equation of state for FeF3 with a tetragonal
unit-cell structure. Solid red circles are calculated by first-principles simulation. The equation of state
of high-pressure tetragonal FeF3 is compared with the low-pressure trigonal phase [18].
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Table 2. Lattice parameters of tetragonal FeF3 from first-principles simulation.

P (GPa) a (Å) c (Å) V (Å3/f.u.) Density (g/cm3)

0 4.435 7.867 38.68 4.853
20 4.290 7.425 34.17 5.493
40 4.205 7.104 31.40 5.978
60 4.138 6.901 29.54 6.354
80 4.083 6.747 28.12 6.675
100 4.037 6.625 26.99 6.955
120 3.996 6.527 26.06 7.203
140 3.961 6.442 25.26 7.431

4. Discussion

Recent synthesis experiments showed that Al-bearing bridgmanite under the conditions of the
uppermost lower mantle can contain up to ~1.3 wt.% F [12], which is much higher than in the other
oxide minerals, such as ~5100 ppm in olivine [7–9], ~660 ppm in pyroxenes [10,11], and ~1100 ppm in
pyrope [8] and ~2110 ppm in wadsleyite [11]. The concentrations of F incorporated in oxide minerals
can be affected by water contents due to the similar charge and comparable ionic radius of F− and
OH− [35,36]. That is, the presence of F may play a similar role as water in impacting the mineralogy
of the deep mantle and the distribution of water in the Earth’s interior [37–42]. Our experimental
results show that the dense FeF3 (~6.5–7.3 g/cm3, see Table 1) with a tetragonal unit-cell structure
is gravitationally stable at the bottom of the lower mantle and indicate that it can be a potential F
reservoir at such depths. This further supports the speculation of an F-enriched source region in
the Earth’s interior [4,5,12] and that may explain the phenomenon of the content of F being much
lower than other elements with similar atomic numbers [6]. To better constrain distribution of F and
other halogens in the BSE, however, required more dedicated high pressure-temperature experiments
along average mantle geotherm conditions, such as F partitioning between FeF3 and oxide minerals,
its crystal chemistry, and the stabilities of other halogenides [15].
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