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Abstract: Quantification of halloysite and kaolinite in clay deposits from X-ray diffraction (XRD)
commonly requires extensive sample preparation to differentiate the two phyllosilicates. When
assessing hundreds of samples for mineral resource estimations, XRD analyses may become unfeasi-
ble due to time and expense. Fourier transform infrared (FTIR) analysis is a fast and cost-effective
method to discriminate between kaolinite and halloysite; however, few efforts have been made
to use this technique for quantified analysis of these minerals. In this study, we trained machine-
and deep-learning models on XRD data to predict the abundance of kaolinite and halloysite from
FTIR, chemical composition, and brightness data. The case study is from the Cloud Nine kaolinite–
halloysite deposit, Noombenberry Project, Western Australia. The residual clay deposit is hosted in
the saprolitic and transition zone of the weathering profile above the basement granite on the south-
western portion of the Archean Yilgarn Craton. Compared with XRD quantification, the predicted
models have an R2 of 0.97 for kaolinite and 0.96 for halloysite, demonstrating an excellent fit. Based
on these results, we demonstrate that our methodology provides a cost-effective alternative to XRD
to quantify kaolinite and halloysite abundances.

Keywords: kaolin; clay; machine learning; deep learning; quantification; XRD

1. Introduction

A mineral resource estimate was recently completed on the Cloud Nine kaolinite–
halloysite deposit, part of the Noombenberry Project in Western Australia. The quantifi-
cation of kaolinite and halloysite (the two main clay minerals present at Noombenberry)
and other minerals within the project was completed using X-ray diffraction (XRD). This is
an expensive and labour-intensive technique for mineral quantification. Differentiating
halloysite from kaolinite can require chemical and physical treatment prior to the XRD
analysis [1]. The intercalation of organic molecules into halloysite results in increased
spacing between the silicate layers, which in turn shifts the peak positions on the XRD
patterns. Small quantities of halloysite are challenging to detect in kaolinite-rich samples
due to overlapping peaks in XRD patterns [2].

Alongside the XRD dataset, Fourier transform infrared (FTIR) data were also collected
on the same samples. The FTIR technique requires minimal sample preparation and is more
cost and time effective than XRD. Coupled with machine learning (ML) approaches, FTIR
data have been used for mineral identification and to predict parameters such as elemental
abundance, grain size, density, total organic carbon, pH, and other properties of soils
and rocks [3–12]. While FTIR is commonly employed to analyse these physicochemical
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parameters, it is less commonly applied in the quantification of mineral abundances. Yet,
the individual intensities in FTIR spectra of multimineral analyses reveal information on
mineral abundances [13], which can be used as a tool in mineral exploration [10].

The formula for kaolinite is Al2O3·2SiO2·2H2O, while halloysite is Al2O3·2SiO2·4H2O.
When halloysite is fully hydrated, two H2O molecules account for interlayer water, and
the other two H2O molecules are present as structurally bound OH ions [14]. The presence
of OH groups in the crystal structure of kaolinite and halloysite means that these minerals
are spectrally active. The presence and abundance of these phases will be recorded in
FTIR spectra.

Quantification of halloysite and kaolinite based on FTIR was carried out by Janik
and Keeling in the 1990s [2,15]. The authors used a partial least square on the full FTIR
spectra and tested their predicted abundances against XRD and SEM quantification. They
discovered that the spectral response appears to be more sensitive to low concentrations of
halloysite in mixtures with kaolinite than for XRD. Moreover, quantifying the abundance
of minerals in drill-core samples using spectroscopic data helps to analyse kaolin-bearing
regolith rapidly [16]. However, the quantitative discrimination between halloysite and
kaolinite remains problematic. Machine learning is a fast-evolving technique that was
recently employed in mineral quantification based on spectral data [17–19]. These studies
imply that using an ML approach on spectral and other sample characterisation techniques
may result in robust prediction of kaolinite and halloysite abundance.

In this study, we used the FTIR spectra and XRD data, along with the chemistry of
the samples, determined by X-ray fluorescence analysis (XRF) and the ISO-B brightness
value, to predict the abundance of kaolinite and halloysite in unknown samples solely
based on their FTIR spectra, chemistry, and brightness. The prediction was completed
using 50 Python 3.8-based machine- and deep-learning models that were trained on the
available data and eventually reduced to just one ensemble model comprising five key base
regression models, used in a final voting regression model. The trained models were saved,
and they can be used on new chemical and FTIR spectral data for the accurate prediction
of kaolinite and halloysite abundances.

1.1. Regional and Local Geological Setting

The Noombenberry Project is located in the southwestern portion of the Archean
Yilgarn Craton. The Yilgarn Craton can be subdivided into six fault-bounded terranes
(Figure 1). The Noombenberry Project is situated on the margin between the South West
Terrane and the Youanmi Terrane, but most of the project area falls within the South West
Terrane. The South West Terrane was amalgamated onto the southwest margin of the
Youanmi Terrane at ~2650 Ma; although, the exact boundary between the two terranes re-
mains poorly defined. The South West Terrane consists of high-metamorphic-grade granitic
gneisses and metasedimentary and meta-igneous rocks. Multiple phases of deformation
and granite and pegmatite intrusion occurred from ~2750 to 2620 Ma [20]. The Youanmi
Terrane comprises the Murchison and Southern Cross domains and consists of granites,
granitic gneisses, monzogranite, clastic sedimentary units, and volcanic rocks [20,21]. The
Youanmi Terrane is isotopically distinct from the other terranes in the Yilgarn Craton [20]
and has an initial formation age of >3050 Ma [20,22,23].

Most of the project area is covered in a thin layer of Cenozoic sediments, including
Tertiary sands and laterite and Quaternary colluvial clay, silt, and sand. According to avail-
able Geological Survey of Western Australia (GSWA) mapping, the underlying bedrock
geology consists of Archean granites that can be broadly divided into pre-to-syn-tectonic
granites and post-tectonic granites [24]. The Noombenberry kaolinite–halloysite deposits
overlie a medium-to-coarse grained, post-tectonic, quartz monzonite. Outcrop of quartz
monzonite is mapped within the tenements E77/2622, E77/2624, and E77/2724 (Figure 1,
inset). Leucocratic quartz monzonite with sparse biotite is mapped within E77/5650.
Pre-to-syn-tectonic granites include foliated-to-migmatitic granodiorites and tonalites.
Brecciated migmatite is mapped in the southern- and northern-most tenements, E77/5649
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and E77/2725, respectively. A primary iron occurrence with the Merredin-banded iron
formation in E77/2622 provides evidence for the presence of greenstone belt remnants.
The northwest-trending, regional-scale Koolanooka Fault that separates the South West
Terrane from the Youanmi Terrane runs through tenement E77/2725 (Figure 1). Domains
of amphibolite occur adjacent to this fault. Two crosscutting, east–west trending, Paleopro-
terozoic dolerite dykes are part of the Widgiemooltha Dolerite and appear on aeromagnetic
images as prominent linear lows due to remnant magnetisation.
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Figure 1. Terranes of the Yilgarn Craton, the Noombenberry Project in grey, predominantly lying in
the South West Terrane, modified after [20].

The regolith profile at the Noombenberry Project is well developed; it grades from
partially weathered granitic bedrock into saprolite, with increasing clay content towards
the surface. A ~1–2 m-thick transition zone overlies the granite, transitioning from partially
weathered granite to saprolitic clays (Figure 2). The pedolith and lateritic residuum sections
of the weathering profile have been completely removed and are not present. Saprolite is
capped directly with sandy soils and colluvium. The cover material is ~3–5 m thick and
consists of reddish to yellow-brown haematitic, quartz-rich soils. The saprolite varies in
thickness from <1 m overlying isolated outcropping granite to >50 m. Discontinuous pods
of Fe staining occur within the saprolitic zone, which results in lower brightness values.
The age of the saprolitic clay is unknown. The basement geology consists of undulating
granite, which locally outcrops within the project area.
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Figure 2. Overview of the surface, drill holes, and undulating fresh granite contact; (A) cross-section along 671 494 E
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1.2. Kaolinite and Halloysite Mineralisation

Clay deposits can be broadly grouped into residual (primary) and transported (sec-
ondary) deposits. Residual deposits form in situ through the alteration of feldspar-rich
rocks (e.g., granite) by weathering or hydrothermal processes [14,25,26]. Transported
deposits are produced by the movement of weathered products by water, where they
are deposited in a quiescent environment some distance away from the original point
of generation [27]. Residual clay deposits have not been subject to erosional transporta-
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tion and redeposition processes. Mineralisation at Noombenberry is considered to be a
residual deposit.

Kaolin is a white, powdery, microcrystalline material that consists of kaolinite with
subordinate quartz and mica. The kaolinite group of phyllosilicate minerals includes
the dioctahedral minerals kaolinite, halloysite, dickite, and nacrite. The two main clay
minerals present at Noombenberry are kaolinite and halloysite. Kaolinite and halloysite are
chemically and structurally similar. Kaolinite is triclinic and has a plate-like crystal habit,
whereas halloysite is monoclinic and generally has a tubular morphology. Halloysite also
differs from kaolinite due to the presence of interlayer water [28–31]. Halloysite contains a
single layer of water molecules in each interlayer space: d001 varies from 7.2 Å in kaolinite
to 10 Å in halloysite.

Halloysite mineralisation requires the continuous presence of water [28]. Interlayer
water is extremely loosely held, and halloysite dehydration in unsaturated environments
occurs at temperatures as low as room temperature and is irreversible [32]. Dehydrated
halloysite is characterised by a reduced interlayer spacing (7 Å) very similar to kaolinite,
making it difficult to differentiate using XRD patterns [29]. The hydrated and dehydrated
halloysite end members are referred to as halloysite (10 Å) and halloysite (7 Å), respectively.

Kaolinite formation requires relatively low temperatures and pressures [26] and wet,
mildly acidic conditions. This allows for the flow of K+, Na+, Ca2+, and Mg2+ ions in
solution and the loss of SiO2 through leaching [33]. Locations with tropical climates,
high rainfall, rapid drainage, and adequate groundwater movement to leach the soluble
components are ideal for the formation of kaolinite [26]. Acidic conditions are crucial to
the formation of halloysite, because the layer charge is pH dependent [33]. When pH < 8,
the octahedral sheet of the halloysite layer is positively charged, while at pH > 2, the
tetrahedral sheet is negatively charged. It is speculated that water molecules are retained
within the interlayer space because the opposing charges of the two sheets attract different
polar ends of the H2O [33].

Kaolinite and halloysite are the major weathering products of plagioclase and K-
feldspar and, to a lesser extent, muscovite and biotite, which are all present in the basement
granite at Noombenberry. Feldspar may weather directly to kaolinite, or this may be
preceded by halloysite [32]. Plagioclase is relatively unstable and more susceptible to
weathering and will, therefore, break down before K-feldspar or muscovite [26]. The
breakdown of K-feldspar to kaolinite during intense weathering occurs via the following
simplified reaction:

2KAlSi3O8(K-feldspar) + 3 H2O→ Al2Si2O5(OH)4(kaolinite) + 4SiO2 + 2K+ (1)

Silicon and K are leached away, and if K is not lost, illite will form instead of kaoli-
nite [14]. Muscovite weathers to kaolinite through the intergrowth of mica and kaolinite
or via an intermediate stage of montmorillonite [34]. This process requires the addition
of water and protons that transform into OH groups, as well as the removal of K, via the
simplified Equation:

2Kal2(AlSi3O10)(OH)2(muscovite) + 2H+ + 3H2O→ 1.5Al4(Si4O10)(OH)8(kaolinite) + 2K+ (2)

Kaolinite derived from muscovite can preserve the crystallographic orientation of
muscovite. The transformation is likely partly topotactic (kaolinite preserves some of the
octahedral sheets of muscovite), resulting in the retention of muscovite impurities (e.g.,
Cr and Fe) within the kaolinite [35].

Biotite also weathers to kaolinite, either directly or through an intermediate diocta-
hedral mica (e.g., muscovite, Reaction (3)), depending on the concentration of K+, H+,
Al3+, and Mg2+ ions available. Both processes are accompanied by the oxidation of Fe2+

to Fe3+ oxides or hydroxides. At high K and Al concentrations, biotite degrades in steps,
from a dioctahedral Fe-rich mica, to a dioctahedral Fe-poor mica, and finally, to kaolinite
(Reaction (2)), after the removal of the remaining K [35]. This takes place via the exchange
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of cations (Mg2+, Fe2+) within octahedral layers by Al3+, most likely sourced from feldspars,
via the simplified equation:

KMg3(AlSi3O10)(OH)2(phlogopite) + 2Al3+ → Kal2(AlSi3O10)(OH)2(muscovite) +3Mg2+ (3)

Reaction (3) could equally be written for Fe-rich biotite (annite) rather than Mg-
rich biotite (phlogopite), as shown here. It is also possible for halloysite to form via
biotite alteration [25].

The kaolinite and halloysite mineralisation at Noombenberry is hosted in the saprolitic
and transition zone of the weathering profile, above the basement granite. The mineralisa-
tion is hosted in a lateral unit and varies from metres to tens of metres thick, depending on
the depth of the undulating basal contact to fresh granite. Kaolinite is the dominant clay
mineral in the saprolitic zone at the Noombenberry Project. Halloysite-rich pods or pockets
contain up to 49 wt.% halloysite, and the concentration of halloysite typically decreases up
the weathering profile. This is typical for halloysite mineralisation, as halloysite formation
requires the constant presence of water found in the lower and wetter parts of the weath-
ering profile [32,33]. Other minerals identified in the saprolitic zone include K-feldspar,
quartz, muscovite, albite, smectite, and anatase.

Iron is a deleterious element, as it directly affects the brightness of the clay. Previous
studies [36–38] indicate that the morphology of halloysite is directly linked to Fe content.
Halloysite that forms long tubes typically contains a lower concentration of Fe2O3 com-
pared with short-tube, spheroidal, and platy halloysite. Samples from Noombenberry
examined using scanning electron microscopy (SEM) show a dominance of an elongated
tubular shape, which is linked to low Fe contents in the above-cited literature.

2. Materials and Methods
2.1. Drill Samples

Two phases of drilling have been completed at the Noombenberry Project. Phase 1
drilling commenced on 11 December 2020. The holes were drilled on a 400 m × 400 m grid
with an infill 200 m grid across the extent of E77/2622. A total of 197 holes were drilled
at a dip of −90◦, totalling 4431 m. Drilling was conducted using a truck-mounted Atlas
Copco Rotamec R50 aircore drill rig.

2.2. Sample Preparation

At the drill rig, 1 m bulk samples were fed directly from the cyclone into labelled
plastic bags. Selective composite sample intervals were chosen post-drilling, based on
geological logging, and were collected using a PVC spear. The bulk sample bag was laid
flat on the ground, and the spear was pushed from the top right corner to the bottom left
corner, aiming to collect a representative sample of the full metre. Where possible, samples
were collected over a nominal 4 m interval; however, shorter sample intervals were used to
avoid zones of Fe staining or mixing of lithologies. No samples representing <1 m or >5 m
intervals were collected.

Composite samples were not collected when a high degree of Fe-staining was identi-
fied in drill chips, as the presence of trace amounts of Fe can negatively affect the brightness
of clay. Composite samples were submitted to Bureau Veritas, Adelaide, for sample prepa-
ration. Sample weights were recorded after compositing but before any subsampling or
drying. Samples were dried at a low temperature (60 ◦C) to avoid the destruction of the
halloysite. The dried sample was then pushed through a 5.6 mm screen prior to splitting.
Once dry, the samples were weighed and passed through a hopper into a small rotary
splitter to produce a 1 kg sample. The 1 kg splits were wet-sieved using a Kason screening
deck at 180 and 45 µm. The screening deck underwent regular ultrasonic cleaning to
prevent blinding. The 180–5600 µm and 45–180 µm fractions were filtered and dried on
weighing papers, then photographed. All analytical work was conducted on the <45 µm
fractions according to industry practice, as the sieved kaolinite represents the saleable
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product. The <45 µm fraction was filtered and dried on weighing paper. Three separate
splits were taken from the <45 µm fraction for XRD, XRF, and ISO-B (brightness) analysis.

2.3. X-ray Diffraction (XRD)

The mineralogical composition was analysed by XRD at CSIRO, Adelaide. A 3 g sub-
sample was taken from the <45 µm fraction and was pulverised in a McCrone micronising
mill for 10 min with ~15 mL of deionised water. The resulting slurry was placed into a
20 mL glass jar and attached to a small, compressed air-driven spray paint device. The
slurry was gently agitated while spraying the contents into a cylindrical chamber heated
to 150 ◦C, with a thermocouple-controlled belt heater to produce a spherical agglomer-
ated sample for XRD analysis [39]. The spherical agglomerates were collected and stored
in containers.

The agglomerated sample was gently poured into stainless steel sample holders. The
sample holders were lightly tapped to distribute the spheres evenly, and then, any excess
material was scraped off using the edge of a glass slide. Diffraction patterns were recorded
using a PANalytical X’Pert Pro multi-purpose diffractometer (Malvern Panalytical Ltd,
Malvern, UK) using Fe-filtered Co-Kα radiation, an automatic divergence slit, a 2◦ anti-
scatter slit and a fast X’Celerator Si strip-detector. The diffraction patterns were recorded
in steps of 0.017◦ 2θ with ~0.4 s counting time per step over the angle range of 4–80 2θ.
Quantitative analysis was performed on the XRD data using the commercial TOtal Pattern
Analysis Software package (TOPAS) from Bruker AXS (Billerica, MA, USA). The results
were normalised to 100% and, therefore, do not include estimates of unidentified or amor-
phous material. The estimated proportions of halloysite and kaolinite were determined by
profile-fitting in TOPAS. The fitting algorithm was calibrated using a suite of 20 < 2 µm
fractions of samples from the Noombenberry Project analysed by XRD, SEM, and Fourier
transform infrared spectroscopy (FTIR).

2.4. X-ray Fluorescence (XRF)

Whole-rock major-element analysis was conducted by XRF at Bureau Veritas, Wing-
field, Adelaide, using method XRF4B. Samples were analysed for Fe2O3, SiO2, Al2O3, CaO,
K2O, Mn, Na2O, MgO, P, S, TiO2, and Cl. LOI was measured by gravimetric determination.
Samples were fused using a lithium borate flux and cast into a glass disc for analysis.

2.5. Fourier Transform Infrared (FTIR) Spectroscopy

Fourier transform infrared spectroscopy (FTIR) is a technique to measure how much
light is absorbed and transmitted in a sample at each wavelength. To obtain an infrared (IR)
spectrum (electromagnetic radiation with wavelengths longer than visible light), the raw
data are converted using the mathematical process of Fourier transform into a spectrum
of absorption or transmission. The FTIR analyses in this study were performed using a
Thermo Scientific Nicolet iS50 FTIR Spectrometer at Bureau Veritas, Wingfield, Adelaide,
Australia. For the ML approach, we used the whole spectra from the Near IR and Mid
IR to the Far IR (350–44,701.59 nm over 3300 increments). A total of 839 FTIR spectra
were collected.

2.6. Brightness Analysis

Brightness refers to the percentage of blue light reflected from the clay surface at a
specific, effective wavelength of 457 [40]. Brightness analysis (457 nm) was carried out at
the University of South Australia using a Hunterlab UltraScan PRO instrument, following
the method described in the TAPPI test method T 534 om-03 [41]. Samples were prepared
into 12–13 mm-deep, uniformly compacted pigment plaques, by pressing the <45 µm-size
fraction into a brass cylinder. A force of 210 kPa was applied for 5 s, using a 5.73 kg weight
loaded onto the ram pin.

The Hunterlab UltraScan PRO was set up to exclude reflected light (RspecEx mode)
and calibrated against a standard “light trap” and a standard glossy white tile. The bright-
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ness and colour measurements were captured for each sample using C/2 and D65/10
illumination sources. Each sample was placed against the measurement port of the Ul-
traScan PRO and analysed. The data were automatically captured within the EasyMatch
QC software and exported into an Excel spreadsheet. Three plaques were made for each
sample, and each plaque was measured three times, totalling nine measurements per
sample. The plaque was moved a small amount between each measurement, and the
results of the nine analyses were averaged. Although brightness analysis is quantified as
a percentage, it is industry standard to report a unitless value, i.e., a sample that reflects
80% of blue light has a brightness value of 80. Samples with high kaolinite and halloysite
content and low foreign mineral content show the highest brightness values.

2.7. Machine-Learning (ML) Prediction

The assay and spectral data were merged to prepare the data for modelling. Geochem-
ical analyses with data with missing values or missing FTIR spectra were removed from
the dataset.

The kaolinite dataset consists of the following: kaolinite abundance from XRD (wt.%),
Fe2O3 (wt.%), Al2O3 (wt.%), SiO2 (wt.%), TiO2 (wt.%), CaO (wt.%), K2O (wt.%), Na2O (wt.%),
MgO (wt.%), P (wt.%), LOI (wt.%), brightness, and FTIR spectra from 350–44,701.59 nm over
3300 increments, for 699 samples. The kaolinite XRD, XRF, LOI, and brightness ISO-B data
were log-transformed prior to modelling.

The halloysite dataset consists of the following: halloysite abundance from XRD
(wt.%), predicted kaolinite (wt.%, ML algorithm output), Fe2O3 (wt.%), Al2O3 (wt.%), SiO2
(wt.%), TiO2 (wt.%), CaO (wt.%), K2O (wt.%), Na2O (wt.%), MgO (wt.%), P (wt.%), S (wt.%),
LOI (wt.%), brightness, and FTIR spectra from 350 to 44,701.59 nm over 3300 increments,
for 316 samples. The halloysite XRD, XRF, LOI, brightness ISO-B data, and predicted
kaolinite (wt.%, ML algorithm output) data were log-transformed prior to modelling. Using
the predicted kaolinite (wt.%) values in the halloysite prediction allows the relationship
between kaolinite and halloysite to be incorporated into the modelling.

The objective was to model and predict the kaolinite and halloysite percentages using
the geochemical analysis, spectral, and brightness data. Over 50 Python (v3.8) ML and
TensorFlow/Keras deep-learning models were trained on the data and eventually reduced
to just one ensemble model, comprising five key base regression models, used in a final
voting regression model (Figure 3).
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Two other approaches were tested:

1. ML was employed to determine the most important features of the regression models.
These features were then used in ordinary least square (OLS), robust least squares
(RLS), and regularisation lasso, ridge, and elastic net models.

2. Principal components analysis was employed on the merged kaolinite, chemistry, and
spectral dataset, and elastic net regularisation was employed to reduce the model
complexity further.

3. Results
3.1. XRD Data Validation

Before predictions of kaolinite and halloysite abundance could be made, the training
XRD data had to be validated to ensure that the mineral abundances were robust and
reliable. This was achieved by comparing a theoretical chemical composition derived from
the mineralogy (XRD data) with the measured XRF analysis for the same sample. However,
kaolinite and halloysite have very similar compositions: kaolinite = Al2O3·2SiO2·2H2O
and halloysite = Al2O3·2SiO2·4H2O. So, with only a minor difference in the calculated
LOI, SiO2, and Al2O3 (depending on what composition is selected for halloysite) with
varying halloysite: kaolinite values, it is not possible to robustly validate the halloysite and
kaolinite abundances, except to conclude that the sum of halloysite and kaolinite is correct.

The minerals identified by XRD were kaolinite, halloysite, microcline, albite, oligoclase,
quartz, muscovite, smectite, anatase, rutile, goethite, calcite, dolomite, zircon, and florencite.
Kaolinite is the dominant mineral with a median abundance of 80 wt.% (maximum of
99 wt.%). Halloysite ranges up to 49 wt.%; however, in some samples, it is below the
detection limit. Microcline, quartz, and muscovite occur at a median of 7.0, 2.2 and 2.1 wt.%,
respectively. The remaining minerals typically occur as minor or trace components. The
minerals were quantified using the Rietveld method, resulting in the weight percentages of
each mineral phase normalised to 100% for each sample (e.g., 81.7 wt.% kaolinite, 9 wt.%
quartz, 3.4 wt.% anatase, 2.6 wt.% halloysite, 2.6 wt.% muscovite, and 1 wt.% microcline for
sample 1000795). Since the chemical composition, including volatile content (H2O, CO2),
of each mineral composition can be inferred, the mineral abundances allow for calculation
of the chemical bulk composition of the individual sample. For this calculation, the
mineral compositions were obtained from published generic mineral compositions based on
electron-probe microanalysis [14]. The main components, SiO2, Al2O3, K2O, Na2O, Fe2O3,
and the LOI, were calculated from the XRD data. The median total was 99.84 wt.% for the
839 analyses. Ten samples were not considered for the calculation because they contained
amorphous material, which does not reveal structural or compositional information in
XRD. Minerals that were reported to occur in the XRD data but were assigned to the
abundance of <1 wt.% have been substituted to 0.5 wt.% in the calculations. This approach
allowed for the addition of trace minerals to the chemical calculations, which led to a robust
representation of the mineralogical suite.

The bulk composition, calculated from XRD data, was compared with the chemi-
cal composition directly obtained from XRF analyses to provide an independent check
on the mineral abundance quantifications by XRD. The comparison between the two
bulk compositions is presented in Figure 4. The Pearson correlation coefficient (PCC,
−1 = ideal negative correlation, 0 = no correlation, 1 = ideal positive correlation) is 0.99 for
K2O, 0.98 for Na2O, 0.93 for SiO2, 0.92 for Al2O3, 0.68 for Fe2O3, and 0.98 for LOI. The
major rock-forming components present in the key minerals at the Cloud Nine deposit
(namely SiO2, Al2O3, K2O, Na2O, and LOI) have very good correlations between the bulk
composition calculated from XRD data compared with the chemical composition from XRF,
with PCC values >0.92. This suggests that the quantification of the mineralogy by XRD is
robust. Moreover, the data points plot along the 1:1 line in Figure 4 indicate a very good fit.
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The XRF data can be compared with individual minerals among the whole dataset.
Iron has a positive correlation (PCC ≥ 0.4) with goethite, smectite, and muscovite, sug-
gesting that samples rich in these minerals have higher Fe concentrations. However, Fe
has the poorest correlation between XRD and XRF data in Figure 4, which may indicate
a heterogeneous composition of the sheet silicates, smectite and muscovite, depending
on sample location. Apart from the Fe-oxide goethite, smectite is the main source of Fe
(PCC = 0.73). For example, sample 1000362 (hole NBAC047, 17–18 m interval) comprises
anomalous Fe2O3 (4.5 wt.%) and contains 20 wt.% smectite, while goethite was not detected
by XRD.

3.2. Mineral and Chemical Relationships

Since halloysite and kaolinite are formed from the weathering of granite, it is important
to identify samples that are not completely weathered or have been affected by other
processes. After completing exploratory data analysis, considering chemical, mineralogical,
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and spatial parameters, it was apparent that samples with low LOI are typically adjacent to
the lower contact with the granite (Figure 2) and represent incompletely weathered granite.
Therefore, an LOI cut-off of <8.75% was selected based on the probability plot (Figure 5a).
The samples with LOI <8.75% typically contained greater amounts of SiO2 (Figure 5b)
and the least kaolinite (Figure 5c). This is consistent with the breakdown of K-feldspar to
kaolinite during intense weathering occurring via reaction 1, which produces 4SiO2 and
2K+. If SiO2 was not leached away, it would follow that these samples were enriched in
that element, and that if SiO2 was not leached away, then K may not have been either; these
samples may be higher in muscovite and illite (Figure 5d). Most of the samples that are
highest in SiO2 are located near the lower contact with the granite (Figure 2); however,
some are found higher up the weathering profile. Some SiO2-rich units are midway up the
profile, which may represent small silcrete units, and some are at or near the surface, which
may represent sands.
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Halloysite and kaolinite have a strong negative relationship (Figure 5e), and they
dominate many of the samples, with only a small additional component of ~2% SiO2
present in the most clay-rich samples. The samples with LOI <8.75% do not fall on the
trend and are anomalously low in LOI compared with the rest of the population. Finally,
the samples with low LOI typically have higher Na contents (Figure 5f), which corresponds
to high albite in these samples. The presence of albite in these samples is consistent with
trends in the regional magnetic data of magnetic ridges (structures), being associated with
the areas of highest halloysite concentration. Around these structures, there may be some
hydrothermal alteration (including albite) of the granite.

Samples with an LOI <8.75% were excluded from ML prediction, as they do not repre-
sent fully weathered granite and, thus, should not be included in that domain (Figure 5a,c).

3.3. FTIR Spectra

Spectra recorded by FTIR provide information on the chemical composition and
features of the mineralogical samples. Some of the FTIR spectra have been investigated
in detail to discriminate halloysite from kaolinite and compare the spectra with the USGS
spectral library and literature [42]. Halloysite-rich samples have greater H2O intensities in
the 1900 nm range relative to pure kaolinite samples (Figure 6a), which is expected due to
the interlayer water component in halloysite [43]. This effect is even more pronounced in
the reference spectra showing pure mineral concentrates (Figure 6b). Absorption features
for the H2O intensity in the analysed samples in this study are consistently shifted to lower
wavelengths for halloysite-rich samples (~1912 nm) relative to pure kaolinite-rich samples
(~1915 nm; Table 1). Moreover, the absorption features and shapes of the OH-stretching
bands differ between pure kaolinite and kaolinite–halloysite mixtures. In the latter, the
OH-doublet absorption feature is ~70% further apart compared with pure kaolinite (see
inset in Figure 6a). The absorption feature for the second OH-intensity is also consistently
shifted by 1 nm (Table 1). The absorption feature shapes of the intensities at ~2700 nm are
also susceptible to the halloysite/kaolinite ratio (cf. Figure 6a,b), with narrower features
encountered for halloysite-rich samples. The described differences within the 500–3000 nm
spectral range observed in Figure 6 are picked up in detail by the machine-learnt model.
For the machine-learnt model, the spectral range of 350–44,701.59 nm was considered.

3.4. Kaolinite Machine-Learnt Model

Multiple models were assessed to identify the best approach to predict kaolinite (wt.%)
from Fe2O3 (wt.%), Al2O3 (wt.%), SiO2 (wt.%), TiO2 (wt.%), CaO (wt.%), K2O (wt.%), Na2O
(wt.%), MgO (wt.%), P (wt.%), LOI (wt.%), brightness, and FTIR spectra from 350–44,701.59
nm. To assess the model performance, the mean absolute error (MAE) was used along with
the R2. The MAE is a measure of how big an error can be expected from the forecast on
average and is robust to data with outliers. In ML, negative MAE is used for optimisation,
with a value of 0 representing no errors. Models are ranked from best to worst in the table
below (Table 2). The ML ensemble model provided the best prediction performance. In
contrast, the other six models (RLS, EN, Lasso, RR, OLS, and EN PCA 5) produced simpler,
easily explainable models, but with lower accuracy (Table 2). The high dimensional data
used for modelling here, in which the number of features (p) is much larger than the
number of observations (n), is handled much better by the ML algorithms, which can
analyse high dimensional non-linear systems much better than the rest of the modelling
methods. The ML ensemble model evaluation was completed by shuffled K-fold model
cross-validation (K number of splits = 10, repeats = 3) of the test data (20% of the full
dataset). Boxplots of these results are presented in Figure 7.



Minerals 2021, 11, 1350 13 of 19

Minerals 2021, 11, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. (a) Extracts of representative FTIR spectra from the project for samples 1000405 (98 wt.% 
kaolinite) and 1000764 (51 wt.% kaolinite, 44 wt.% halloysite). Note the differences in the H2O in-
tensities and OH-doublets. The inset illustrates the OH stretching band intensity ratio (c.f. [31]); (b) 
reference spectra from the USGS spectral library [42], for kaolinite (splib07a rec = 6043) and hal-
loysite (splib07a rec = 4695). 

3.4. Kaolinite Machine-Learnt Model 
Multiple models were assessed to identify the best approach to predict kaolinite 

(wt.%) from Fe2O3 (wt.%), Al2O3 (wt.%), SiO2 (wt.%), TiO2 (wt.%), CaO (wt.%), K2O (wt.%), 
Na2O (wt.%), MgO (wt.%), P (wt.%), LOI (wt.%), brightness, and FTIR spectra from 350–
44,701.59 nm. To assess the model performance, the mean absolute error (MAE) was used 
along with the R2. The MAE is a measure of how big an error can be expected from the 
forecast on average and is robust to data with outliers. In ML, negative MAE is used for 
optimisation, with a value of 0 representing no errors. Models are ranked from best to 
worst in the table below (Table 2). The ML ensemble model provided the best prediction 
performance. In contrast, the other six models (RLS, EN, Lasso, RR, OLS, and EN PCA 5) 
produced simpler, easily explainable models, but with lower accuracy (Table 2). The high 
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intensities and OH-doublets. The inset illustrates the OH stretching band intensity ratio (c.f. [31]);
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halloysite (splib07a rec = 4695).

Table 1. List of the absorption feature positions of assigned bands of pure kaolinite samples (k) and
mixtures of kaolinite and halloysite with up to 44 wt.% halloysite (k + h).

Sample Mineralogy OH-Doublet (nm) H2O (nm) Al-OH-Doublet (nm)

1000681 k 1395 1415 1915 2163 2208
1000405 k 1395 1415 1914 2163 2208
1000679 k 1395 1415 1915 2162 2208
1000601 k + h 1395 1414 1913 2163 2208
1000735 k + h 1395 1414 1912 2163 2208
1000764 k + h 1395 1414 1912 2162 2208
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Table 2. Results of the kaolinite models.

Model R2 MAE Description of Models

ML ensemble 0.97 −0.052 Ensemble ML: create multiple models and then combine them to produce
improved results.

RLS 0.85 −0.076 ML to derive most important features followed by robust least squares

EN 0.65 −0.081 ML to derive most important features followed by elastic net regularisation

Lasso 0.65 −0.082 ML to derive most important features followed by lasso regression regularisation

RR 0.64 −0.082 ML to derive most important features followed by ridge regression regularisation

OLS 0.65 −0.082 ML to derive most important features followed by ordinary least squares

EN PCA 5 0.47 −0.104 Principal component analysis on all features followed by elastic net regularisation
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Ensemble methods are techniques that create multiple models and then combine them
to produce improved results. Ensemble methods usually produce more accurate solutions
than a single model would. For the final voting algorithm (Figure 7), weighted averaging
of the base models is used. Weighted averaging is a slightly modified version of simple
averaging, where the prediction of each base model is multiplied by the weight, and then,
the average is calculated for the voting model. This method often reduces overfit and
creates a smoother regression model. On this basis, the ML ensemble is the preferred
approach to predict the kaolinite abundance.

The comparison of the kaolinite (wt.%) measured by XRD and predicted kaolinite
(wt.%) by the ML ensemble is presented in Figure 8; it has an excellent R2 = 0.97 and an
MAE of −0.052. The R2 and MAE of all the models tested are summarised in (Table 2).
It is important to note that the R2 of 0.97 was only achieved by combining all techniques
in the ML ensemble (FTIR, XRF, LOI, and brightness data). When solely employing FTIR
data, the R2 is 0.93, suggesting that FTIR is the key technique to predict the mineral
abundance. However, without the input of XRF, LOI, and brightness data, the prediction is
not as robust.
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3.5. Halloysite Machine-Learnt Model

The halloysite ML ensemble model uses the output from the kaolinite ML ensemble
model above (along with XRF data, LOI, brightness, and FTIR spectra—analogous to 3.4)
to predict the halloysite percentages. The training data for halloysite were set at halloysite
>5 wt.%, where the quantification of halloysite by XRD should be reliable. The model has
an excellent R2 = 0.96 (Figure 9) and an MAE =−0.6 (Figure 10). Boxplot results of repeated
shuffled K-fold model cross-validation (K number of splits = 10, repeats = 3) of test data
(20% of the full dataset) are presented in Figure 10. Based on the significantly improved
performance of the ML ensemble approach to model kaolinite, only this approach was
used to predict halloysite abundance.
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4. Discussion and Implications

The goal of this study was to improve the quantification of kaolinite and halloysite
(the two main clay minerals present at Noombenberry) by using ML and FTIR, chemical,
and brightness data. The FTIR technique requires minimal sample preparation and is more
cost and time effective than XRD. To accurately differentiate halloysite from kaolinite by
XRD requires chemical and physical treatment prior to the XRD analyses; small quantities
of halloysite are further challenging to detect in kaolinite-rich samples due to overlapping
peaks in XRD patterns [2]. Conversely, FTIR requires minimal sample preparation and
is considered more cost and time effective than XRD; the individual intensities in FTIR
spectra of multimineral analyses can contain information on mineral abundances [10,13].

Previous studies have demonstrated the effectiveness of FTIR to quantify kaolinite
and halloysite and have highlighted the benefits of FTIR over XRD when concentrations
of kaolinite and halloysite in samples are low [2,13,15]. Researchers recently started im-
plementing ML on mineral quantification based on spectral data [11,17–19]. For example,
hyperspectral data collected on drill core samples paired with hierarchical density-based
clustering algorithms were reported to assist in the rapid identification of differing litholo-
gies, alteration, and/or weathering overprints [12]. However, to our knowledge, ML has
not been previously used to predict halloysite and kaolinite abundance in clay samples.

Combining the FTIR technique with brightness analyses and XRF data and imple-
menting ML algorithms resulted in an exceptional prediction of kaolinite (R2 = 0.97 and an
MAE of −0.052) and halloysite (R2 = 0.96 and an MAE = −0.6) when compared with XRD
quantification. The trained models for both kaolinite (wt.%) and halloysite (wt.%) have
been saved and can be used on new chemical and FTIR spectral data for the prediction
of kaolinite and halloysite abundance. Exploratory data analysis of the dataset from the
project considered chemical, mineralogical, and spatial parameters and demonstrated that
samples that have low LOI are typically adjacent to the lower contact with the granite and
represent incompletely weathered granite. A cut-off of LOI < 8.75% was selected based on
the probability plot, and samples with an LOI < 8.75% were excluded from ML prediction;
these samples (4.2% of the dataset) were excluded from further analyses.

The comparisons between the ML ensemble model prediction and the XRD data for
kaolinite and halloysite clearly illustrate the effectiveness of combining the XRD, brightness,
and FTIR data with ML algorithms. If the FTIR approach is to be used to quantify kaolinite
and halloysite abundance in new samples, a subset (e.g., 5%) of these samples should be
sent for XRD analysis to provide additional training data as new parts of the deposit are
drilled, and/or to provide an independent (umpire) check on the predicted kaolinite and
halloysite values.

The QQ plots (Figures 8 and 9) reveal a bias with low kaolinite abundances having
higher predicted abundances than measured (average bias of ~10% below 60 wt.%); cor-
respondingly, high predicted halloysite abundances are slightly higher than measured
halloysite abundances. Most of the samples examined in this dataset (85%) have kaolinite
abundances >65 wt.% and <7% halloysite. At these abundances, the ML prediction is
robust, as highlighted by the excellent R2 values for the comparison between predicted
and measured values. The lack of high halloysite samples that would enable the prediction
to be robust at these abundances could be addressed through additional targeted sam-
pling; to add more high-halloysite, low-kaolinite samples to the population, the models
can then be regenerated. This approach is preferable to any synthetic up-sampling or
down-sampling approach to deal with the distribution of the population used to train
models. Any modelling approach will always be limited by the data available, and the
present case is no different.

The methodology described in this paper provides a cost-effective alternative to
traditional methodologies to quantify kaolinite and halloysite abundances. It may be
possible to directly use the models developed here at other kaolinite–halloysite projects.
However, new training data should be collected, and new models generated.
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