
minerals

Article

High-Resolution Hyperspectral Mineral Mapping:
Case Studies in the Edwards Limestone, Texas, USA
and Sulfide-Rich Quartz Veins from the Ladakh
Batholith, Northern Pakistan

Diana Krupnik and Shuhab D. Khan *

Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA;
dkrupnik@uh.edu
* Correspondence: sdkhan@uh.edu; Tel.: +1-713-743-5404

Received: 7 September 2020; Accepted: 27 October 2020; Published: 29 October 2020
����������
�������

Abstract: The study of hand samples is a significant aspect of geoscience. This work showcases a
technique for relatively quick and inexpensive mineral characterization, applied to a Cretaceous
limestone formation and for sulfide-rich quartz vein samples from Northern Pakistan. Spectral
feature parameters are derived from mineral mixtures of known abundance and are used for mineral
mapping. Additionally, three well-known classification techniques—Spectral Angle Mapper (SAM),
Support Vector Machine (SVM), and Neural Network—are compared. Point counting results from
petrographic thin sections are used for validation the limestone samples, and QEMSCAN mineral
maps for the sulfide samples. For classifying the carbonates, the SVM classifier produced results that
are closest to the training set—with 84.4% accuracy and a kappa coefficient of 0.8. For classifying
sulfides, SAM produced mineral abundances that were closest to the validation data, possibly due to
the low reflectance of sulfides throughout the short-wave infrared spectrum with some differences in
the overall spectral shape.

Keywords: hyperspectral imaging; image classification; carbonate; gold mineralization

1. Introduction

Applications of hyperspectral imaging (HSI) are gaining popularity in various fields
such as agriculture [1,2], food quality monitoring [3,4], medical studies [5,6], forensics [7,8],
geologic studies [9–13], and many others [14–16]. Recently, close-range HSI has been implemented
as a non-invasive, high-resolution alternative to traditional methods of chemical characterization of
materials of interest. Various classification algorithms have been applied to hyperspectral images to
map endmember materials [17–19]. The same algorithms are applied to RADARSAT-2 polarimetric
Synthetic Aperture Radar data for land cover mapping [20].

In geological applications, the resolution of laboratory-based HSI has been at the centimeter [21]
to micrometer [22] scale. Recently, lenses with higher focal length have been used with short wave
infrared (SWIR) cameras, which allow for pixels as small as 26 µm [23,24]. In geological applications,
high-resolution imaging has the potential for increased accuracy of mineral abundance calculations.
This can be significant for resource characterization because mineral distribution maps can be used for
predictive modeling of the abundance of materials of interest [25–27].

Traditional techniques for fine-scale mineral mapping of rock chips can be costly. Techniques such
as Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), Electron probe
microanalyses (EPMA), and Mineral Liberation Analysis can be expensive, and thin section preparation
can be time consuming (several weeks in most cases). Thin section point counting can be prone to user
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error [28], although recently automated techniques have been suggested for automating the estimation
of porosity and mineral texture in thin section photomicrographs [29]; however, this method does not
discriminate mineralogy.

Previously, high-resolution mineralogical mapping using hyperspectral imaging was validated
using Scanning Electron Microscopy (SEM)-based Mineral Liberation Analyzer (MLA) [30,31].
This study presents two case studies, including sample suites that are compositional endmembers:
diagenetically altered carbonates and sulfide mineral-rich quartz veins.

2. Materials and Methods

2.1. Sample Origins and Descriptions

Samples of the Edwards Limestone in the Lake Georgetown Spillway area were collected in 2014
(Figure 1). Pre-measured mineral mixtures were evaluated, similarly to Zaini et al. [32], but with the
addition of silica to better estimate mineral abundances in the outcrop. A description of minerals used
for reference spectra, field samples, thin section photomicrographs, and the geologic context of the
Edwards Formation and sampling locations can be found within [33]. Samples were point counted
using polished thin sections: 300–350 points were counted within a defined grid in the stained half of
each thin section.
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using QEMSCAN at Colorado School of Mines, and the results suggest that gold mineralization is 
associated with base metal sulfides, specifically chalcopyrite and galena [34,35]. 

Figure 1. (A) Study location in Google Earth, modified from [33]. (B) Rock chip sample locations along
the outcrop, the background is LiDAR-derived topography textured with a false-color composite of
2378, 2334, and 2146 nm in RGB, data from [33].

Quartz vein intrusions into diorite within the Ladakh batholith from the Astore area, located in
Northern Pakistan, consisting of chalcopyrite and galena-rich quartz veins, were collected from the
Astore Valley in Northern Pakistan (Figure 2). In previous studies, these samples were analyzed using
QEMSCAN at Colorado School of Mines, and the results suggest that gold mineralization is associated
with base metal sulfides, specifically chalcopyrite and galena [34,35].
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Figure 2. Geologic map of the Astor area in Northern Pakistan. Bulk samples were collected from the
Astore area. Modified from [35].

Various mineral types have distinguishing features in the SWIR spectral region, including
phyllosilicates, carbonates, hydroxides, sulfates, and others [36–39]. Carbonate minerals have a
robust spectral feature in the within the wavelength ranges of 2530–2541 nm and 2333–2340 nm and
2503–2520 nm and 2312–2323 nm, respectively [32,40–45]. On the other hand, tectosilicates, such as
quartz and feldspar, do not have distinctive features in SWIR but do in the thermal infrared spectral
range [42,46]. Sulfide minerals such as pyrite and chalcopyrite are opaque and do not have any
distinguishing features in SWIR [47,48]; however, some studies have used differences in spectral shape
to distinguish them [21].

2.2. Mineral Mixture Preparation and Evaluation

Calcite, dolomite, and chert mixtures were prepared from relatively pure minerals, sieved to a
grain size fraction of 75–150µm, and mixed with the weight proportions in Table 1. Their spectral curves
were measured using an Analytical Spectral Device (ASD) Fieldspec Pro spectroradiometer (Fieldspec
Pro FR, Malvern Panalytical, Malvern, UK) under artificial illumination. Spectral parameters were
calculated using Dispec (IDL DISPEC 3.6, ITC, Enschede, Netherlands), an IDL plugin for ENVI [49].
Mineral mixtures and rock chips were also scanned using the OLES 22.5 wide-angle (24◦ FOV) lens
and a pixel size of 0.4 mm.
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Table 1. Mineral abundances (by mass) and mean absorption minimum locations measured from
hyperspectral imaging (HSI).

Sample
Number % Calcite %

Dolomite % Chert Mean Min Wavelength
(nm)

Mean Depth
(%)

1 100 0 0 2337 21.14
2 0 100 0 2309 10.24
3 0 0 100 2284 4.95
4 0 25 75 2286 5.95
5 0 50 50 2289 6.33
6 0 75 25 2299 7.63
7 25 75 0 2313 11.25
8 50 50 0 2321 12.99
9 75 25 0 2332 15.09
10 25 0 75 2286 5.69
11 50 0 50 2335 3.07
12 25 0 75 2286 1.91
13 15 15 70 2287 2.13
14 15 35 50 2311 3.43
15 25 25 50 2317 2.98
16 35 15 50 2327 3
17 33 33 33 2323 4.26
18 25 50 25 2319 5.22
19 50 25 25 2328 5.14
20 15 70 15 2316 5.98
21 70 15 15 2334 8.71

2.3. Hyperspectral Data Acquisition, Processing, and Classification

Laboratory-based HSI was conducted using a Specim SWIR camera (Spectral Camera
SWIR, Specim, Oulu, Finland), operating within the 909–2503 nm spectral range, with 14-bit
radiometric resolution. For high-resolution scanning, Specim’s OLES Macro lens (OLES Macro,
Specim, Oulu, Finland) was used, which provides 1:1 imaging with a 7.5◦ field of view (FOV).
Samples were placed on a scanning stage 0.10 m from the camera lens, with a spatial resolution of
32 µm. Three 50-Watt quartz halogen light bulbs were used for illumination. Samples were moved
at a constant speed in the along-track direction. A frame rate of 100 Hz was selected to produce
square pixels.

For hyperspectral data, pre-processing steps included dark frame subtraction, empirical line
calibration [50], correcting image artifacts that occur in the along-track direction [51], and Savitzky–Golay
spectral smoothing using a second order polynomial and a filter width of four bands [52,53].
All image processing and analysis techniques were implemented using ENVI software (Version 5.5,
Harris Geospatial, Boulder, CO, USA) and Matlab 2018a (Mathworks, Inc, Natick, MA, USA).

Numerous mineral groups have distinct absorption features in the SWIR wavelengths that
can be used as an indicator of mineralogy. For example, calcite has an absorption located at
approximately 2330–2340 nm; this feature can be used to distinguish calcite from dolomite, which has
an absorption feature of similar magnitude but located at shorter wavelengths, approximately
2315–2320 nm [44]. The wavelength location of an absorption feature minimum can be used to
distinguish carbonate minerals, as well as many others [37,54] (Figure 3). The magnitude of absorption
depth has been correlated with a higher concentration of the mineral in question [10,55] and can
increase with larger grain size [56]. For carbonate samples, hyperspectral images of relatively pure
mineral mixtures (Figure 4) were used to set thresholds for absorption minimum location. Minimum
wavelength was mapped using the Hyperspectral Python program (HypPy, University of Twente,
Enschede, Netherlands) [57].
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threshold contribution is set to determine the size of the contribution of the internal weight and is 
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Figure 3. Spectral absorption feature characteristics modified after [25].

Three classification techniques were compared. Spectral Angle Mapper (SAM) classifies image
pixels by treating each pixel and reference (endmember) spectrum as a vector in a space with
dimensionality equal to the number of image bands [58]. The angle between each pixel vector and
the reference vector is used to produce a classification image based on a user-defined threshold.
This technique is relatively simple and can use training data from various sources. Computation time
is typically short.
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Support Vector Machine (SVM) is a technique derived from statistical learning theory,
which separates classes with a decision surface that maximizes the boundary between classes [59–61].
Support vectors or the data points closest to the decision surface, are elements of the training set.
Previous studies report that this technique yields reliable results with noisy data, although training
time can be long depending on the amount of training data that is input [62]. A drawback in the SVM
algorithm is its reported poor performance in classifying hyperspectral data with a model learned from
independent training data [63], potentially due to differences in illumination [64]. A kernel function
is used to assign weights of nearby points for classification. For the present study, the radial basis
function was used. A probability threshold of 0.5 was set for these examples, so that at least 50% of
bands must match the class to be assigned.

Implementation of the Neural Network classification in ENVI is a layered feed-forward
classification technique with error backpropagation for supervised learning. The weights in the
node are adjusted to minimize the difference between the output node activation and input. A training
threshold contribution is set to determine the size of the contribution of the internal weight and is
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used to adjust the changes to the internal weight [65]. A larger weight leads to poor generalizations
but more accurate classification. For this work, a training threshold contribution of 0.95 was set after
testing several other values. Non-linear neural network classification requires at least one hidden
layer, and the number of hidden layers needed depends on the complexity of the decision surface
for the classification [59]. The minimum output activation threshold was set to 0.5, such that if the
activation value of a pixel for any given class is less than 0.5, it remains unclassified.

3. Results

3.1. Edwards Formation, Central Texas, USA

Evaluation of mineral mixtures for absorption depth and minimum location between 2210 nm
and 2400 nm has revealed relationships between mineral abundances and spectral characteristics
(Figure 4). A higher abundance of calcite is most correlated with the absorption band center at
longer wavelengths, and the highest abundance of chert is related to lower absorption depth in this
spectral region.

Thresholds were set for abundances of calcite, dolomite, and chert were established from mineral
mixtures that were prepared in the laboratory (Table 1); these were used to classify rock chips
based on rock/mineral proportions. Differences in abundance range from 0.2% to 18% for calcite,
1% to 26% for dolomite, and 0 to 23% for chert. There are several explanations for the differences in
abundance between point counts and HSI mapping. Point counts were conducted using high-resolution
microscopy, where objects smaller than a micrometer could be resolved at the highest magnification.
Additionally, spectral measurements were made on the other half of each rock slab, which could
account for some of the variability in composition. The use of mineral mixtures for setting thresholds for
mineral classification introduces errors in measurement and from sensor noise. In the scanned mineral
mixtures, weak correlations between minimum wavelength position and abundance of calcite and
silica, but no correlation with dolomite abundance were observed (Figure 5). Mineral maps produced
from absorption band centers had mineral abundances that correlated with abundances obtained from
point counting (Figure 6), with endmembers extracted for certain absorption band centers (Figure 7).
High-resolution laboratory scanning of limestone, dolostone, and chert samples from the Edwards
formation was used for detailed mineral abundance prediction using the position of the carbonate
absorption minimum location (Figure 8).

The minimum wavelength image was used to generate a random sample of 300 pixels per class
for training the SAM, SVM, and Neural Net classifiers. Classification accuracies were compared
using confusion matrices [66], with the absorption band center image as reference. For the Edwards
Limestone samples, SVM classified the carbonate samples with greater accuracy (84.4%) and kappa
coefficient (0.82) than SAM and Neural Network (56.2%; 0.48 and 66.4%; 0.59, respectively). The aim
was to distinguish materials that were not spectrally distinct with only minute differences in absorption
locations, and similar overall spectral shapes. Because SVM is optimized to define functions based on
training data situated near decision boundaries [67], it is likely the most accurate technique of the three
that were attempted to separate spectrally similar classes. SVM has previously been used to classify
clays and carbonates materials in hyperspectral imagery [68] and was applied to petrophysical logs
to characterize carbonate reservoir facies [69]. SAM had the lowest overall accuracy, likely due to its
reliance on curve shape for class separation.
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Figure 5. Minimum wavelength locations and depths of prepared mixtures measured from
hyperspectral imagery, compared to mineral proportions by weight. Error bars show standard
deviation of measurements.

Laboratory-based HSI can provide estimates of mineral abundance that are comparable to point
counting (Figure 6), although both techniques suffer from certain shortcomings. HSI data are prone to
sensor noise and require subsequent data processing to correct image artifacts and convert to reflectance
for comparison to spectral library standards. Furthermore, the lack of distinguishing spectral features
of some mineral groups in SWIR wavelengths makes the approach used in the present study unreliable
for those minerals. This technique is suitable for distinguishing various carbonate, clay, hydroxide,
sulfate, and other minerals, as well as hydrocarbons and other materials. Mapping the mineralogy of
veins and microstructures can be useful for geologic studies [70,71] and can be achieved in a more
extensive fashion using HSI than traditional techniques. Point counting introduces errors due to user
interpretation, grid distance, and grain transition boundaries [72], and thin section preparation can be
time consuming. However, this method has the advantage of high-resolution observation for studying
diagenesis and other phenomena.
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3.2. Sulfide-Rich Quartz Veins from Ladakh Batholith, Northern Pakistan

This work aims to test the feasibility of mapping sulfide minerals using imaging spectroscopy
by validation using QEMSCAN mineral maps. Detection of sulfide minerals such as pyrite and
chalcopyrite in the SWIR spectral region presents a challenge, because these opaque minerals have
low overall reflectance and diminish spectral features of other minerals [48]. This work compared
hyperspectral mineral classification to QEMSCAN data, also evaluating the suitability of commonly
used classification techniques.

Mineral maps and abundances from each classification technique and QEMSCAN abundances that
were derived from a subset image that was resampled to hyperspectral image resolution are presented
as are differences in these abundances (Table 2, Figure 9). Spectra from the images (Figure 10A) and
spectral libraries (Figure 10B) [36] are compared. Sample AR-1F showed the greatest similarity to
QEMSCAN mineral abundances with SAM and Neural Net classification, although SVM results were
least similar to abundances in the reference data (Table 2, Figure 9). SAM has been useful for classifying
sulfide minerals [21,73], including underwater applications under artificial illumination [74,75].

Table 2. Mineral abundances from selected sulfide samples. The number below each classified
percentage in parentheses indicates the difference between QEMSCAN and classification abundance.
Classes with abundances that are closest to QEMSCAN proportions are outlined.

Mineral/Group
QEMSCAN SAM SVM Neural Net

Mineral/Group
QEMSCAN SAM SVM Neural Net

% % % % % % % %

A
R

-1
F

Chalcopyrite 49.69 43.29
(−6.4)

32.5
(−17.2)

45.6
(−4.1)

A
R

-1
3

Galena 41.68 40
(−1.7)

36.3
(−5.4)

45.3
(3.6)

Cu-Limonite 34.58 41.4
(6.8)

35.3
(0.8)

26.4
(−8.2)

Partially
Oxidized
Galena

31.5 17.65
(−13.8)

20.4
(−11.2)

21.5
(−10)

Malachite/
Azurite 3.19 7.14

(3.95)
5.86
(2.7)

5.2
(2.03) Limonite 17.9 17.24

(−0.6)
6.7

(−11.1)
25.4

(7.52)

Quartz 4.4 2.11
(−2.3)

4.4
(0)

3.2
(−1.3)

Iron Oxide/
Hydroxide 8.2 11.23

(3.06)
34.6

(26.4)
6.3

(−1.9)

Iron Oxide/
Hydroxide 3.5 3.7

(0.19)
16.9

(13.4)
11.4
(8)

Malachite/
Azurite 0.8 4.63

(3.84)
0.70

(−0.09)
0.5

(−0.3)

Bornite 2 − − − Muscovite − 9.19 1.26 1.1

Chalcocite/
Diginite 1.1 − − − Chlorite − 0.1 0.1 0

Muscovite 0.6 0.7
(0.2)

2.8
(2.3)

2.1
(1.6)

Chlorite 1 1.72
(0.8)

2.3
(1.3)

6.1
(5.1)

Mineral/Group
QEMSCAN SAM SVM Neural Net

Mineral/Group
QEMSCAN SAM SVM Neural Net

% % % % % % % %

A
R

-8

Quartz 84.1 60.6
(−23.5)

66.7
(−17.4)

66.5
(−17.6)

A
R

-1
0

Quartz 93.5 80.7
(−12.8)
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shown—Ci/CQEMSCAN (i = SAM, SVM, NN) A log scale is used for the y-axis.

Sample AR-13 shows a relatively accurate classification of galena, but significant differences in
classification of oxidized galena. Although SAM outperforms SVM and Neural Net for classification of
limonite, iron oxide is most accurately classified by Neural Net, and azurite by SVM. Samples AR-8
and AR-10 show substantial differences between QEMSCAN and classified abundances of quartz,
galena, and limonite. Lack of consistency or similarity of classification results to QEMSAN data may
be attributed to inaccuracy of the technique and endmember selection but is also likely a result of
compositional offset resulting from sample preparation. Classification results that produced abundance
that is closest to resampled QEMSCAN abundance were combined (Figure 11G) to produce mineral
maps that have the closest resemblance to the reference images.

It is visible that samples AR-8 and AR-10 have a much higher proportion of galena and
oxidized galena than the other half that was sent for QEMSCAN analysis. Furthermore, galena,
limonite, and chalcopyrite have similar spectral curves in these samples (Figure 11A), making them a
challenge to distinguish. These may be misclassified because only minute differences in spectral shape
exist between these minerals.

Error distance was calculated (Table 3) using the following formula (Equation (1)):

ε|χ| j =
1
m

∑m

i = 1

∣∣∣C ji −CQEMSCANi
∣∣∣

CQEMSCANi
(1)

where j = SAM, SVM, and NN is compared to QEMSCAN abundances, and i is the composition of
each mineral.

Table 3. Error distance for each sample.

Sample Number SAM SVM NN

AR-1F 0.46 1.50 1.65
AR-13 1.15 0.89 0.30
AR-8 2.35 2.55 1.71

AR-10 2.69 3.58 2.97
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Figure 10. Endmember spectral plots from each class that was mapped in Figure 11, (A) derived from
hyperspectral data and (B) from the USGS spectral library [36].

Geochemical techniques and microscopy are commonly used for characterizing mineralogy,
but reflectance spectroscopy may provide a less expensive alternative. Although imaging spectroscopy
does not yet achieve the spatial resolution, reliability, and repeatability of techniques such as QEMSCAN,
it can be used for sample logging at a higher speed. It is reported that at 10 µm resolution, 3 cm2 can
be analyzed within approximately 3 h [76]. Within that time frame, about five times that area or more
could be scanned and analyzed using HSI at approximately 30 µm resolution.
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Figure 11. Sulfide samples (A) True color composite with the high-resolution scan area outlined in
white. (B) SWIR false color composite AR1-F: 2102, 1359, 953 nm; AR-8: 934, 1819, 2447 nm; AR-10: 934,
1819, 2447 nm; and AR-13: 2453, 1794, 966 nm. (C) MNF color composites AR1-F: 1, 3, 2 AR-8 and AR-10:
3, 2, 1; and AR-13: 1, 2, 4. (D) SAM, (E) SVM, and (F) Neural Net classifications. (G) A combination
of classes that most closely match QEMSCAN abundances, as shown by outlined cells of Table 2.
(H) QEMSCAN image that has been subset to approximately the same extent as the hyperspectral
imagery. Legend colors apply to images D–H. The scale bar applies to B–H.
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4. Conclusions

This work compared high-resolution laboratory imaging spectroscopy to mineral quantification
using petrography and QEMSCAN for sample suites of two compositional endmembers. Spectral
libraries from prepared mineral mixtures were used to set minimum wavelength thresholds for
carbonate minerals and to train several classification algorithms. SAM, SVM, and Neural Network
classifiers were compared, finding SVM yielded the highest accuracy for classifying carbonates.
Classification of sulfide samples was compared to QEMSCAN mineral mapping, finding SAM showed
the greatest similarity. It is possible that the SVM technique had better performance in classifying
carbonates due to its ability to distinguish spectrally similar materials, whereas SAM had higher
accuracy in classifying sulfides due to the differences in the overall shape of the mineral spectral
reflectance curves. Additional work using different mineral phases and directly comparable validation
data could provide more clarity on the advantages and drawbacks of commonly used classification
techniques when applied to high resolution laboratory SWIR imaging.
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