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Abstract: Modern industrial mining and mineral processing applications are characterized by large
volumes of historical process data. Hazardous events occurring in these processes compromise
process safety and therefore overall viability. These events are recorded in historical data and are
often preceded by characteristic patterns. Reconstruction-based data-driven models are trained
to reconstruct the characteristic patterns of hazardous event-preceding process data with minimal
residuals, facilitating effective event prediction based on reconstruction residuals. This investigation
evaluated one-dimensional convolutional auto-encoders as reconstruction-based data-driven models
for predicting positive pressure events in industrial furnaces. A simple furnace model was used
to generate dynamic multivariate process data with simulated positive pressure events to use as a
case study. A one-dimensional convolutional auto-encoder was trained as a reconstruction-based
model to recognize the data preceding the hazardous events, and its performance was evaluated
by comparing it to a fully-connected auto-encoder as well as a principal component analysis re-
construction model. This investigation found that one-dimensional convolutional auto-encoders
recognized event-preceding patterns with lower detection delays, higher specificities, and lower
missed alarm rates, suggesting that the one-dimensional convolutional auto-encoder layout is supe-
rior to the fully connected auto-encoder layout for use as a reconstruction-based event prediction
model. This investigation also found that the nonlinear auto-encoder models outperformed the linear
principal component model investigated. While the one-dimensional auto-encoder was evaluated
comparatively on a simulated furnace case study, the methodology used in this evaluation can be
applied to industrial furnaces and other mineral processing applications. Further investigation using
industrial data will allow for a view of the convolutional auto-encoder’s absolute performance as a
reconstruction-based hazardous event prediction model.

Keywords: process monitoring; failure prediction; semi-supervised model; one-dimensional convo-
lutional network; reconstruction-based model

1. Introduction

South Africa hosts the majority of the world’s platinum group metal (PGM)-reserves
in the Bushveld Igneous Complex [1]. These PGMs are extracted from nickel-copper ores
contained in the Bushveld Complex through a series of process steps. Mined ore undergoes
comminution, liberating sulphides to create a sulphide concentrate that is concentrated
through flotation. Flotation concentrates are smelted and converted, yielding a copper-
nickel matte rich in PGMs. Precious metals within the matte are separated from base metals
through hydrometallurgical treatments before being refined into their pure forms [2].

Each of the aforementioned processing steps reduces the bulk of the concentrate or
separates gangue from precious metals, increasing the PGM concentration. The smelting
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step is crucial to the overall PGM extraction process; during smelting, submerged electrode
arc furnaces melt dried concentrate into a sulphide matte that acts as a PGM collector, in-
creasing the concentration of PGMs tenfold [2]. The overall viability of the PGM extraction
process is therefore reliant on the submerged arc furnaces being operated safely, effectively,
and efficiently.

Desulphurization and electrode oxidation reactions within the furnace release sulphur
dioxide and carbon monoxide into the furnace freeboard at high temperatures [3], resulting
in a freeboard filled with hot, hazardous gases. Freeboard gases are extracted continuously
to maintain a negative gauge pressure, preventing these gases from escaping into the
surrounding area and jeopardizing operator safety [4]. Atmospheric air drawn in by the
negative gauge pressure cools the furnace contents, consequently furnace efficiency is
promoted by maintaining the pressure as close to zero as possible.

Freeboard pressures can routinely exceed atmospheric pressure despite gas extraction,
causing blowbacks. Positive pressure events, also known as blowbacks, occur when haz-
ardous gases escape from industrial furnaces and their causes are unknown. A monitoring
model for predicting these events will therefore promote the safety of the smelting opera-
tion by providing a warning to operators of impending blowbacks and allow freeboard
pressures to be raised when blowbacks are not imminent, promoting efficiency.

Similar to comminution and flotation processes, furnaces are subject to disturbances
in the grade and supply of concentrate. These similarities extend to complex process
interactions: furnaces are subject to interactions between various furnace zones just as
particle interactions, recycle streams, and slurry-air interactions are present and challenging
in comminution and flotation process units. Fault conditions in furnaces (i.e., blowbacks),
comminution (e.g., mill trips from mill overloading), and flotation (e.g., sliming incidents)
can cause sub-optimal operation with potentially rapid and extreme consequences.

Furnaces, as well as the physical mineral processing operations, generate large vol-
umes of historical data. The large data volume recorded from these processes promotes the
use of statistical process monitoring for predicting hazardous events such as blowbacks,
mill trips, and sliming incidents [5]. This paper evaluates one-dimensional convolutional
neural networks as reconstruction-based process monitoring models for predicting blow-
backs in industrial submerged arc furnaces. This evaluation will yield insights into the
suitability of reconstruction-based monitoring models for predicting hazardous events
across the mineral processing chain.

Ideally, historical data recorded from submerged arc furnaces used to develop blowback-
prediction models would be completely characterized, i.e., all observations in the historical
dataset would be labelled correctly. Models could be trained to predict all possible events
from using such a dataset by separating all historical observations into distinct classes [6].
Unfortunately furnace data, like most real-world datasets, are poorly characterized and
event-prediction models must be trained using datasets where only a few observations are
labelled properly. This constraint has spurred the development of reconstruction-based
one-class classifiers as event prediction models [7].

Reconstruction-based one-class classifiers are data-driven models trained to find ef-
fective, compressed representations of specific process patterns [8]. If a model is trained
to reconstruct the process patterns preceding specific events, then it will reconstruct the
specific event-preceding patterns with minimal error. Process patterns that do not pre-
cede the target event will be reconstructed inaccurately. This facilitates event prediction
based on reconstruction error [9]; lower reconstruction errors suggest that the specific
event is imminent, while large reconstruction errors suggest that the event is not immi-
nent. Reconstruction-based event-prediction models are distinguished by how they find
compressed representations of process faults.

Principal component analysis (PCA) is the most common approach to feature learn-
ing [5,10], and recognizes linear correlations in event-preceding processes [9]. The efficacy
of PCA in recognizing specific process patterns has been demonstrated for detecting faults
on the Tennessee Eastman simulated process [11], for modelling the normal conditions
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of batch and continuous chemical processes [12], and for detecting faults in industrial
boiler data [13]. Unfortunately, the performance of PCA deteriorates when applied to
the nonlinear correlations typically found in industrial data [8], leading to the increasing
prominence of neural network-based one-class classifiers.

Auto-encoders (AEs) are neural networks that find the low-dimensional subspace that
accurately represents network inputs, then reconstruct these inputs as the network outputs.
When trained to reconstruct specific event-preceding process patterns they make ideal
candidates for reconstruction-based one-class classifiers [10]. Their ability to learn nonlinear
representations of industrial process data was demonstrated on the Tennessee Eastman
case study [14], and their ability to recognize specific process patterns was demonstrated
on a simulated coal mill system [15].

Convolutional neural networks (CNNs) were developed for and completely outclass
traditional neural networks in image processing [16]. CNNs extract simple, localized
features from network inputs before moving on to more complicated features. This allows
for more effective representations of network inputs across convolutional layers [17]. Their
adoption for monitoring industrial processes has been slow due to the intrinsic differences
between images and multivariate time series, but the localized feature extraction of CNNs
can lead to better representations of multivariate time series. Recently, convolutional
auto-encoders (CAEs) have been developed for compressing univariate electrocardiogram
signals [18] and for fault detection using multivariate time series in the context of process
monitoring [19].

This study compares the performance of different reconstruction-based event predic-
tion models using a simulated furnace as case study. The furnace model was developed
to specifically account for the complex dynamic interactions in a submerged arc furnace
while maintaining a lumped parameter approach to ensure feasible computational costs.
Further details on the current study are provided in [20].

2. Methods
2.1. Reconstruction-Based One-Class Classifiers

Data-driven models are used to predict events by applying a model function to
monitored process variables. Supervised learning aims to optimally parameterize the
model function by minimizing a pre-defined loss function [21,22], but requires labelled
observations containing the characteristic patterns preceding the event of interest [23].
Historical datasets are rarely this well-defined, and semi-supervised learning approaches
are used to train models using only the historical observations that are known to contain
the characteristic patterns. Reconstruction-based one-class classifiers are semi-supervised
prediction models that seek to address the problem of ill-defined historical datasets. Three
semi-supervised models are considered in this work: principal component analysis, auto-
encoders, and convolutional auto-encoders.

In general, model parameters are found by training a model to compress monitored
variables xi to a lower dimensional subspace and to reconstruct the observations accu-

rately [24]. The output of the reconstruction model
^
xi is the reconstructed input, shown in

Equation (1).
^
xi = f (xi, θ) (1)

Using Equation (1), a model function, f , with model parameters, θ, is applied to
an observation of multiple variables, xi. The model is trained on historical observations
that are known to contain the event-preceding patterns, and, if properly trained, will
reconstruct all observations with the characteristic patterns accurately while reconstructing
those without inaccurately. The reconstruction error, εR,i quantifies how accurately an
observation xi is reconstructed (Equation (2)):

εR,i = ‖xi −
^
xi‖2 (2)
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The inverse of εR,i, ui = 1/εR,i, can be used as a discriminant. Higher discriminant
values suggest that the reconstructed observation is similar to the observations used to
train the reconstruction model. Therefore, the reconstruction model will generate higher
discriminant values on observations that precede specific events if it was trained on those
events. The reconstruction model is semi-supervised because it does not require negative
samples during training, i.e., observations outside the target event [21].

Equation (3) formally states the training algorithm used to obtain reconstruction
model parameters, θ, from observations in the historical data, Xt, where Xt is the subset of
datapoints preceding the event to be predicted.

θ = argmin
θ

(E( f , θ, Xt)) = argmin
θ

(
∑

i
‖xi − f (xi, θ)‖2

)
(3)

The generated discriminant values are compared to a recognition threshold before
making a prediction. However, a theoretical basis for the reconstruction recognition
threshold does not exist, and has to be obtained empirically [8].

The reconstruction-based model is trained by minimizing Equation (2) over all training
samples, and is therefore sensitive to the units of variables in each observation [8]. Each
observation is therefore standardized (rescaled to zero mean and unit variance) before the
model is trained. Inputs can be corrupted during training by adding normally distributed
noise with zero mean and variance σ2

C to each observation, then training the model to
reconstruct the original, uncorrupted input, improving model generalizability [15]. This is
illustrated in Equation (4), where variable j of a standardized observation zi is corrupted
with normally distributed noise. The variance σ2

C represents an additional design parameter
that must be specified before model parameters can be derived.

ẑi,j = zi,j +N
(

0, σ2
C

)
(4)

2.1.1. Principal Component Analysis

Principal component analysis (PCA) is a prominent data-driven model applied in
process monitoring. Using PCA, the directions of significant linearly uncorrelated variance
are identified using recorded data of specific process conditions [25]. These directions
constitute a linear subspace of target process conditions and are called the principal com-
ponents of the modelled data. Observations with similar correlation structures to the
target process conditions are well represented in this subspace and can be reconstructed
accurately; therefore, PCA is an ideal model to recognize process conditions characterized
by distinct linear correlation structures [9]. Figure 1 provides an illustration of PCA-based
reconstruction.

Linear correlations between variables are well-approximated in the PCA subspace,
but this subspace excludes autocorrelations between observations. PCA is therefore best
suited for static processes [11,24]. Dynamic PCA (dPCA) is a simple modification of PCA
that addresses this limitation. Using dynamic PCA, observations are lagged, incorporating
previous values in each observation as shown in Equation (5), allowing PCA to include
autocorrelations in its subspace [11,26]:

xL
i =

[
xi xi−1 xi−2 · · · xi−(l−2) xi−(l−1) xi−l

]
(5)
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Figure 1. Illustration of PCA-data reconstruction [20]. A new data point (green star) is projected onto
the first principal component (blue arrow), yielding the projected data point (dark crimson star). The
difference between the new data point and the projected data point is the reconstruction error.

2.1.2. Auto-Encoders

Auto-encoders (AEs) are feedforward neural networks that find effective represen-
tations of inputs and reconstruct them accurately [8]. Like neural networks, AEs have
network architectures consisting of layers of neurons with weighted connections. What
distinguishes AEs is their equally sized input and output layers and the existence of a
bottleneck layer. The bottleneck layer has fewer neurons than the input and represents
the nonlinear subspace of modelled data [8]. Figure 2 illustrates a typical AE network
architecture. The neurons in an AE function similarly to those in standard neural networks,
where each neuron accepts weighted inputs and biases to produce an output dependent on
the selected (often nonlinear) activation function [27].
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Figure 2. Typical AE architecture, with input (yellow), encoding (blue), bottleneck (red), decoding
(purple), and output (green) layers [20].

Gradient-based optimization routines are used to determine the parameters which
satisfy Equation (3). Early nonlinear activation functions used in neural networks, like
sigmoid and hyperbolic tangent functions, struggled with vanishing gradient problems,
posing serious problems to gradient-based optimization [28]. The Rectified Linear Unit
(ReLU) activation function (Equation (6)) is frequently used to overcome this problem.
To avoid convergence to local minima, the gradient descent with momentum algorithm
(Equation (7)) is often used to train neural networks [22]. At each iteration, k, a weight
w ∈ θ is updated based on how much it contributed to the overall loss function according
to the learning parameter η. The third term introduces momentum using the parameter γ
to increase the likelihood that the model will find globally optimized weights and biases.
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Lastly, regularization is used to modify the error function [22]. Using L2-regularization
(equation 8), over-fitting can be avoided by adjusting the penalty parameter λ control-
ling the degree of regularization; larger values of λ results in more regularized model
parameters.

φReLU(x) = max(x, 0) (6)

wk+1 = wk − η

∂E
(

Xt,
^
Xt

)
∂wk

+ γ(wk − wk−1) (7)

E(Xt, θ)L2
= E(Xt, θ) +

λ

2
‖θ‖2 (8)

Auto-encoders are able to identify nonlinear characteristics between variables in
each observation but, like PCA, are unable to identify dynamic characteristics between
observations. As with PCA, observations can be lagged to incorporate previous values in
each observation using Equation (5).

2.1.3. Convolutional Auto-Encoders

Convolutional auto-encoders (CAEs) are not fundamentally different from typical
AEs. In fact, CAEs can be seen as a special case of fully-connected AEs [22]. They use the
same activation functions and can both be trained using backpropagation combined with
gradient descent algorithms. Convolutional auto-encoders are distinguished by the use
of convolutional layers. Figure 3 provides an illustration of a simple CAEs architecture
typically used in applications with two-dimensional data sets (e.g., images). The neurons
in convolutional layers are connected to a subset of the neurons in the preceding layer.
These subsets (shaded grey in Figure 3) are simpler than the set of all outputs from the
preceding layer, and are connected by far fewer weighted connections [27].
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Figure 3. Simple 2-dimensional CAE with one convolutional filter per layer [20]. Shaded areas represent the subsets of each
layer output used as receptive field for subsequent convolutional filters. In the example, the first convolutional filter maps
nine input features to a single feature in the first convolved layer (red blocks), the second convolutional filter maps four
features to a single feature in the second convolved layer (green blocks), and the deconvolutional filter maps a single feature
into eight separate features in the reconstructed pattern (blue blocks).

2.2. Case Study

The proposed event prediction methods were evaluated using a simulated submerged
arc furnace with dynamic characteristics as a case study. The hazardous events simulated
by the furnace model are positive pressure events (PPEs). The freeboards of submerged arc
furnaces contain hazardous gases such as carbon monoxide at high temperatures [29,30].
A negative freeboard gauge pressure is maintained to prevent these gases from escaping.
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PPEs occur when the gauge pressure of the furnace freeboard becomes positive, releasing
hazardous gases into the surroundings. Figure 4 shows the layout of the furnace model
simulation. The full model derivation and implementation is presented in [20].
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Figure 4. Submerged arc furnace model layout, with distinct bulk and smelting concentrate, liquid slag and matte, trapped
reaction gas, cooling water, and freeboard zones. Each zone is modelled as a separate lumped parameter system.

The dynamic furnace model is derived by performing mass and energy balances
over distinct zones of the furnace interior (Figure 4) to obtain a set of ordinary differential
equations. This set of ordinary differential equations is used to generate datasets on which
to evaluate the PPE prediction models [20]. These datasets are created by sampling the
furnace model variables that can be monitored in a submerged arc furnace. The list of
monitored variables is given in Table 1.

Table 1. Monitored variables in the simulated dataset.

Monitored Variable Symbol Units

1 Slag zone height LS m
2 Matte zone height LM m
3 Slag zone temperature TS K
4 Matte zone temperature TM K
5 Bulk concentrate temperature TC(B) K
6 Freeboard temperature TG K
7 Cooling water temperature TW K
8 Freeboard pressure CG,R Pa
9 Reaction gas concentration in freeboard PG mol/m3

The generated datasets correspond to 12 weeks of simulated operation [20]. Each
monitored variable is sampled once every ten seconds; the resulting dataset contains n ∼
726,000 observations and m = 9 features (Table 1). The simulation switched between two
modes of operation; one where the furnace is operated in a way that does not cause PPEs,
and one where the furnace is operated in a way that causes PPEs.

PPEs are caused in the furnace model by increasing the concentrate bed thickness.
During normal operation, the concentrate feed rate to the furnace is manipulated so that
the bed thickness is maintained between 0.4 m and 0.6 m. PPEs occur by manipulating the
feed rate so that the thickness varies between 0.7 m and 1.0 m. This causes reaction gases to
build up in the concentrate, causing the bed to rupture and reaction gases to release rapidly
into the freeboard. The effect of concentrate bed thickness is shown in Figure 5.
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pressure (red) becomes positive [20]. A PPE-causing fault is introduced at 2 days of simulated operation; during this time
the bed thickness is maintained at levels where PPEs occur when the bed ruptures.

2.3. Performance Evaluation

Evaluating the reconstruction-based event prediction models presented in this work
requires that prediction performance metrics be defined. Table 2 defines the four possible
outcomes when a predictive model is applied to an observation in a confusion matrix [31].

Table 2. Possible outcomes when a predictive model is applied to an observation in a confusion matrix.

Pattern Present Pattern Absent

Recognition True positives— TP False positives— FP
No recognition False negatives— FN True negatives— FN

The outcomes given in Table 2 are converted into metrics that express predictive
performance from different perspectives. Typically, a classifier should have good sensitivity
φ (Equation (9)) as well as specificity ψ (Equation (10)) [31].

φ =
TP

TP + FN
(9)

ψ =
TN

TN + FP
(10)

Specificity indicates how well a model flags negative samples as such, while sensitivity
shows how well a model flags positive samples. While specificity and sensitivity express
model performance from different perspectives, they can give misleading impressions of
model performance in unbalanced datasets. Precision (given in Equation (11)) is a useful
performance metric for datasets with few positive samples and many negative samples, as
it indicates the probability that a prediction made by a model is correct:

ϕ =
TP

TP + FP
(11)

While a high precision shows that a model makes predictions with very few false
alarms, it does not show how quickly that model makes those predictions, or if those
predictions precede events with enough time to be useful. Time-to-event ∆tTE (Equation
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(12)) expresses how quickly a model recognizes an event-preceding pattern before that
event occurs:

∆tTE = tevent − tdetection (12)

2.4. Data Partitioning

A fair evaluation of the performance of a data-driven predictive model requires that
the model be tested on data other than the training data. The simulated data with n
observations and m features generated by the furnace model (X ε Rn×m) is partitioned
into training (X0 ε Rn0×m) and testing (X1 ε Rn1×m) datasets. This partitioning is shown in
Figure 6, where 12 weeks of simulated data is partitioned into training (gold) and testing
(red) datasets.

Minerals 2021, 11, x FOR PEER REVIEW 9 of 18 
 

 

𝜑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11) 

While a high precision shows that a model makes predictions with very few false 

alarms, it does not show how quickly that model makes those predictions, or if those pre-

dictions precede events with enough time to be useful. Time-to-event ∆𝑡𝑇𝐸  (Equation 

(12)) expresses how quickly a model recognizes an event-preceding pattern before that 

event occurs: 

∆𝑡𝑇𝐸 = 𝑡𝑒𝑣𝑒𝑛𝑡 − 𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (12) 

2.4. Data Partitioning 

A fair evaluation of the performance of a data-driven predictive model requires that 

the model be tested on data other than the training data. The simulated data with 𝑛  ob-

servations and 𝑚 features generated by the furnace model (𝐗 ϵ ℝ𝑛×𝑚) is partitioned into 

training (𝐗0 ϵ ℝ𝑛0×𝑚) and testing (𝐗1 ϵ ℝ𝑛1×𝑚) datasets. This partitioning is shown in Fig-

ure 6, where 12 weeks of simulated data is partitioned into training (gold) and testing 

(red) datasets. 

 

Figure 6. Illustration of the simulated process dataset partitioned into separate training (gold) and 

testing (red) datasets. The dashed blue line indicates zero gauge pressure. Note that all variables in 

𝐗𝑡 are partitioned in the same way, not just the freeboard pressure. 

Reconstruction-based event prediction models should only be trained on data where 

the characteristic patterns that precede the target event are present. Therefore, a target 

dataset (𝐗𝑡  ϵ ℝ𝑛𝑡×𝑚) is constructed from a subset of observations in 𝐗0. The ground truth 

regarding the presence of faulty conditions of the simulated data is known and is illus-

trated in Figure 7. The areas shaded in red shows where the PPE-causing fault is present, 

and gold-shaded areas indicate its absence. Note that the PPE-causing fault is present in 

unshaded areas in Figure 7, but detection at this point in time would not provide sufficient 

response time to operators before the target event occurs for the prediction to be useful. 

Figure 6. Illustration of the simulated process dataset partitioned into separate training (gold) and
testing (red) datasets. The dashed blue line indicates zero gauge pressure. Note that all variables in
Xt are partitioned in the same way, not just the freeboard pressure.

Reconstruction-based event prediction models should only be trained on data where
the characteristic patterns that precede the target event are present. Therefore, a target
dataset (Xt ε Rnt×m) is constructed from a subset of observations in X0. The ground truth
regarding the presence of faulty conditions of the simulated data is known and is illustrated
in Figure 7. The areas shaded in red shows where the PPE-causing fault is present, and gold-
shaded areas indicate its absence. Note that the PPE-causing fault is present in unshaded
areas in Figure 7, but detection at this point in time would not provide sufficient response
time to operators before the target event occurs for the prediction to be useful.

Unfortunately, the ground truth in industrial datasets is rarely known. However,
the hazardous event is easily identified and training samples for a reconstruction-based
event prediction model can be selected from a window preceding the target event [31].
Therefore, a prediction is assumed to be valid for a time (∆tprediction) preceding the event.
The prediction is correct if the event occurs within this period, and if enough time (∆twarning)
is available to take corrective measures. These two metrics allow a window of training
samples that precede each event to be defined as illustrated in Figure 8:
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Figure 7. Illustration of the ground truth of the simulated data w.r.t. the presence of blowback-
causing faults. Fault-free observations are found in the area shaded in gold. Faulty observations are
found in the area shaded red. Unshaded areas contain blowback-causing faults but sounding the
alarm here would either be redundant due to blowbacks already occurring or would not provide
sufficient warning before the blowback. The dashed blue line indicates zero gauge pressure.
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Figure 8. Illustration of online event prediction. After an event is predicted, an event is assumed to
occur within the prediction period (red arrow). The prediction is valid if an event occurs within this
period. The prediction should provide a minimum warning period (blue arrow) for plant operators
to prepare for the event. Only warnings given in the gold shaded area will be both valid and provide
plant operators with sufficient time to prepare for the event. (1) Invalid prediction as no fault occurs
within the prediction period, (2) valid prediction, (3) invalid prediction as the minimum warning
period is exceeded.

Specifying ∆tprediction and ∆twarning defines a window preceding each event in the
training dataset where predictions would be valid. Training samples can then be se-
lected from these windows in the training dataset. Figure 9 illustrates observations in
X0, highlighted in gold, that are selected as training samples for ∆tprediction = 1.5 h and
∆twarning = 0.5 h. These training samples are used to construct a new target dataset, Xt.
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Figure 9. Illustration of observations selected for the target dataset, Xt. Xt is constructed from
observations in the gold-shaded region, but event-preceding patterns may still be present outside
this window (red shaded area). The dashed blue line indicates zero gauge pressure.

Note that Xt does not contain all observations in X0 where the event-preceding patterns
are present; the above approach is simply a way of selecting observations with patterns that,
if recognized, will flag the observations that precede each event. Recognitions immediately
succeeding these observations will not reduce model specificity nor increase specificity
despite the presence of the characteristic patterns that precede the PPEs; they do not
provide sufficient warning time before the PPEs.

2.5. Model Development

Model parameters for the dPCA, AE, and CAE models are derived from the syntheti-
cally generated dataset. Table 3 shows the model derivation algorithm for the dPCA model,
while Table 4 shows how the AE and CAE models are derived. Finally, Table 5 shows how
the derived models are used to calculate the reconstruction error for new observations.

Table 3. Model derivation algorithm for dPCA.

Step Description Output Equation

1 Standardize Xt Zt -
2 Lag the standardized dataset Zt ZL

t 5

3 Optimize model parameters to reconstruct ZL
t from

^
Z

L

t
V 3

Table 4. Model derivation algorithm for both AE and CAE.

Step Description Output Equation

1 Standardize Xt Zt -
2 Lag the standardized dataset Zt ZL

t 5

3 Construct corrupted ZL
t

^
Z

L

t
4

4 Optimize model parameters to reconstruct ZL
t from

^
Z

L

t
θ 3
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Table 5. dPCA, AE, and CAE application algorithm.

Step Description Output Equation

1 Standardize xi zi -
2 Lag zi with l observations zL

i 5

3 Reconstruct zL
i

^
z

L

i
1

4 Calculate the reconstruction error εR
i 2

2.5.1. Dynamic Principal Component Analysis

The principal components of a dataset, Xt ε Rn×m, are computed through eigenvalue
decomposition of the covariance matrix of the dataset. This is shown in Equation (13) below:

XTXvj = λjvj (13)

where vj ε Rm×1 is a principal component of X. The corresponding eigenvalue, λj, is the
total variance captured on this principal component. A PCA subspace is constructed using
the most significant principal components, i.e., the components with the most variance.
The significance of vj is expressed by the fraction of total variance captured [32]. This
fraction is calculated using Equation (14).

ηj =
λj

σ2
X
=

λj

∑m
j=1 λj

(14)

where σ2
X is the total variance in X. The PCA subspace, V ε Rm×v, contains the v most

significant components. Retaining insignificant components causes noise to be retained in
the PCA subspace. Selecting the optimal number of retained components, v, is therefore
crucial to dPCA modelling [32]. In this investigation, v is selected so that 99.9 % of the
variance in the training set is retained. The reconstruction model for dPCA, fPCA, is given
by Equation (15) below:

^
xi = fPCA(xi, V) = xiVVT (15)

2.5.2. Auto-Encoder

The auto-encoder network architecture used in this investigation follows the template
shown in Figure 10. Each observation with m features is lagged l times, requiring m(l + 1)
input- and output neurons. The encoding and decoding layers contain twice as many
neurons as the input and output layers. This investigation considers an auto-encoder with
three neurons in the hidden bottleneck layer.

Equation (11) is used to determine the number of network parameters (weights and
biases) to be learnt iteratively using the gradient descent with momentum algorithm.
This equation uses a dataset with m = 9 features lagged l = 4 times. Using equation 16,
it is demonstrated that the auto-encoder used in this investigation has 8958 learnable
parameters. Table 6 shows the design parameters specified for the auto-encoder before
model parameters are derived through training.

Nθ = 4(m(l + 1))2 + 4Nhiddenm(l + 1) + 4m(l + 1) + Nhidden (16)
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Figure 10. Illustration of a lagged AE network architecture. A lagged input, with m(l + 1) variables,
is projected to a high dimensional encoding layer. The hidden layer extracts representative features
from this encoding layer, yielding the nonlinear AE subspace (3 features in this example). The
decoding and output layers are used to reconstruct the lagged input from the subspace.

Table 6. AE design parameters.

Design Parameter Investigated Value

1 Network architecture, f (xi, θ) See Figure 10
2 Lag dimension, l 4
3 Input corruption variance, σ2

C 0.1

4 Number of bottleneck
neurons, Nhidden

3

5 Regularization parameter, λ 10−5

6 Learning rate, η 0.01
7 Momentum parameter, γ 0.001

2.5.3. Convolutional Auto-Encoder

Figure 11 shows the convolutional auto-encoder network architecture used in this
investigation. Each input is a 5× 9 matrix; m = 9 features, each lagged l = 4 times. The first
two convolutional filters have a 3× 1 dimension and will therefore only convolve across the
time dimension. The first two convolutions eliminate the time dimension, yielding a 1× 9
convolved feature. The third convolutional layer convolves across the variables, yielding
the model subspace of single values. It is from this model subspace that the original input
is reconstructed using a 5× 9 deconvolutional filter.

Table 7. CAE network parameters in the investigated CAE architecture.

Layer Type Output Size Filter
Shape

No. of
Filters Parameters

1 Input 5× 9× 1
2 Convolution + ReLU 3× 9× 8 3× 1 8 24 weights, 8 biases
3 Convolution + ReLU 1× 9× 8 3× 1 8 192 weights, 8 biases
4 Convolution + ReLU 1× 1× 4 1× 9 4 288 weights, 4 biases
5 Deconvolution 5× 9× 1 5× 9 1 252 weights, 1 bias
6 Output 5× 9× 1
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3. Results and Discussions 
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Useful to evaluate detection delay  

and specificity at high precision  

2 
Maximum threshold where  

all PPEs are predicted. 
Enables prediction of each blowback 

Figure 11. Illustration of the CAE architecture evaluated in this project [20]. Convolutions that are
applied vertically convolve a feature in the time dimension. Horizontal convolutions convolve across
the variables in a feature. In the example, the first convolutional filter maps three input features to a
single feature in the first feature layer (orange blocks), the second convolutional filter maps three
features to a single feature in the second feature layer (green blocks), the third convolutional filter
maps nine features into a single feature (red blocks), and the final deconvolutional filter maps single
features into a reconstructed output with 45 features (blue blocks). See Table 7 for further details.

Table 7 shows how many convolutional filters are used at each layer, as well as how
many learnable parameters exist for each filter. The table quantifies the complexity of the
investigated convolutional auto-encoder architecture. It shows that the architecture only
has 707 learnable parameters.

3. Results and Discussions

The performances of the evaluated reconstruction-based models are closely linked to
the recognition thresholds at which they are evaluated. However, these thresholds can be
selected arbitrarily. Therefore, each model will be evaluated at three different thresholds
shown in Table 8, as well as the motivation for using these thresholds for evaluation.
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Table 8. Recognition thresholds selected for model evaluation.

Recognition Threshold Motivation

1 Threshold where 95% precision is achieved. Useful to evaluate detection delay
and specificity at high precision

2 Maximum threshold where all PPEs are
predicted. Enables prediction of each blowback

3 Minimum threshold where 100% specificity
is achieved. No false alarms

Figure 12 shows the discriminant values generated by each of the investigated models
over 9 days of simulated operation. Note that this evaluation is performed over 42 days
of simulated operation; these figures are only for illustrative purposes. These figures also
show the recognition thresholds given in Table 8.
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Figure 12. Illustration of dPCA- (top graph), AE- (middle graph) and CAE-fault pattern recognition
for 9 days of simulated operation. The areas shaded in gold indicate fault-free observations, red
areas indicate blowback-preceding observations. The blue line is the discriminant value generated
by each model, and the solid black line indicates freeboard pressure. The black dashed horizontal
line indicates zero gauge pressure. The coloured dashed horizontal lines correspond to the different
recognition thresholds defined in Table 8.

Figure 12 shows that the dPCA, AE, and CAE models are all unable to achieve both
zero missed predictions and perfect specificity: the recognition threshold for no false
alarms is greater than that for no missed blowbacks for each model. Table 9 shows the
event prediction performance metrics at 95% precision, no missed alarms, and perfect
specificity for each investigated model, respectively.
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Table 9. Event prediction performance at different prediction thresholds for dPCA, AE, and CAE.

95 % Precision: dPCA AE CAE

1 Average time-to-event (hrs) 3.08 2.65 4.43
2 Sensitivity (%) 24.73 27.80 52.12
3 Specificity (%) 99.49 99.40 98.99
4 Failed predictions 40 20 0

No failed predictions: dPCA AE CAE

5 Average time-to-event (hrs) 3.99 4.06 2.29
6 Sensitivity (%) 43.94 46.23 24.95
7 Specificity (%) 86.70 90.14 99.86
8 Failed predictions 0 0 0

No false predictions: dPCA AE CAE

9 Average time-to-event (hrs) 1.45 2.24 1.26
10 Sensitivity (%) 2.39 22.18 11.37
11 Specificity (%) 100.00 100.00 100.00
12 Failed predictions 46 24 16

Note that sensitivity refers to the fraction of all observations that precede events that
is recognized by the predictive models. The number of failed predictions is the number of
the predictive models failed to recognize a single observation in the windows preceding
the target events. Therefore, a model can have a sensitivity lower than 100% while still
succeeding in predicting each event.

The results presented in Table 9 suggests that the performance of the CAE model,
relative to the AE- and dPCA models, is superior in the case study evaluated in this work.

Entry 1 in Table 9 show that the CAE model correctly recognized event-preceding
conditions more quickly than the dPCA and AE models when the recognition threshold is
set so that the precision of each model in recognizing event-preceding conditions is 95%.
Furthermore, entry 4 shows that the CAE model managed to predict each event, while the
AE- and dPCA models failed to predict 20 and 40 blowbacks out of 63, respectively.

While inferior to the CAE model at the 95% precision threshold, the nonlinear AE
model did manage to outperform the linear dPCA model. The dPCA model did show
lower average detection delays than the AE model (as seen in entry 1 in Table 9) but
failed in predicting events twice as often. This suggests that predictions based solely
on a process’ linear characteristics will struggle to compete with predictions that utilize
nonlinear characteristics.

The CAE model’s superior performance was maintained when the recognition thresh-
old was set so that no prediction fails. While the AE- and dPCA models did achieve
significantly lower detection delays at this recognition threshold, they did so at far lower
specificities (86.70% for the dPCA model and 90.14% for AE model). The CAE model
successfully predicted all events at the highest specificity (99.86%) over all investigated
recognition thresholds.

Finally, when the recognition threshold was set so that a perfect specificity was
achieved, none of the evaluated models managed to predict each event. However, both
the AE and CAE models failed to predict less than half of the events (24 and 16 out of
63, respectively). The dPCA model trailed significantly by failing to predict more than
two thirds of the events (42 out of 63). This further suggests that modelling nonlinear
characteristics is a crucial part of an event prediction model.

4. Conclusions

While the dPCA model showed inferior performance at each evaluated recognition
threshold due to its limitations as a linear model, it should be noted that the computational
requirements for developing and applying dPCA models are far lower than for AEs
and CAEs. Kernel PCA is a non-linear alternative to PCA that performs eigenvalue
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decomposition of the outer product of modelled data, but this is computationally infeasible
on the larger datasets typically recorded on industrial furnaces. The AE- and CAE models
evaluated in this project were not limited by computing requirements but scaling them in
complexity may not always be feasible. dPCA may be more suitable for applications where
time-consuming optimization algorithms are undesired.

The superior performance observed for the CAE model compared to the AE model
suggests that using one dimensional convolutional neural networks allows for more ef-
fective representations of the simulated furnace’s multivariate time series data. As a
reconstruction-based classifier, CAEs extract features using fewer parameters than AEs,
representing inputs in fewer, more informative features. This suggests that the superior
performance of convolutional networks is not limited to image data.

Overall, the results obtained in this investigation suggest that one-dimensional CAEs
are promising models for extracting features from multivariate time series data recorded
from submerged arc furnaces, and that they can be applied as reconstruction-based event
prediction models for online process monitoring to improve the safety and therefore
viability of mineral processing applications. However, this investigation only provided a
comparative evaluation of PCA models, auto-encoders, and convolutional auto-encoders
on a single dataset obtained from a furnace model as a case study. Further evaluations of
datasets obtained from industrial furnaces and other mineral processing applications will
provide crucial insights that cannot be obtained from a modelled system such as the one
used in this study on the performance of convolutional auto-encoders as event prediction
models for promoting safe operation of various mineral processing applications.
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