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Abstract: Process design procedures under uncertainty result in stochastic optimization problems
whose resolution is complex due to the large uncertainty space, which hinders the application of
optimization approaches, as well as the establishment of relationships between input and output
variables. On the other hand, supervised machine learning (SML) offers tools with which to develop
surrogate models, which are computationally inexpensive and efficient. This paper proposes a
procedure based on modern design of experiments, deterministic optimization, SML tools, and global
sensitivity analysis (GSA) to reduce the size of the uncertainty space for stochastic optimization
problems. The proposal is illustrated with a case study based on the stochastic design of flotation
plants. The results reveal that surrogate models of stochastic formulation enable the prediction of the
structure, profitability parameters, and metallurgical parameters of designed flotation plants, as well
as reducing the size of the uncertainty space via GSA and, consequently, establishing relationships
between the input and output variables of the stochastic formulation.

Keywords: stochastic optimization; supervised machine learning; global sensitivity

1. Introduction

The procedures proposed in previous research for process design are commonly based
on mathematical programming, which exhibits the following characteristics: first, it im-
plements a superstructure to represent design alternatives from which a set of optimal
alternatives can be selected; second, it uses mathematical expressions to model design alter-
natives, constraints, and goals. The mathematical model results in mixed-integer nonlinear
programming (MINLP) or mixed-integer linear programming (MILP) problems; third, it
uses an algorithm to solve the design problem from the previous stage. The procedure
described above has been applied to design flotation circuits [1], reverse osmosis plants [2],
desalinated water distribution systems [3], heap leaching circuits [4], and extraction solvent
plants [5], among others. This approach assumes that the parameters are known; however,
in practice, uncertainties are prevalent in industrial processes due to inaccurate measure-
ment, forecast error, or lack of information, and these effects on process output variables
could be critical.

Optimization under uncertainty must deal with a large uncertainty space that gener-
ally leads to large-scale optimization models that, when added to integer decision variables,
constraints, and multiple objectives of the model, significantly increase the execution time
and computational burden. Traditional research proposes a variety of philosophies to ad-
dress optimization under uncertainty, such as stochastic programming, fuzzy mathematical
programming, and stochastic dynamic programming, among others. These approaches
commonly offer conservative solutions for the stochastic design problem due to the large
uncertainty space, among other aspects. A review of these approaches can be found in [6]
and their applications for mineral processing in [7–9]. An alternative, “less elegant” ap-
proach to the study of the effect of uncertainty on the optimization is proof by exhaustion.
This is a mathematical proof in which the statement to be proved is split into a limited
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number of cases, and each case is checked separately to see if the proposition in question
holds. This approach has been applied to confirm the following postulate: “there are a finite
set of optimal structures when flotation systems are designed under uncertainty” [10,11].
The proof by exhaustion requires a moderate-scale optimization problem, ideally linear, to
obtain responses in a reasonable time and to avoid the collapse of random-access memory
(RAM). These authors implemented several assumptions to reduce the computational
burden of the design problem. For example, processing stages were modeled using dis-
tribution functions, and profitability parameters, such as capital expenditures (CAPEX),
operating expenditures (OPEX), net present value (NPV), profits (PROF), and net cash flow
(NCF) were not considered. These profitability parameters require knowledge of the size of
the equipment in each flotation stage, the amount of equipment in each flotation stage, the
time of residence in each flotation stage, and the lifetime of the project, among other fea-
tures, which increase the computational burden. On the other hand, some researchers have
addressed metallurgical process design under uncertainty reactively via local sensitivity
analysis [12] and global sensitivity analysis [13]. From the literature review, the following
emerges: first, it is desirable to reduce the uncertainty space to favor the application of
stochastic optimization approaches; second, establishing a relationship between the input
and output variables of the design problem is complex due to the large uncertainty space;
third, it is unfeasible to apply analysis in stochastic programming problems due to the
large uncertainty space. Fortunately, in the age of machine learning (ML), their tools have
come to help us to develop surrogate models computationally inexpensive and efficient.
They are focused on endowing programs with the ability to learn and adapt, and can
be classified according to the training type: supervised, non-supervised, and reinforce-
ment [14]. In particular, supervised training requires labeled data samples to approximate
mapping to predict output values or data labels, and it can be divided into regression and
classification. Thus, supervised ML (SML) offers tools to construct surrogate models via
regression and classification problems, such as artificial neural networks, support vector
machines, Gaussian process, and AdaBoost, among others, which could be implemented
to replace MINLP or MILP problems under uncertainty. The integration of SML tools
and mathematical optimization has been reported in previous research to replace rigorous
models in MINLP/MILP problems [15–18] raised from design procedures, optimization
under uncertainty [19], surrogate modeling of stochastic simulators to perform sensitivity
analysis [20], and to overcome MINLP problems in the dynamic optimization of sequential
batch processes [21]; however, its application in metallurgical process design has not been
reported.

This manuscript presents a methodology to reduce the uncertainty space of stochastic
programming problems, which emerge from design procedures. This paper considers four
stages: first, defining a stochastic optimization problem; second, replacing the stochastic
problem by deterministic problems via a design of experiment, and solving each one
separately; third, constructing surrogate models using the information collected in previous
stage and SML tools; and fourth, subjecting the surrogate models to global sensitivity
analysis to reduce the uncertainty space of the stochastic formulation. The methodology
proposed is illustrated using a design procedure for flotation circuits under uncertainty.
The codes utilized in this study were developed in JupyterLab, using the python kernel,
and they are attached as Supplementary Materials.

2. Methods
2.1. Modern Design of Experiments (MDoE)

Design of Experiments (DoE) is a branch of statistics that helps designers plan, execute,
and analyze tests to evaluate process responses. DoE can be divided into two families:
classical and modern experiment design. The first is based on laboratory experiments;
examples of this category are factorial design, central composite design, and the Box–
Behnken design. The second is based on computer simulations to replace expensive
physical experiment with faster and cheaper computer simulations. These DoEs use
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different space-filling strategies to empirically capture the behavior of the underlying
system over a limited range of variables [22].

2.2. Supervised Machine Learning (SML)

Machine learning is a branch of artificial intelligence that aims to extract knowledge
from data. ML algorithms can build models based on data to perform predictions (i.e.,
regression problems) or make decisions (i.e., classification problems). In a classification
problem, the algorithm is trained to approximate a correlation between the input data
and output label/category, whereas in a regression problem, the output variable is a real
value. In this study, the surrogate model is represented by classification and regression
models [23]. The SML tools selected to address regression problems were the multilayer
perceptron (MLP), support vector regression (SVR), random forest regression (RFR), the
linear model (LM), ridge model (RM), lasso model (LM), and elastic net model (ENM).
The SML tools selected to address classification problems were the multilayer perceptron
classifier (MLPC), support vector classifier (SVC), AdaBoost classifier (ABC), Gaussian
process classifier (GPC), and Gaussian Naïve Bayes classifier (GNBC). A review of these
tools can be seen in [24].

2.3. Global Sensitivity Analysis (GSA)

This considers evaluating the output variable variability contemplating the input
variables in their uncertainty domains. GSA can be performed using different approaches,
such as screening methods, linear regression-based methods, and variance decomposition-
based methods, among others [25]. Those based on variance decomposition are highlighted
due to their efficiency and versatility. The Sobol–Jansen method belongs to this category
and enables the determination of the first-order sensitivity index and the total sensitivity
index for each input variable of the model. The first-order index allows the determination
of the most important input variable, while the total index allows the identification of
the input variables that do not influence the output variable. Note that the Sobol–Jansen
method has been implemented to analyze mining processes; interested readers can find
some applications in [13,26]

2.4. Generic Framework to Reduce the Uncertainty Space

The computational framework used to reduce the uncertainty space considers four
stages. First, a stochastic optimization problem must be defined from design procedures.
Second, the uncertainty space of stochastic optimization problem must be sampled using a
form of MDoE, such as Latin hypercube sampling, symmetric sampling, and orthogonal ar-
ray sampling, among other techniques. Next, the stochastic optimization problem must be
replaced by deterministic problems and each one solved separately using exact algorithms,
such as BARON solver, included in General Algebraic Modeling System software (GAMS
development corporation, Fairfax, VA, USA). The information collected must be processed
to eliminate outliers, balancing the dataset, and removing unavailable values, among other
procedures. Third, the processed dataset and SML tools must be used to construct surro-
gate models via classification and regression problems. Note that classification problems
are defined via the labeling of structures of designed processes. The quality of surrogate
models can be determined using metrics, such as the mean squared error (MSE), R-squared
(R2), mean absolute error (MAE), and root mean squared error (RMSE) for regression or
accuracy, precision, sensitivity, and specificity for classification. Programing languages,
such as Julia, Python, Rstudio, and Matlab, or integrated development environments, such
as JupyterLab and Pycharm can be used to construct surrogate models. Fourth, surrogate
models obtained from the regression problems must be subjected to GSA, subsequently
reducing the uncertainty space and establishing relationships among input and output
variables.
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3. Applications

The methodology proposed is illustrated using a procedure implemented to design
flotation plants. This procedure is based on mathematical programming and considers
the following aspects: first, a superstructure representing 2304 alternatives of design that
include five flotation stages, splitters, and mixers; second, a mathematical model including
mass balance, a bank model to estimate mineralogical species recoveries, and several
objective functions, among other specifications, which results in a MINLP problem; for
more detail, see [27]. The uncertainty space of the MINLP problem is formed by twenty
input variables, which can be seen in Table 1.

Table 1. Input variables under uncertainty. N represents a normal distribution, U represents an
uniform distribution.

Input Variable Standard Condition Uncertainty

Copper price (1) 4 MUSD/t N[4,0.3]
Kilowatt-hours (2) 0.0002 MUSD N[0.0002,0.00002]

Cost of mine-crushing-grinding per ton of
ore fed to plant (3) 0.003 MUSD/t N[0.003,0.0004]

Chalcopyrite fast mass flux fed (4) 3 t/h, N[3,0.3]
Chalcopyrite slow mass flux fed (5) 2 t/h N[2,0.3]

Chalcocite fast mass flux fed (6) 1 t/h N[1,0.1]
Chalcocite slow mass flux fed (7) 1 t/h N[0.4,0.04]

Pyrite fast mass flux fed (8) 5 t/h N[5,0.2]
Pyrite slow mass flux fed (9) 3.5 t/h N[3.5,0.3]

Quartz mass flux fed (10) 150 t/h N[150,3]
Gangue mass flux fed (11) 300 t/h N[300,3]

Chalcopyrite fast copper grade fed (12) 34% N[0.34.0.01]
Chalcopyrite slow copper grade fed (13) 25% N[0.25,0.01]

Chalcocite fast copper grade fed (14) 18% N[0.18,0.01]
Chalcocite slow copper grade fed (15) 10% N[0.1,0.01]

Number of cells in the rougher stage (16) 5 U[3,10]
Number of cells in the cleaner stage (17) 5 U[3,10]

Number of cells in the recleaner stage (18) 5 U[3,10]
Number of cells in the scavenger stage (19) 5 U[3,10]

Number of cells in the rescavenger stage (20) 5 U[3,10]

The uncertainty can be classified as stochastic and epistemic; the first is related to the
variation inherent in a given system and is present in the deposit grade, feed conditions,
kilowatt-hours, and copper price; the second derives from a lack of knowledge of the
system and is present in operational aspects, such as the number of cells. In this study, the
input variables (1–15) exhibited stochastic uncertainty and, according to previous research,
the uncertainty could be described with normal distribution functions (see Table 1). The
number of cells (16–20) presented epistemic uncertainty and, according to the Principle of
Indifference, its uncertainty could be expressed with uniform distribution functions, in this
case, discrete functions (see Table 1).

This study focused on two scenarios: the first considers an uncertainty space formed by
fifteen input variables (1–15); the second considers an uncertainty space formed by twenty
input variables (1–20). The uncertainty space was sampled five hundred times using the
Latin-Hypercube method; subsequently, the results were utilized to replace the stochastic
formulation with deterministic problems. The objective function selected was maximizing
NPV because it includes metallurgical, operational, and profitability parameters, whereas
the output variables of the design problem included plant structure, CAPEX, OPEX, PROF,
NCF, revenue (REV), and copper grade and recovery for the designed flotation plants. A
computer with Intel Core i7 2.21 GHz and 16 GB of RAM and BARON solver included in
GAMS software (release 30.1.0) was implemented to solve the deterministic problems. The
execution times for the first and second scenario were 82,800 s and 7200 s, respectively, and
both scenarios presented two predominant structures, which can be seen in Figure 1.
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Figure 1. Predominant structures in the first and second scenario, (a) Structure 1, (b) Structure 2.

The difference in execution time could be related to the flotation model used to esti-
mate mineralogical species recoveries, specifically, in the interaction between the number
of cells and residence time in each flotation stage [28]. The dataset obtained in the previous
stage was processed to remove noise, outliers, unavailable values, and balancing of the
dataset. Subsequently, the processed dataset was charged in JupyterLab to construct surro-
gate models using the sklearn library [29]. Here, classification problems were considered to
predict the designed plant structures, whereas regression problems predicted profitability
and metallurgical parameters for the designed plants. Figures 2 and 3 show the results
obtained for classification and regression problems.

Figure 2. Benchmarking of SML tools to predict structure of designed process: (a) accuracy of training for uncertainty space
of fifteen input variables; (b) accuracy of training for uncertainty space of twenty input variables. Benchmarking of SML
tools to predict NPV, CAPEX, OPEX, REV, PROF, NCF, copper recovery, and copper grade: (c) average R2 of training for
uncertainty space of fifteen input variables; (d) average R2 of training for testing dataset for uncertainty space of twenty
input variables.
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Figure 3. Benchmarking of SML tools to predict structure of designed process: (a) accuracy of testing for uncertainty space
of fifteen input variables; (b) accuracy of testing for uncertainty space of twenty input variables. Benchmarking of SML
tools to predict NPV, CAPEX, OPEX, REV, PROF, NCF, copper recovery, and copper grade: (c) average R2 of testing for
uncertainty space of fifteen input variables; (d) average R2 of testing for testing dataset for uncertainty space of twenty
input variables.

In order to study the effect of dataset size on the performance of surrogate models,
the following procedure was implemented: first, the dataset (500 samples) obtained in
the second stage of the methodology was sampled to generate sub-datasets of 100, 150,
200, 250, 300, 350, 400, 450, and 500 samples; second, the sub-datasets were divided into
training datasets (80%) and testing datasets (20%); third, the training datasets were used
to construct surrogate models and the testing datasets were used to identify overfitting
surrogate models [30]. Figures 2 and 3 reveal that the SML tools selected for the classifica-
tion problems provided a good accuracy for predicting the structure of designed plants
independent of dataset size, whereas the SML tools selected for regression, except RFR,
provided a good average R2 for predicting the metallurgical and profitability parameters
of the designed plants independently of the dataset size. The accuracy of the classification
was calculated via the confusion matrix, and the SML tool parameters were tuned via the
trial-and-error method. The Supplementary Materials shows other performance measures,
such as MSE, precision, and sensitivity. Based on the general parsimonious principle [31],
LM and GPC surrogate models were selected for both scenarios. Next, the LM in each
scenario was subjected to GSA using the Sobol–Jansen method. According to a related
study [32], the size of sample needed to obtain reliable results with GSA must be equal to
30,000 and 40,000 for the first and second scenario, respectively; the results can be seen
in Figure 4. The procedure implemented to select influential input variables considered
two steps: first, ordering the normalized total indices from high to low; second, summing
the normalized total indices until at least 0.90 of uncertainty on NPV was obtained. In the
first scenario, copper price (1), cost of mine–crushing–grinding per ton of ore fed to the
flotation plant (3), chalcopyrite fast mass flux fed (4), and chalcopyrite slow mass flux fed
(5), were influential input variables on NPV (indices sum 0.9325), whereas in the second
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scenario, input variables (1,3,4,5) and the number of cells in the rougher (16), scavenger
(19), and rescavenger (20) were influential input variables on NPV (indices sum 0.9226).
Thus, in the first scenario, the uncertainty space was reduced from fifteen–dimensional to
four–dimensional space, whereas for the second scenario, the uncertainty space was re-
duced from twenty–dimensional to seven–dimensional space. The execution time required
to perform GSA was 230 s and 493 s for the first and second scenario, respectively. Note
that applying GSA using the stochastic MINLP problem is infeasible due to the size of the
sample and the execution time required to solve the deterministic MINLP.

Figure 4. Global sensitivity analysis for (a) first scenario, and (b) second scenario.

Next, the GSA results for the first scenario were checked. Specifically, the idea was to
consider two groups, one formed by influential input variables and the other formed by
noninfluential input variables, in order to analyze how the histogram of NPV is affected
when the input variables of one or another group are fixed. Note that the NPV values were
obtained via the BARON solver. Figure 5a shows the histogram of NPV when no groups
are fixed. Figure 5b shows a histogram similar to the previous case, when the group of the
noninfluential input variables were fixed on their standard operational conditions and we
freed the influential group. Figure 5c shows a histogram distributed over a limited range,
when we freed the noninfluential group and the group of influential input variables were
fixed in their standard operational conditions. Therefore, the GSA results were confirmed.
Figure 4 indicates that copper price and chalcopyrite flux fed are the main influential input
variables on NPV for both scenarios and, consequently, on the structure, metallurgical
parameters, and profitability parameters of the designed flotation plants. This could be
attributed to the revenues generated by each flotation plant, which are a function of the
copper price and copper mineralogical species present in the final concentrate, particularly
chalcopyrite flux fed, the main copper species in porphyry–copper deposits located in
northern Chile. The cost of mine–crushing–grinding per ton of ore fed to the flotation plant
was the second most influential input variable on NPV for the first scenario, which could
have been related to its effect on OPEX (see [27]), an aspect observed in industrial practice;
in fact, mine–crushing–grinding costs represent around 60%–80% of the energy costs of
mining projects [33,34]. The number of cells in the rougher, scavenger, and rescavenger
were the second most influential input variables on NPV for the second scenario, which
could have been related to their effect on CAPEX.

Surrogate models and information provided by GSA allowed us to visualize the
behavior of NPV and the structure of designed plants in terms of copper price and chal-
copyrite flux fed, as shown in Figure 6, where for the first scenario the rest of the input
variables maintained standard values, whereas for the second scenario the number of
cells in the rougher, scavenger, and rescavenger stages was seven and the rest of the input
variables maintained standard values. In total, 160,000 estimations of surrogate models
were required to produce these figures; the execution time was 210 s and 204 s for the first
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and second scenario, respectively. Obtaining similar results using the stochastic formula-
tion is unfeasible due to the execution time required to solve the deterministic problems
(approximately 26,496,000 s).

Figure 5. NPV histogram: (a) free input variables, (b) free influential and fixed noninfluential input variables, (c) free
non-influential and fixed influential input variables.

Figure 6. Estimation with surrogate models of NPV and structure for designed flotation plants in terms of the function of
copper price and chalcopyrite flux fed: (a) first scenario, (b) second scenario.
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The stochastic optimization included the expectation minimization, the minimization
of deviations from goals, the minimization of costs, and optimization over soft constraints;
these objectives could be addressed partially via surrogate models because they could
not predict: (a) the mineralogical species recoveries by the flotation stage; (b) the mass
balance by mineralogical species in splitters, flotation stages, and mixers; (c) the number
and volume of cells in each flotation stage; (d) the residence time by flotation stage; (e)
the annual depreciation; (f) the working capital; and (g) the fixed capital costs, among
others. A feasible alternative is to address the stochastic optimization problem via reduced
formulation and approaches proposed in previous research, which is outside the focus of
this work. However, some comments related to its application in mineral processing can be
recorded: (a) Jamett et al., (2015) [7] implemented the two-stage stochastic programming to
design flotation plants under uncertainty. This this approach optimized the expected total
income over all the scenarios; such scenarios could be reduced to those derived from the
influential input variables, allowing the analysis of scenarios relevant to total income and
making efficient use of computational resources; (b) Liang et al., (2020) [8] implemented
fuzzy mathematical programming to design flotation plants. This approach minimized the
system uncertainty and maximized the expected profit over the uncertainty space formed
by the fuzzification of the input variables; such space could be reduced to one formed
only by the fuzzification of influential input variables, reducing the use of computational
resources; (c) Cisternas et al., (2015) [10] and Acosta-Flores et al., (2020) [11] implemented
the proof by exhaustion to study the effect of uncertainty on the flotation plant design; this
approach involved a high RAM usage, especially when the problem was MINLP and the
uncertainty space was large. The methodology proposed can be used to avoid the collapse
of RAM.

4. Conclusions

The integration of supervised machine learning tools, global sensitivity analysis, and
process design has been studied in previous research; however, its joint application in met-
allurgical process design has not been reported. Within this context, this work presented
a methodology with which to reduce the size of the uncertainty space for stochastic opti-
mization problems raised from design procedures, which includes four stages: stochastic
optimization problems, the reduction of stochastic formulation to deterministic formulation
and resolution using an exact algorithm, the construction of surrogate models using SML,
and the submission of the surrogate models to GSA to determine input variables influential
and noninfluential for optimization problem outcomes. The methodology was illustrated
using a design procedure for flotation plants. Two scenarios were studied: in the first,
the uncertainty space was reduced from fifteen-dimensional to four-dimensional space;
in the second scenario, the uncertainty space was reduced from twenty-dimensional to
seven-dimensional space. In addition, GSA information and surrogate models allow us
to visualize relationships among influential input variables, which is unfeasible using
the stochastic formulation. The methodology proposed could be used to improve the
application of stochastic approaches in mineral processing design.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11121302/s1. Code: Scripts.
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