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Abstract: Edge enhancement is a frequently used transformation of potential field data. Its goal is
to sharpen the position of the subsurface structures. Here we propose a new method to enhance
the edges of the sources causing the potential anomalies called normalized Harris filter (NHF),
which is based on the Harris filter and amplitude balance. Three synthetic data sets are used to
evaluate the performance of the proposed approach. The presented approach provides a better
estimation of the sources’ edges when compared to the other methods. The proposed method is
robust to noisy data and can avoid the generation of artificial edges, thereby reducing the ambiguity
of interpretation. The testing on real data set from the Yili basin in Northwestern China demonstrates
that the new approach highlights several anomalies not shown in the geological map or other
methods. The proposed approach also shows the advantages of gradually enhancing the edges of the
deep-seated structure. The results demonstrate that the proposed approach may be a better detector
in qualitatively determining the edges of sources causing potential field data.

Keywords: gravity; magnetic; edge detector; potential field

1. Introduction

Potential field data contains all the signals from geological bodies with different
locations and geometries and has a volume effect. Many data processing techniques have
been developed to facilitate the interpretation. In recent years, edge enhancement has
received increasing attention, benefiting from its simplicity and effectiveness. The main
purpose of edge enhancement is to delineate the edges and positions of the subsurface
structures. The most popular edge detectors are total horizontal derivative [1] (THD,
Equation (1)), tilt angle [2] (TA, Equation (2)), THD of tilt angle [3] (THDT, Equation (3)),
theta map [4] (theta, Equation (4)), the tilt angle of the THD [5] (TAHG, Equation (5)),
the tilt angle of the analytic signal amplitude [6] (TASA, Equation (6)). The approaches
mentioned above have been evaluated in many works [7–11]. In addition to THD, other
approaches involve calculating the vertical derivative or second-order derivative of the
potential field data, which causes the amplified noise in the data. Therefore, it is necessary
to perform denoising before or after the derivative process.

THD =

√(
∂ f
∂x

)2
+

(
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where f denotes the potential field data.
Image processing techniques have been widely used in geophysics. For example,

Ref. [12] employed sun shading to extract the features from potential field data. Ref. [13]
used the Sobel filter to detect the fault and salt boundary. Ref. [14] used the 2D Gabor
filter on the magnetic data to interpret the subsurface lineaments. Ref. [15] used the Canny
filter [16] to perform the edge-guided full-waveform inversion. Ref. [17] employed phase
congruency to detect lineaments embedded in magnetic data. The Harris filter [18,19]
provides strong invariance to rotation, scaling, and noise. It has been widely used in many
scientific areas based on image processing techniques, such as camera calibration [20],
image stitching [21], and unstructured finite-element meshing [22].

In this work, we employ the Harris filter to detect the edges of the subsurface structures
from potential field data. Amplitude balance is applied to equalize the response from the
sources at different depths. Depth scales can range from kilometers to meters, depending
on the resolution of the data. Source edges are characterized by maxima of the normalized
Harris filter (NHF) response. The NHF will be evaluated using three synthetic data sets.
The capabilities of NHF to handle noisy data and complex sources are described. Finally,
we apply the NHF to real gravity data from the Yili basin.

2. Normalized Harris Filter
2.1. The Harris Filter

Following [18], the change E in the potential field data f (with a size of m× n) produced
by a small shift (u, v) is given by (details are provided in Appendix A)

E = Au2 + 2Cuv + Bv2

= (u, v)M(u, v)T (8)

where the local structure matrix M is defined by:

M =

(
A C
C B

)
(9)

The horizontal derivatives A and B, and diagonal derivative C are defined as:
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and:

C =
n

∑
i=1

(
∂ f
∂x
· ∂ f

∂y

)
(12)

where n corresponds to the number of neighbors in the four directions (along the row,
column, and diagonals) of f within the small shift.

The response function R of the Harris filter is defined as:

R = Det(M) + µ · Tr2(M) (13)

where Det represents the determinant of M and Det(M) = AB − C2; Tr represents the trace
of M and Tr(M) = A + B; µ is a user-specified parameter, which defines the sharpness or
smoothness of the response function R and µ ∈ [0, 1]. The Harris filter response of the f can
be stored in a grid R in the same size as f :

R =


R1,1 R1,2 · · · R1,n
R2,1 R2,1 · · · R2,n

...
...

...
...

Rm,1 Rm,2 · · · Rm,n

 (14)

A moving window of size 3 × 3 and Equation (13) are employed to compute the
elements of the R. The edge/corner areas are determined by the amplitude of the elements
in R. If Rij is a local maximum within its neighbors, Rij will be considered as a candidate of
edge/corner.

2.2. Amplitude Balance

Although the local maxima of R can delineate edges of the source, their amplitudes
vary greatly. We employ a multi-step normalization technique to balance the amplitude of
the local maxima of R. Thus; all edges are featured by a fixed value of 1.

(i) Pick out the local maxima of R

We adopt the method of [23] to pick out the local maxima of R. The method compares
each Ri,j (except the marginal rows and columns, i ∈ [1, m] and j ∈ [1, n]) and its eight
nearest neighbors in four directions (along rows, columns, and two diagonals). If Ri,j is
greater than its neighbors in at least two directions, it is regarded as a candidate of local
maximum [24].

(ii) Threshold of the local maxima

Some local maxima can be named as invalid, while they produce artifacts (false edges)
in the solutions. Therefore, threshold processing is necessary to suppress the local maxima
related to noise. If a local maximum is less than the threshold

threshold = λ·max(R) (15)

it will be disqualified from the candidate of the local maximum. In theory, λ is limited to
between 0 and 1. For different data sets, the optimal value of λ may be different.

(iii) Calculate the upper envelope surface of the R

We employ the local maxima above the threshold to interpolate the upper envelope
surface, and the natural neighborhood method [25] is used. For the upper envelope surface
boundary, we increase their values by 0.1 times the maximum of R. This will most likely
guarantee that the upper envelope surface is always above R.

(iv) Normalize R using upper envelope surface

The normalized Harris filter (NHF) response is the ratio of R to the upper envelope
surface, and its maxima (with a fixed value of 1) represent the source edges.
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3. Synthetic Data

This section applies the proposed approach to three synthetic data sets to evaluate its
performance. All derivatives are calculated in the frequency domain. Three scenarios are
considered as follows:

3.1. The Single Parallelepiped

We have generated a single parallelepiped located at a depth of 20 m to assess the
feasibility of the proposed approach. Figure 1a shows the noise-free gravity anomaly (with
a grid interval of 10 m) produced by the parallelepiped with a density of 1.0 g/cm3, where
the black lines indicate the actual edges.
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= 200 m; width = 50 m; thickness = 100 m) with their tops located at depths 10 m (A), 20 m 
(B), and 30 m (C), and separated by distances of 200 m. The prisms are in the geomagnetic 
field: inducing field intensity B = 54,491 nT, direction (D, I) = (0°, 90°), and magnetic sus-
ceptibility of A, B, and C are 0.02 SI, −0.02 SI, and 0.02 SI, respectively. Figure 2a shows 
the magnetic anomalies of three prisms. We chose seven frequently used approaches to 
compare the results. They are THD [1], tilt angle [2], sun shading [12], THDT [3], theta 
map [4], TAHG [5], and tilt–ASA [6]. To reduce the long-tailed histogram of THD, we plot 
the square root of THD in this and the following sections. 

Figure 1. (a) Gravity anomaly of a single parallelepiped with a depth of 20 m and a density of
1.0 g/cm3. Harris filter response of the synthetic gravity anomaly in Figure 1a with µ value of
(b) 1.0 × 10−5, (c) 1.0 × 10−4, (d) 1.0 × 10−3, (e) 1.0 × 10−2, (f) 0.1 and (g) 1.0. (h) NHF response
with λ = 0. The black lines outline the true edges.

Figure 1b–g show the Harris filter response of the data in Figure 1a with different
empirical parameters µ. All corners and edges are characterized by local maxima. Fur-
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thermore, a small µ value allows the Harris filter to detect only the sharpest corners of the
source (Figure 1b–d), and as the µ value increases, edges of the source are detected. When
µ equals 0.1 and 1.0, the edges of the source can be clearly observed (Figure 1f,g). Figure 1h
shows the NHF response. It demonstrates that the NHF response is amplitude balanced,
and maxima characterize the edges. In general, when the application of interest is edge
detection, high µ is preferred. Based on the above results and the knowledge from [18], we
set the value of µ in the following examples to 1, unless otherwise noted.

3.2. Three Prisms

To further examine the proposed approach’s capability, we employ a model con-
sisting of three prisms located at different depths [5]. The prisms have the same size
(length = 200 m; width = 50 m; thickness = 100 m) with their tops located at depths 10 m (A),
20 m (B), and 30 m (C), and separated by distances of 200 m. The prisms are in the geomag-
netic field: inducing field intensity B = 54,491 nT, direction (D, I) = (0◦, 90◦), and magnetic
susceptibility of A, B, and C are 0.02 SI, −0.02 SI, and 0.02 SI, respectively. Figure 2a shows
the magnetic anomalies of three prisms. We chose seven frequently used approaches to
compare the results. They are THD [1], tilt angle [2], sun shading [12], THDT [3], theta
map [4], TAHG [5], and tilt–ASA [6]. To reduce the long-tailed histogram of THD, we plot
the square root of THD in this and the following sections.
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THD, tilt angle, THDT, theta map, TAHG, tilt–ASA, and the sun shading response of the 
data in Figure 2a. Figure 3 presents profile data (the location is shown in Figure 2a with a 
red line) to provide insightful details. THD is presented by maxima at the edges of the 
sources, and the strength of the THD is gradually attenuated with depth. The tilt angle 
equalizes the response from the anomalies at different depths, and the zero values of the 
tilt angle can be used to trace the edges [26]. However, there are some erroneous edges 
between different prisms. THDT delineates the edges by maxima, but the amplitude of 
THDT decreases as the source’s depth increases. Also, some wrong edges pollute the map. 
Theta map produces the edges of sources by maxima; however, for deep sources, the max-
ima are shifted out from the actual edges, making the sources appear bigger than they are. 
Similar to THDT, erroneous edges appeared in the results of the theta map. The TAHG 
balances the response of sources from different depths and shows maxima at the edges of 
the sources, as expected for TAHG that uses second-order derivatives. Like the tilt-angle, 
the tilt-ASA displays the edges with zero values [6]. The sun shading presents the minima 
at the edges of the sources, and its strength gradually decreases with depth. In the 

Figure 2. (a) Magnetic anomalies of three prisms with depths of 10 m (A), 20 m (B), and 30 m (C).
TMI: inducing field intensity B = 54491 nT, direction (D, I) = (0◦, 90◦), and magnetic susceptibility
0.02 SI (A), −0.02 SI (B), and 0.02 SI (C). (b) The square root of THD of the data in (a). (c) Tilt angle of
the data in (a). The dotted lines present zero contours. (d) THDT of the data in (a). (e) Theta map
of the data in (a). (f) TAHG of the data in (a). (g) Tilt–ASA of the data in (a). (h) Sun shading using
an elevation angle of 90◦. (i) NHF response of the data in (a) (with λ = 10−3). The black rectangles
outline the true edges.

We assess the proposed approach’s performance to detect edges from anomalies with
different amplitudes and compare the results with other approaches. Figure 2b–h show
THD, tilt angle, THDT, theta map, TAHG, tilt–ASA, and the sun shading response of the
data in Figure 2a. Figure 3 presents profile data (the location is shown in Figure 2a with
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a red line) to provide insightful details. THD is presented by maxima at the edges of the
sources, and the strength of the THD is gradually attenuated with depth. The tilt angle
equalizes the response from the anomalies at different depths, and the zero values of the
tilt angle can be used to trace the edges [26]. However, there are some erroneous edges
between different prisms. THDT delineates the edges by maxima, but the amplitude of
THDT decreases as the source’s depth increases. Also, some wrong edges pollute the
map. Theta map produces the edges of sources by maxima; however, for deep sources,
the maxima are shifted out from the actual edges, making the sources appear bigger than
they are. Similar to THDT, erroneous edges appeared in the results of the theta map. The
TAHG balances the response of sources from different depths and shows maxima at the
edges of the sources, as expected for TAHG that uses second-order derivatives. Like the
tilt-angle, the tilt-ASA displays the edges with zero values [6]. The sun shading presents
the minima at the edges of the sources, and its strength gradually decreases with depth. In
the implementation of NHF, we set λ to 10−3. It is found that the NHF response clearly
and focused characterizes edges of sources at different depths.
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Figure 3. (a) The square root of THD. (b) Tilt angle, the red line shows the position where the tilt
angle is zero. (c) THDT. (d) Theta map. (e) TAHG. (f) Tilt–ASA. (g) Sun shading using an elevation
angle of 90◦. (h) NHF response (with λ = 10−3). (i) HF response and its upper envelope (red line).
(j) Profile data (the location is shown by a red line in Figure 2a). (k) A depth section of three prisms.
Green dashed lines indicate the actual edges of the susceptibility bodies.
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Noise is an unavoidable factor in interpreting real field data. Figure 4 shows the
robustness of different approaches to noisy data. Figure 4a shows the magnetic anomaly
in Figure 2a by adding independent Gaussian noise. Noise is added to data with the
following equation:

dn
i = di + normrnd(mu, std) (16)

with:
std = (dmax − dmin) · percent
mu = 0

(17)

where dn
i is the noisy datum; di is the noise-free datum; normrnd is the Matlab built-in

function, which generates a random number from the normal distribution with mean
parameter mu and standard deviation parameter std; dmin is the minimum value of noise-
free data; dmax is the maximum value of noise-free data. The percent is set to 2% in the noisy
data test.
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Figure 4 displays the results of the noisy data test. Figure 5 shows a depth section of 
the synthetic model and responses of different edge detectors. In general, all results are 
affected by the noise, and as the source depth increases, this effect becomes more serious. 
Specifically, Figure 4b shows that THD is less sensitive to noise. The tilt angle map equal-
izes the anomaly amplitudes, and it is less sensitive to noise than THDT, theta map, 
TAHG, and tilt–ASA. The edges recognized by the THDT are very blurred. The theta map 
can only roughly identify the edges of the sources. TAHG and tilt–ASA are particularly 
sensitive to noise and can almost only reflect the edge of a shallow source. Sun shading is 
less sensitive to the noise, and the recognition effect deteriorates as the source depth in-
creases. Figure 4i shows the NHF response (λ = 1.2 × 10−2), and its maxima outline the 
sources’ edges. It shows that the proposed approach is capable of handling noisy data. 

Figure 4. (a) Magnetic anomaly in Figure 2a by adding 2% Gaussian noise. (b) The square root of THD
of the data in (a). (c) Tilt angle of the data in (a). The dotted lines present zero contours. (d) THDT of
the data in (a). (e) Theta map of the data in (a). (f) TAHG of the data in (a). (g) Tilt–ASA of the data in
(a). (h) Sun shading using an elevation angle of 90◦. (i) NHF response with λ = 1.2 × 10−2. The black
rectangles outline the true edges.

Figure 4 displays the results of the noisy data test. Figure 5 shows a depth section of
the synthetic model and responses of different edge detectors. In general, all results are
affected by the noise, and as the source depth increases, this effect becomes more serious.
Specifically, Figure 4b shows that THD is less sensitive to noise. The tilt angle map equalizes
the anomaly amplitudes, and it is less sensitive to noise than THDT, theta map, TAHG, and
tilt–ASA. The edges recognized by the THDT are very blurred. The theta map can only
roughly identify the edges of the sources. TAHG and tilt–ASA are particularly sensitive to
noise and can almost only reflect the edge of a shallow source. Sun shading is less sensitive
to the noise, and the recognition effect deteriorates as the source depth increases. Figure 4i
shows the NHF response (λ = 1.2 × 10−2), and its maxima outline the sources’ edges. It
shows that the proposed approach is capable of handling noisy data.
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Figure 5. (a) The square root of THD. (b) Tilt angle. The red line shows the position where the tilt
angle is zero. (c) THDT. (d) Theta map. (e) TAHG. (f) Tilt–ASA. (g) Sun shading using an elevation
angle of 90◦. (h) NHF response (with λ = 1.2 × 10−2). (i) HF response and its upper envelope (red
line). (j) Profile of noisy data (the location is shown by a red line in Figure 3a). (k) A depth section of
three prisms. Green dashed lines indicate the actual edges of the susceptibility bodies.

To illustrate the choice of parameters, we change λ for noisy data tests. Figure 6 shows
the NHF response of the data in Figure 4a with different parameters. A small λ value can
cause erroneous edges related to noise, and a large λ value can suppress the noise effect. In
this case, an λ of 1.2 × 10−2 produces satisfactory results (Figure 4i). This is a benefit of the
proposed approach because it can be adapted to handle noise data.

3.3. The Bishop Model

We use the Bishop model’s magnetic anomaly to illustrate the proposed approach’s
performance in the case of complex sources. Various authors have used the Bishop model
to test approaches of estimating source depths using magnetic data [27–29]. Figure 7a
displays the magnetic anomalies for a basement susceptibility varying from 1.26 × 10−2 to
1.0 × 10−1 SI units and an ambient geomagnetic field with strength 50,000 nT, declination
0◦, and inclination 90◦.
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Figure 8. (a) Tectonic units in Yili basin (after [31]). The black rectangle indicates the study area. (b) 
Simplified geological structure of the study area (after [30]), the red lines and blue lines indicate two 
possible structural divisions. 

Figure 7. (a) The magnetic anomaly of the Bishop model. (b) The square root of THD of the data
in (a). (c) Tilt angle of the data in (a). The dotted line presents the zero contour. (d) THDT of
the data in (a). (e) Theta map of the data in (a). (f) TAHG of the data in (a). (g) Tilt–ASA of
the data in (a). (h) Sunshading using an elevation angle of 90◦. (i) NHF response of the data in
(a) (with λ = 1.0 × 10−3). (j) NHF response of the data in (a) (with λ = 1.0 × 10−6). (k) NHF response
of the data in (a) (with λ = 1.0 × 10−9). (l) NHF response of the data in (a) (with λ = 0).

The THD, tilt angle, THDT, theta map, TAHG, tilt–ASA, and sun shading are shown
in Figure 7b–h, respectively. It can be seen that all approaches generate the main features of
shallow sources. Among them, TAHG provides improved structural details yet contains
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very little information for deep structures (the southeast part of the figure). We can also
find that tilt-ASA shows some striped artifacts in the east and south parts of the figure.
Figure 7i–l show the NHF responses with different choices of λ. As λ decreases, we can
enhance our understanding of the edges of subsurface structures. Specifically, the NHF
response generated by the large λ corresponds to the edges of the main structures, and the
small λ can extract the edges associated with the minor structures.

4. Field Gravity Data from Yili Basin

We will now discuss applying the proposed approach to gravity data collected from
Xinjiang, northwestern China (Figure 8a). The study area is located in the middle portion
of the Yili Basin, centered on the Baishidun sub-high, covering an area of about 1200 km2.
Tectonic units in the study area include Awulela high, Baishidun sub-high, Gongliu sub-sag,
Southern ramp region, and Wusunshan uplift. The geological structure map of the study
area is given in Figure 8b. The red lines indicate the structures inferred from the historical
geophysical data, while the blue lines present the structures deduced from newly collected
gravity data [30]. There is no clear understanding of the structural edges of the study area.
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Figure 8. (a) Tectonic units in Yili basin (after [31]). The black rectangle indicates the study area.
(b) Simplified geological structure of the study area (after [30]), the red lines and blue lines indicate
two possible structural divisions.

The gravity data has been gridded in 500 m intervals. Figure 9a shows the Bouguer
anomaly of the study area. Similar to the previous sections, we compare the proposed
approach with other approaches, and the results are shown in Figure 9b–h. From Figure 9,
we can see that these approaches enhance the main structures. However, it shows that the
TAHG and tilt-ASA carry severe striped artifacts because they all use high-order derivatives,
and the calculation of high-order derivatives is easily affected by the conflicting information
contained in the actual data [32]. The proposed approach (with λ = 10−5) produces focused
results (Figure 9i) and clarifies the structures.
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Figure 9. (a) Bouguer anomaly of the study area. The black dots denote the location of the gravity
stations. (b) The square root of THD of the data in (a). (c) Tilt angle of the data in (a). The dotted line
presents the zero contour. (d) THDT of the data in (a). (e) Theta map of the data in (a). (f) TAHG
of the data in (a). (g) Tilt–ASA of the data in (a). (h) Sun shading using an elevation angle of 90◦.
(i) NHF response of the data in (a) (with λ = 10−5). The black lines outline the known structures (blue
lines in Figure 8b).

When comparing the NHF response (Figure 9i) with known geological structures
(Figure 8b), edges of the Awulela high, the Wusunshan uplift, the Gongliu sub-sag, and the
Southern ramp region are consistent with the blue lines in Figure 8b. Some minor structures
(white solid ellipses in Figure 9i) in the Wusunshan uplift and Baishidun sub-high are
compatible with red lines in Figure 8b. These results suggest that edge enhancement can
bridge the gap between different prior information. Structures in the Baishidun sub-high
(white dashed ellipses in Figure 9i) are identified in the NHF response but not marked on
the geological map (Figure 8b); this means that edge enhancement can help the interpreter
enrich the knowledge of subsurface structures.

5. Conclusions

In this study, the applicability of NHF to potential field data is shown to enhance the
edges of the subsurface structures. The edges are identified by fixed value 1 in the NHF
response. The NHF involves an adjustable parameter λ. The choice of λ depends on the
quality of the potential field data. When data quality is poor, a higher λ is required to
obtain an interpretable result (Figures 4 and 6). When the data quality is acceptable, λ can
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be adjusted to enhance the understanding of edges from different structures (Figure 7). In
this case, NHF can be regarded as a gain-controlled edge detector.

The proposed approach has been tested using three synthetic data sets. For the single
parallelepiped example, we have demonstrated that setting the empirical parameter µ to
1 can improve the sensitivity of NHF to the source edges. For three prisms example, the
effectiveness of the NHF for sources at different depths is illustrated. Furthermore, the
results show that a larger λ can aid the NHF against noise. For magnetic data caused by
the Bishop model, we present the capability of NHF as a gain control edge detector. In the
case of complex sources, NHF can enhance our understanding of the edges of different
sources. Finally, the proposed approach was applied to the gravity data collected in the
Yili Basin. The results are compared with previous studies, and it can be seen that edge
enhancement is a valuable tool for characterizing structural edges.
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Appendix A

Derivation of Equation (8).
The change E in the potential field data caused by a small shift (u, v) is defined as:

E(u, v) = ∑ [ f (x + u, y + v)− f (x, y)]2 (A1)

where f is the potential field data, with the Taylor series expansion, we have:

f (x + u, y + v) = f (x, y) +
∂ f
∂x

u +
∂ f
∂x

v + O
(

u2, v2
)

(A2)

where ∂ f
∂x and ∂ f

∂y are partial derivatives of the f in x and y directions. Bringing Equation (A2)
into Equation (A1):

E(u, v) = ∑
[

∂ f
∂x

u +
∂ f
∂x

v + O
(

u2, v2
)]2

(A3)

https://github.com/GeoGoku/EdgeEnhancement
https://github.com/GeoGoku/EdgeEnhancement
https://software.seg.org/2008/0001/
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Ignoring the high-order terms, the Equation (A3) becomes:

E(u, v) ≈ ∑
[

∂ f
∂x u + ∂ f

∂y v
]2

= ∑
((

∂ f
∂x

)2
u2 + 2 ∂ f

∂x
∂ f
∂y uv +

(
∂ f
∂y

)2
v2
)

= ∑
[

u v
]

(
∂ f
∂x

)2 ∂ f
∂x

∂ f
∂y

∂ f
∂x

∂ f
∂y

(
∂ f
∂y

)2

[ u
v

]

=
[

u v
]∑


(

∂ f
∂x

)2 ∂ f
∂x

∂ f
∂y

∂ f
∂x

∂ f
∂y

(
∂ f
∂y

)2


[ u

v

]

=
[

u v
]
M
[

u
v

]

(A4)

with:

M =

 ∑
(

∂ f
∂x

)2
∑ ∂ f

∂x
∂ f
∂y

∑ ∂ f
∂x

∂ f
∂y ∑

(
∂ f
∂y

)2

 (A5)
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