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Abstract: The article presents a study of the environmental impact of dusting tailing dumps of
rare-metal ore dressing in the Murmansk region of Russia. The purpose of the study was to establish
patterns in the atmochemical halo migration of the dust pollution of loparite ore dressing tailings.
The geotechnical characteristics and material composition of the tailings material have been inves-
tigated. Potentially dusty areas identified. Models of dispersion of inorganic dust under different
meteorological scenarios are constructed: at low wind load, normal and unfavorable meteorological
conditions. The modeling of the spread of pollutants in the area exposed to dust at the storage site
was carried out in the program for modeling atmospheric pollution Ecolog-4.60. Calculation of the
dispersion of inorganic dust containing 20–70% SiO2 showed that the atmochemical halo of tailings
dust pollution spreads over tens of kilometers, and already at a wind speed of about 8 m/s, the
concentration of suspended solids at the border of the enterprise sanitary protection zone exceeds
the maximum one-time maximum permissible concentration is 3–3.3 times, and under unfavorable
meteorological conditions—Dusting reaches the boundaries of the residential area (inhabited locality
Revda), located in the north-west of the enterprise, and exceeds the MPCm.o. 1.5 times.

Keywords: tailings storage facilities; dusting; modeling; dispersal; heavy metals; rare earths elements

1. Introduction

In the process of mining and concentration of ores, in particular rare-metal ores, a
huge amount of waste is generated, the bulk of which is ground ore concentration tailings
stored at dedicated storage facilities [1–5]. When in active operation, which can be on the
scale of decades, the tailings storage facility surface can reach several square kilometers
and is virtually devoid of vegetation. Fluctuations in air temperature, humidity, and wind
speeds lead to dust formation on the surface. The susceptibility of tailing dumps to wind
erosion increases due to the artificially modified terrain, poor surface vegetation growth,
and insufficient reclamation efforts [6]. The problem of air pollution not only at the global,
but at the regional and local levels and its negative impact on the state of ecosystems and
human health is a serious problem throughout the world [7–10].

High concentrations of solid particles have a multifactorial effect on the processes
of acidification and eutrophication of ecosystems [11], the emergence of respiratory and
cardiovascular diseases risk in humans [12], on various meteorological processes, precip-
itation and regional climate [13–16]. Long-term human exposure to portable particulate
matter is currently associated with a wide range of potential health risks.

The effects of dust particles on living organisms differ in particle size. Thus, exposure
to PM 10 particles is associated with respiratory diseases [17], including chronic obstructive
pulmonary disease and other pathological conditions of the human respiratory system [18];
exposure to PM 2.5 particles has been associated with anemia [19]. According to existing
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epidemiological studies, the effect of PM 2.5–10 particles is systemic, has a biological effect
on the immune response, exhibits cytotoxicity and potential mutagenicity in relation to
body cells, and is also associated by researchers with cardiovascular diseases, asthma,
hypertension, stroke [20,21].

Disposal of waste generated during the operation of rare earth deposits is the reason
for the increase in the concentration of REEs in the environment, especially in the areas of
active mining operations [22,23].

Recently, a significant number of studies have been devoted to the pollution and
distribution of rare-earth elements (REE) in water bodies [24–26] and soils [27–30], however,
the number of studies on the concentration of REE-containing solid particles in the air is
limited. Research is mainly focused on the transfer of REEs in atmospheric dust to the
surface of the oceans [31,32] and the content of REEs in particulate matter in cities [33–35].

The main methods for studying dust emissions and the spread of pollutants at present
are field measurements [6], physical approaches, computer modeling of scattering and
particle transport flows [36], and their combinations. Computational fluid dynamics (CFD)
is widely used in dust transport calculations. The use of CFD makes it possible to obtain
the values of the concentrations of pollutants taking into account the relief, the presence
of buildings, local aerodynamics and turbulence [37]. The article by Schulz et al. [38]
presents a modified numerical approach to modeling dust emission during loading and
unloading operations with bulk materials. A feature of the approach is the combination
of the discrete element method (DEM) to describe the motion of particles with the CFD
method to simulate the gas-dust phase. The work by Kontos et al. [39] is devoted to the
creation of an accurate regional dust modeling system in the Central Middle East (CME)
using a combination of the Natural Emission MOdel (NEMO) natural emission model, the
Weather Research and Forecasting (WRF) meteorological model and the Comprehensive
Air quality Model with extensions (CAMx) chemical transport model.

The first work on modeling dust transfer on the Kola Peninsula began in the 1980s,
when the scattering fluxes of elements from the apatite-nepheline tailing dump were
calculated using numerical modeling methods based on the author’s models and computer
programs, in which the equations describing the processes of aerothermogasdynamics
were solved finite-difference methods on non-uniform rectangular grids [40,41].

In the article by Amosov et al. [42], the calculation of the transfer of multi-dispersed
dust from the tailing dump of apatite-nepheline ores at different heights of the beach
was carried out using a CFD model. Later, in the work by Amosov and Baklanov [43],
a new methodological approach was introduced to assess the vertical flow of the tail-
ings dust mass, based on the “DEAD” scheme [44] and processing the results of a two-
dimensional CFD model of the dusting area. Using the COMSOL program in the article by
Amosov et al. [45], an assessment was carried out by numerical modeling of atmospheric
pollution levels depending on the discrete location of dusty areas of the apatite-nepheline
tailing dump area closest to the city and the wind flow velocity. The process of spreading
dust pollution is modeled by numerically solving the convective-diffusion equation for the
transfer of an admixture, taking into account the sedimentation rate.

In our work, the unified program for calculating atmospheric pollution “Ecolog”
(version 4), developed by “Integral”, is used to calculate surface dust concentrations. The
program implements the techniques [45–48] used in Russia to conduct environmental
impact assessment.

The aim of the study is modelling of the chemical halo of dust pollution migration in
loparite ore tailings storage facilities.

The objectives of the study are: to investigate the loparite ore dressing tailings, to
identify potentially dusty areas of the tailing dump, to build a model for dispersing
inorganic dust under different meteorological scenarios.
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2. Materials and Methods

We studied the loparite ore dressing tailings from the surface layer (not deeper than
8 cm) in a decommissioned area of a mining tailings storage facility. The operation’s
saleable product (loparite concentrate) is a complex commodity used as a mineral feed in
the production of tantalum, niobium, REE of the cerium group, and titanium [49].

Sampling of the dressing tailings and soils at key locations was carried out in the
summer (in august) of 2020 by the staff of the Institute of Industrial Ecology of the North,
Kola Science Centre, Russian Academy of Sciences (INEP KSC RAS) (Figure 1).
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Figure 1. Sampling map-scheme of loparite ore dressing tailings (white rhombuses indicate soil
sampling points).

Sieve analysis was carried out using a sieve impact analyzer AC–200U. with a set of
sieves (mesh 1, 0.5, 0.25, 0.1, 0.071 mm). The content of fine particles was determined using
a laser diffraction particle size analyzer LS13320 (Beckman Coulter) in combination with
PLDI technology (recording the differential intensity of polarized light).

Over twenty tail samples have been analyzed. Each sample was dried to constant
weight, and weighed portions were taken by quartering, which were transferred to analysis.
A 200 mg sample of the ground was subjected to open acid decomposition with a mixture
of HNO3, HF, HCl in glass-carbon crucibles. After decomposition, the solutions were
transferred into polypropylene 50- or 100-mL tubes, which were filled to the mark with a
2% HNO3 solution. A 2% HNO3 solution was also used to dilute the solutions.
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Analysis was performed using an ELAN 9000 DRC-e inductively coupled plasma mass
spectrometer (by Perkin Elmer, Waltham, MA, USA). To calibrate the instrument, was used
the standard solutions ICP-MS Calibration Standard IV-STOCK-21 and IV-STOCK-29 (by
Inorganic Ventures, Christiansburg, VA, USA) with a mass concentration of the measured
elements of 10 mg/dm3. The measurement error did not exceed 0.5% at p = 0.95 [50].

The mineral composition of the tailings was studied by powder X-ray diffraction using
a DRON-2.0 instrument (Cu-Kα radiation).

Based on the bulk tailings and soils chemistry analysis, the enrichment factor (EF) was
calculated as the ratio of the target element Ci concentration to its content in the parent rock
CP: EF = Ci/CP [51,52]. Gross content of the element in the C horizon of the region’s native
soils was taken as the background value [52]. In the absence of background values, the
comparison was based on the clarke content of the element in the earth’s crust, determined
for acid (SiO2 > 60%) rocks as described in Vinogradov [53].

EF values were interpreted as suggested by Sakan et al. [54] into seven classes
in Table 1.

Table 1. Enrichment factor EFi.

EFi Value Enrichment Level

<1 no enrichment
1–3 minor enrichment
3–5 moderate enrichment

5–10 moderately severe enrichment
10–25 severe enrichment
25–50 very severe enrichment
>50 extremely severe enrichment

Zones of active dusting were established on the basis of data obtained after deter-
mining the engineering-geological characteristics of the material of the tailings (ArcGIS
10 program).

Meteorological data were received at the official request to the Department of Hy-
drometeorology and Environmental Monitoring. The rate of dust emission from the sites
was calculated using the “Mining Works” program, version 1.30.11 of 08/10/2019, which
implements a number of techniques [47,55].

The total dust emission is determined by the formula:
M = 86.4·Qdust·Sot·K2·K7·(365 − Tc)·(1 − h)·10−6 t/year
Blade height = 10 m
Wind speed = 5 m/s Qdust = 3.7 mg/m2·s
Wind speed = 8 m/s Qdust = 14.3 mg/m2·s
Wind speed = 10 m/s Qdust = 26.7 mg/m2·s
Sot = 41,200 m2—dump area.
K2 = 0.20—coefficient taking into account the moisture content of the material (mois-

ture content: 9.1–10%).
K7 = 0.1—coefficient taking into account the efficiency of blowing off dust from the

surface of the dump. Elapsed time since decommissioning: more than three years.
Tc = 186—the average annual number of days with stable snow cover or precipitation

in the form of rain.
h = 0.000—efficiency of dust suppression.
Qdust—one-off emission per unit area.
The maximum one-time dust emission is determined by the formula:
G = Qdust·S·K2·K7·(1 − h)·10−3 g/s
To graphically display the patterns of migration of the atmochemical halo of dust

pollution from tailings, a calculation was made of the complete dispersion of inorganic
dust containing 20–70% SiO2 and a particle size of less than 100 microns in the surface layer
of the atmosphere using standardized techniques and software (UPRZA “Ecolog” version
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4.60), implementing MPR-2017 “Methods for calculating the dispersion of emissions of
harmful (polluting) substances into the atmospheric air” (approved by order of the Ministry
of Natural Resources of Russia dated 6 June 2017 No. 273), as described in [56].

The calculation was carried out for various meteorological conditions:

(1) low wind load, at which the wind speed does not exceed 5 m/s;
(2) normal meteorological conditions under which the wind speed does not exceed 8 m/s;
(3) unfavorable meteorological conditions under which the wind speed exceeds 10 m/s.

For the calculation, we used the data of meteorological characteristics of the tail-
ing dump area (data from the Lovozero meteorological station: No. according to the
WMO (World Meteorological Organization) classification 22127, coordinates 68.0048528,
35.0269568. Source of information on actual weather [57]. Information the actual weather
is received from the international exchange data server, NOAA, Asheville, NC, USA, in
SYNOP and METAR formats).

3. Results and Discussion

Loparite ore dressing tailings were partially studied in [58]. Heterogeneity was found
of the material composition and of the content of valuable components, and the likelihood
was shown of loose tailings dusting in dry windy weather conditions.

Sieve analysis of the tailings indicated the predominant fractions are 0.1–0.5 mm,
which is about 70% of the total weight of the tailings (Figure 2). The average content of the
PM 10 fraction in the tailings was 2.38%. The coefficient of variation of the share of this
fraction (0.8) indicates a heterogeneous grain size distribution of the studied samples.

Minerals 2021, 11, 1077 5 of 16 
 

 

The maximum one-time dust emission is determined by the formula: 
G = Qdust· S· K2· K7· (1 − h) ·10−3 g/s 
To graphically display the patterns of migration of the atmochemical halo of dust 

pollution from tailings, a calculation was made of the complete dispersion of inorganic 
dust containing 20–70% SiO2 and a particle size of less than 100 microns in the surface 
layer of the atmosphere using standardized techniques and software (UPRZA “Ecolog” 
version 4.60), implementing MPR-2017 “Methods for calculating the dispersion of emis-
sions of harmful (polluting) substances into the atmospheric air” (approved by order of 
the Ministry of Natural Resources of Russia dated 6 June 2017 No. 273), as described in 
[56]. 

The calculation was carried out for various meteorological conditions: 
(1) low wind load, at which the wind speed does not exceed 5 m/s; 
(2) normal meteorological conditions under which the wind speed does not exceed 8 

m/s; 
(3) unfavorable meteorological conditions under which the wind speed exceeds 10 m/s. 

For the calculation, we used the data of meteorological characteristics of the tailing 
dump area (data from the Lovozero meteorological station: No. according to the WMO 
(World Meteorological Organization) classification 22127, coordinates 68.0048528, 
35.0269568. Source of information on actual weather [57]. Information the actual weather 
is received from the international exchange data server, NOAA, Asheville, NC, USA, in 
SYNOP and METAR formats). 

3. Results and Discussion 
Loparite ore dressing tailings were partially studied in [58]. Heterogeneity was 

found of the material composition and of the content of valuable components, and the 
likelihood was shown of loose tailings dusting in dry windy weather conditions. 

Sieve analysis of the tailings indicated the predominant fractions are 0.1–0.5 mm, 
which is about 70% of the total weight of the tailings (Figure 2). The average content of 
the PM 10 fraction in the tailings was 2.38%. The coefficient of variation of the share of 
this fraction (0.8) indicates a heterogeneous grain size distribution of the studied samples. 

 
Figure 2. Granulometric composition of loparite ore dressing tailings. Figure 2. Granulometric composition of loparite ore dressing tailings.

Mass percentage of the chemical composition of the tailings: SiO2-48.08, TiO2-1.1,
Al2O3-22.47, Fe2O3-5.3, FeO-0.66, MnO-0.23, CaO-1.63, MgO-0.45, K2O-4.24, Na2O-13.33,
P2O5-0.79, SrO-0.33, F-0.08, SO3-0.08. Thus, the loparite ore dressing tailings are inorganic
dust containing 20–70% SiO2, belonging to the III hazard class [59,60].

The total content of some elements in the tailings is shown in Table 2.
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Table 2. The total content of some elements in the loparite ore dressing tails.

Element Contain, mg/kg Element Contain, %

Cu 5.36 ± 0.46 Nb 0.09 ± 0.01
Zn 171 ± 15.68 Mn 0.01 ± 0.001
La 160 ± 10.74 Al 7.86 ± 0.08
Pr 33.9 ± 4.02 Fe 3.00 ± 0.02
Nd 106 ± 9.65 Zr 0.21 ± 0.02
Th 16.5 ± 1.75 Sr 0.09 ± 0.01
Ta 75 ± 2.64 Ce 0.09 ± 0.01

By X-ray phase analysis, the dominant phases were identified (listed in descending
order): nepheline, microcline, aegirine, albite, sodalite (Figure 3). Minor impurities of
loparite, analcime, natrolite were also found.

Minerals 2021, 11, 1077 6 of 16 
 

 

Mass percentage of the chemical composition of the tailings: SiO2-48.08, ТiO2-1.1, 
Al2O3-22.47, Fe2O3-5.3, FeO-0.66, MnO-0.23, CaO-1.63, MgO-0.45, K2O-4.24, Na2O-13.33, 
P2O5-0.79, SrO-0.33, F-0.08, SO3-0.08. Thus, the loparite ore dressing tailings are inorganic 
dust containing 20–70% SiO2, belonging to the III hazard class [59,60]. 

The total content of some elements in the tailings is shown in Table 2. 

Table 2. The total content of some elements in the loparite ore dressing tails. 

Element Contain, mg/kg Element Contain, % 
Cu 5.36 ± 0.46 Nb 0.09 ± 0.01 
Zn 171 ± 15.68 Mn  0.01 ± 0.001 
La 160 ± 10.74 Al  7.86 ± 0.08 
Pr 33.9 ± 4.02 Fe  3.00 ± 0.02 
Nd 106 ± 9.65 Zr  0.21 ± 0.02 
Th 16.5 ± 1.75 Sr  0.09 ± 0.01 
Ta 75 ± 2.64 Ce  0.09 ± 0.01 

By X-ray phase analysis, the dominant phases were identified (listed in descending 
order): nepheline, microcline, aegirine, albite, sodalite (Figure 3). Minor impurities of 
loparite, analcime, natrolite were also found. 

 
Figure 3. Diffraction pattern of loparite dressing tails. Reflexes: 1—nepheline, 2—aegirine, 3—microcline, 4—sodalite, 5 
—loparite, 6—analcime, 7—albite, 8—natrolite. 

Moisture content measurements of the tailings samples were mapped in ArcGIS 10 
(Figure 4). Areas with a moisture content of less than 10% were selected as sources of 
dust entering the atmosphere. 

Figure 3. Diffraction pattern of loparite dressing tails. Reflexes: 1—nepheline, 2—aegirine,
3—microcline, 4—sodalite, 5 —loparite, 6—analcime, 7—albite, 8—natrolite.

Moisture content measurements of the tailings samples were mapped in ArcGIS 10
(Figure 4). Areas with a moisture content of less than 10% were selected as sources of dust
entering the atmosphere.
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Figure 5 shows a relationship between maximum one-off emission (g/s) of inorganic
dust containing 20–70% of SiO2 during a dusting event at the tailings storage facility and
wind speed and humidity, with a clear increase in dust input into the atmosphere at wind
speeds higher than 5 m/s.
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Figure 5. Dependence of maximum single emission (g/s) of inorganic dust 20–70% SiO2 during tailings dusts on wind
speed and humidity.

Inorganic dust containing 20–70% SiO2 was studied. Graphical results of calculating
the tailings inorganic dust complete dispersion in the surface atmosphere for various
meteorological conditions, using the software product UPRZA “Ecolog” 4.60, are presented
in Figures 6–8. The schemes also present the results of calculating the surface inorganic dust
concentrations in different parts of the inhabited locality Revda, located in the north-west
of the enterprise.

Analysis of the results of calculating the dispersion of inorganic dust containing
20–70% SiO2 in the surface atmosphere of the region showed that at a low wind load (5 m/s),
the surface concentration of suspended solids at the sanitary protection zone (SPZ) border
exceeds the maximum one-time maximum permissible concentration (MPCm. o. = 0.3 mg/m3 [61])
2–2.5 times.

The dimensions of the SPZ for the storage of loparite ore dressing tailings are estab-
lished in accordance with [61]. The enterprise considered in this work, according to the
sanitary classification, belongs to class I (4.1.3.6 Mining and processing plants) and the size
of the SPZ for all production facilities of the enterprise is 1 km [61].

The concentration of inorganic dust from tailings in the territory of the settlement
Revda does not exceed the MPCm.o.

Under normal meteorological conditions (8 m/s), the concentration of tailings dust
at the boundary of the SPZ exceeds the MPCm.o. 5–8 times, and in the southeastern part
of the residential area of the inhabited locality Revda, the concentration of tailings dust
approaches the threshold value, but does not exceed it yet.

In case of unfavorable meteorological conditions on the territory of the loparite ore
dressing waste storage, the intensity of the tailing dump unsecured surface dusting in-
creases. At the same time, the concentration of suspended solids at the SPZ border exceeds
the MPCm.o. in 13–14 times, and in the residential area of the inhabited locality Revda, the
excess reaches 1.5 times.

In accordance with the hygienic standard SanPiN 1.2.3685-21, which regulates the
maximum permissible concentration of pollutants in the atmospheric air of settlements,
MPCm.o. for inorganic dust containing 20–70% SiO2 is 0.3 mg/m3 [59,62].
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According to the obtained meteorological data, wind gusts with a speed of more than
10 m/s were recorded for 19 days, during which no precipitation was observed, out of
92 summer days in 2020.

To test the model, we compared the obtained atmochemical halo of tailings dust
pollution with the results of soil samples taken along the perimeter of the tailings dump
analysis. The results of dispersion modeling fit well with the results of ground geo-chemical
survey (Figure 9).
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Figure 9. The results of ground geochemical survey.

In more detail, our studies of chemical pollution of soils and plants in the zone of
influence of the tailing dump were described in article [63]. Geochemical series (in mg/kg)
of heavy metals and REEs in the loparite ore dressing tails and collected soil samples have
the following form:

• Concentration tailings: Mn > Sr > Ce > La > Nd > Pr > Sm
• Location 1: Mn > Sr > Ce > La > Nd > Pr > Sm
• Location 13: Mn > Sr > Ce > Nd > La > Pr > Sm
• Location 24: Mn > Sr > Ce > La > Nd > Pr > Sm

Calculated enrichment factor for the tails and soils presented on Figure 10.
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According to the above classification [54], loparite ore dressing tailings are charac-
terized by moderately severe enrichment according to Ce (8.6), moderate enrichment Sr
(3.12), minor enrichment Zn, Pr, La, Nd, Mn and Sm, EF values are 2.86, 2.83, 2.66, 2.30,
2.25 and 1.38 respectively. Soil samples taken in the direction coinciding with the most
frequently repeated wind directions (points No. 1 and 13—southwest and southeast) are
also enriched in rare earth elements of the light group and heavy metals that are part of
the tailings thickening of loparite ores (Sr, Zn, Mn). Samples taken in the direction with
the least repeatability of winds are characterized by correspondingly enrichment factor
lower values for key elements. Noteworthy is the lack of relationship between the “wind
rose” and the content of Pb and Cd in soils. This allows us to conclude that other sources
of input make a significant contribution to the pollution with these soil elements. As
known, major sources of soil contamination by metals: metal mining, smelting, energy and
fuel production, industrial activities, solid waste disposal, sludge application, vehicular
exhaust, and wastewater irrigation [64–68].

In the works of foreign colleagues who studied soil pollution around the enterprises
of the rare-earth industry, abnormally high concentrations of elements that make up the
mined ores were also noted in comparison with the background concentrations [69,70].

4. Conclusions

We studied loparite ores dressing tailings from an early area of the storage facility,
decommissioned 35 years ago. The material of the tailings is mainly composed of nepheline,
microcline, aegirine; impurities of loparite, analcime, natrolite were also found. The
average content of light REEs—cerium, lanthanum, neodymium—is 0.09%, 0.02%, and
0.001%, respectively.

Laboratory studies of the tailings engineering and geological characteristics have
shown that the high content of finely dispersed tailings fractions in the surface layer of
the tailing dump is the main reason for the intense open beaches dusting, due to rapid
drying under the influence of the sun and wind, and easily become suspended even at low
wind intensity.

Calculation of the inorganic dust containing 20–70% SiO2 dispersion showed that the
atmochemical halo of tailings dust pollution spreads over tens of kilometers. At a wind
speed of about 8 m/s, the concentration of suspended solids at the enterprise SPZ border
exceeds the MPCm.o. 3–3.3 times. Under unfavorable meteorological conditions—with a
wind speed of 10 m/s or more—dusting reaches the boundaries of the residential area of
the inhabited locality Revda, located in the north-west of the enterprise, and exceeds the
MPCm.o. 1.5 times.
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The resulting distribution maps of inorganic dust was verified by chemical analysis of
the collected soil samples. Our results indicate that dusting from the surface of the loparite
ore dressing tailings storage facility makes a significant contribution to both atmospheric
and general environmental pollution.
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11. Gašparac, G.; Jeričević, A.; Kumar, P.; Grisogono, B. Regional-scale modelling for the assessment of atmospheric particulate
matter concentrations at rural background locations in Europe. Atmos. Chem. Phys. 2020, 20, 6395–6415. [CrossRef]

12. Wang, J.; Xie, X.; Fang, C. Temporal and Spatial Distribution Characteristics of Atmospheric Particulate Matter (PM10 and PM2.5)
in Changchun and Analysis of Its Influencing Factors. Atmosphere 2019, 10, 651. [CrossRef]

13. Tu, X.; Lu, Y.; Yao, R.; Zhu, J. Air Quality in Ningbo and Transport Trajectory Characteristics of Primary Pollutants in Autumn
and Winter. Atmosphere 2019, 10, 120. [CrossRef]

14. Muhammad, F.K.; Naila, Y.; Farrukh, C.; Imran, S. Temporal variability and characterization of aerosols across the Pakistan region
during the winter fog periods. Atmosphere 2016, 7, 67. [CrossRef]

15. Yang, W.; Wang, G.; Bi, C. Analysis of Long-Range Transport Effects on PM2.5 during a Short Severe Haze in Beijing, China.
Aerosol Air Qual. Res. 2017, 17, 1610–1622. [CrossRef]

16. Wu, D.; Zhang, F.; Ge, X.; Yang, M.; Xia, J.; Liu, G.; Li, F. Chemical and Light Extinction Characteristics of Atmospheric Aerosols
in Suburban Nanjing, China. Atmosphere 2017, 8, 149. [CrossRef]

http://doi.org/10.1016/j.jclepro.2018.11.228
http://doi.org/10.1680/jenge.16.00006
http://doi.org/10.1007/s10661-006-9389-0
http://www.ncbi.nlm.nih.gov/pubmed/17057961
http://doi.org/10.1016/j.apgeochem.2011.04.021
http://doi.org/10.3390/min8020034
http://doi.org/10.3390/atmos7020016
http://www.ncbi.nlm.nih.gov/pubmed/29082035
http://doi.org/10.3390/atmos8050086
http://doi.org/10.1186/s12302-019-0234-9
http://doi.org/10.1016/j.atmosres.2018.08.009
http://doi.org/10.1007/s11356-020-09838-2
http://doi.org/10.5194/acp-20-6395-2020
http://doi.org/10.3390/atmos10110651
http://doi.org/10.3390/atmos10030120
http://doi.org/10.3390/atmos7050067
http://doi.org/10.4209/aaqr.2016.06.0220
http://doi.org/10.3390/atmos8080149


Minerals 2021, 11, 1077 14 of 16

17. Cao, L.M.; Zhou, Y.; Zhang, Z.; Sun, W.W.; Mu, G.; Chen, W.H. Impacts of airborne particulate matter and its components on
respiratory system health. Chin. J. Prev. Med. 2016, 50, 1114–1118.

18. Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Thurston, G.; Calle, E.E.; Thun, M.J.; et al. Extended
follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. Rep.
Health Eff. Inst. 2009, 140, 5–114, discussion 115–136.

19. Mehta, U.; Dey, S.; Chowdhury, S.; Ghosh, S.; Hart, J.; Kurpad, A. The Association Between Ambient PM2.5 Exposure and Anemia
Outcomes Among Children Under Five Years of Age in India. Environ. Epidemiol. 2021, 5, e125. [CrossRef] [PubMed]

20. Brook, R.; Rajagopalan, S.; Pope, C.; Brook, J.; Bhatnagar, A.; Diez-Roux, A.; Holguin, F.; Hong, Y.; Luepker, R.; Mittleman, M.; et al.
Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [CrossRef] [PubMed]

21. Thompson, J. Airborne Particulate Matter. J. Occup. Environ. Med. 2018, 60, 392–423. [CrossRef]
22. Huang, X.; Deng, H.; Zheng, C.; Cao, G. Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo

tailing pond in northwest China. Sci. Total Environ. 2016, 543, 357–372. [CrossRef]
23. Schreiber, A.; Marx, J.; Zapp, P.; Hake, J.; Voßenkaul, D.; Friedrich, B. Environmental Impacts of Rare Earth Mining and Separation

Based on Eudialyte: A New European Way. Resources 2016, 5, 32. [CrossRef]
24. Cánovas, C.; Basallote, M.; Macías, F. Distribution and availability of rare earth elements and trace elements in the estuarine

waters of the Ría of Huelva (SW Spain). Environ. Pollut. 2020, 267, 115506. [CrossRef]
25. Tang, S.; Zheng, C.; Chen, M.; Du, W.; Xu, X. Geobiochemistry characteristics of rare earth elements in soil and ground water: A

case study in Baotou, China. Sci. Rep. 2020, 10, 11740. [CrossRef]
26. Antonina, A.; Shazili, N.; Kamaruzzaman, B.; Ong, M.; Rosnan, Y.; Sharifah, F. Geochemistry of the Rare Earth Elements (REE)

Distribution in Terengganu Coastal Waters: A Study Case from Redang Island Marine Sediment. Open J. Mar. Sci. 2013, 03,
154–159. [CrossRef]
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