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Abstract: A multitude of applications in engineering, ore processing, mineral exploration, and
environmental science require grain recognition and the counting of minerals. Typically, this task
is performed manually with the drawback of monopolizing both time and resources. Moreover, it
requires highly trained personnel with a wealth of knowledge and equipment, such as scanning
electron microscopes and optical microscopes. Advances in machine learning and deep learning
make it possible to envision the automation of many complex tasks in various fields of science at
an accuracy equal to human performance, thereby, avoiding placing human resources into tedious
and repetitive tasks, improving time efficiency, and lowering costs. Here, we develop deep-learning
algorithms to automate the recognition of minerals directly from the grains captured from optical
microscopes. Building upon our previous work and applying state-of-the-art technology, we modify
a superpixel segmentation method to prepare data for the deep-learning algorithms. We compare
two residual network architectures (ResNet 1 and ResNet 2) for the classification and identification
processes. We achieve a validation accuracy of 90.5% using the ResNet 2 architecture with 47 layers.
Our approach produces an effective application of deep learning to automate mineral recognition
and counting from grains while also achieving a better recognition rate than reported thus far in the
literature for this process and other well-known, deep-learning-based models, including AlexNet,
GoogleNet, and LeNet.

Keywords: grain segmentation; deep learning; convolutional neural networks; ResNet; mineral
recognition

1. Introduction

The advent of machine learning and automated classification has demonstrated the
potential of technology in many fields, such as medical/health, legal, transportation, and
mining [1–6]. For example, in exploration geology and mining, the process of identifying
economic minerals has always been done manually, where a specialized and trained
individual (a mineralogist) is required to identify minerals grains, such as gold, diamond
indicator minerals, or sulfides, to discover new deposits [7–9]. This manual process has
many limitations, including errors in identification and mineralogist fatigue and its time-
consuming and, hence, costly [10]. Moreover, trained mineralogists are able to count
around 60 grains per minute without distractions to provide grain percentage rather than
the more useful area percentage [11]. With new advances in technology, mineral grain
identification and counting can now be performed using optical microscopy and scanning
electron microscopy (SEM). However, even with SEM technology, the process remains
expensive and time consuming. A scanning electron microscope costs between USD 0.5
and USD 2 million and requires highly qualified personnel to operate.
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Nevertheless, the process of identifying and counting mineral grains in sands or
sediments is a crucial step for many mineral exploration and engineering projects, environ-
mental studies, and mining (extractive metallurgy); for example, minerals can be economic
(e.g., ore, building materials) or toxic (e.g., acid mine drainage production or release of toxic
elements such as lead or arsenic) [12,13]. The use of certain sands in building materials can
be a major problem, and identifying such grains is crucial in engineering projects [14,15].
In glacial sediments (tills) and soils, the number and count of certain mineral grains can
indicate the proximity of a potential deposit; in diamond exploration, for instance, certain
minerals, such as chromium-bearing pyrope or diopside, are used to confirm the presence
of proximal diamond deposits [16,17].

Machine learning offers an alternative to manual identification. Recent advances in
deep learning for image-based tasks offer the possibility of automating, at least partially,
grain identification and counting, saving time and money. Moreover, as opposed to relying
on SEM [18], the deep-learning-based approach can potentially be carried out in the field,
in remote areas where mineral potential is high. Such a method would allow a more rapid
identification of economic minerals or toxic minerals to allow effective environmental
surveys [19]. This automated approach could work in real time to sort minerals moving
along on a conveyor [20]. A robot with specialized tools and equipment could be used to
capture images of grain as it explores the terrains [21]. If images are tagged with a location,
real-time processing is not obligatory, thus, simplifying the challenge of embedding a
deep-learning model in a remote and potentially smaller computer.

In this paper, we propose an automated machine-learning approach to classify grains
from a sample using optical microscopy that builds upon our previous work published
in [22]. With this approach, the task of mineral identification requires minimal human inter-
vention. The images of grains are collected using inexpensive photomicrographic systems
or through the use of robotic machines or automated microscopes. The images (photomi-
crographs) can then be processed to isolate the grain images within the complete image
and, thus, classify and count these grains. Our approach uses an improved superpixel
method that segments the grains quickly and automatically. To solve it using deep learning,
the segmentation must be very accurate for the model to automatically learn the features
representing each class. Then, the segmented grains can be used as an input into the trained
deep-learning model. Although deep learning frequently outperforms classical machine
learning, it is only recently that mineral identification has been investigated with deep learn-
ing. With the new segmentation and state-of-the-art deep-learning models, we can achieve
better results than observed in published classical machine-learning-based approaches.

2. Literature Review

Currently, there are mainly two distinct methods for grain recognition: traditional
engineering devices [23,24] and computational methods [25].

2.1. Traditional, Device-Based Methods

Traditional methods for classifying and counting mineral grains rely on the use of
SEM or optical microscopes. The use of an optical microscope is the most common method
for estimating mineral abundance in sediments or milled rock, although this requires
highly trained personnel to sort the mineral grains. Mineral sorting is possible using the
specific polarized transmitted and reflected light properties of minerals and the morpho-
logical properties of the grains. Advances in the use of optical microscopes have been
successfully applied to mineral grain analyses, although the main limitations discussed
above remain [26–29]. Significant improvement of this method will require a technical
breakthrough. Automated SEM provides an alternative means of counting minerals [11,30],
and the SEM-based approaches include QEMSCAN, TIMA-X, and MLA [31]. SEM uses
a focused electron beam to scan the material and generate an image of the grains. The
interaction of the electrons with atoms on the grain surface provides additional informa-
tion captured by the various sensors (e.g., X-ray fluorescence) to determine the chemical
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composition of the mineral. SEM output includes the chemical composition with grain size,
shape, and proportion. Grain counting can be performed using an electron microprobe [32];
however, this method is time consuming [33].

In [34], the authors presented an image processing workflow for characterizing pore-
and grain-size distributions in porous geological samples using SEM images and X-ray
microcomputed tomography (µCT). Their samples included the Buff Berea, Berea, Nugget,
Bentheimer, and Castlegate sandstones and the carbonate Indiana Limestone. The produced
2D distribution from the SEM appeared biased toward smaller sizes. In [35], the authors
developed a grain count technique using a laser particle counter sensor (Wenglor) to count
stainless-steel beads and sand grains of different size classes. They compared the count
with that obtained using high-speed cameras. They found that the Wenglor can count grain
sizes between 210 ± 3 µm and 495 ± 10 µm and that only grains passing through the center
of the beam were counted. In [36], the authors used a less expensive light microscope
able to produce images of grain shape profiles sufficient in quality for identification and
counting. Their key finding was that roundness, sphericity, circularity, ModRatio, and
aspect ratio were the key shape parameters for differentiating grains.

2.2. Computer Vision-Based Computational Methods

Computational or machine-learning methods are increasingly applied in a multitude
of spheres, including automated driving and navigation, automated image recognition,
automated medical diagnosis, and agricultural processes [37–39]. The ability to apply
machine-learning tools to a vast suite of applications also extends to the environmental and
geological sciences.

The integration of machine learning to automate the process of mineral grain recog-
nition was first explored by Maitre et al. [22]. The authors used linear iterative clustering
segmentation to generate superpixels, thereby, isolating individual grains. The applied
feature extraction method, using a series of classifiers, produced an 89% recognition rate.
In [25], cluster analysis through a k-means algorithm for mineral recognition divided the
data set into categories according to the similarity, computed by distance, e.g., Euclidean
distance. Baklanova and Shvets extracted the colors and textures of grains using a stereo-
scopic binocular microscope. However, the authors failed to compare clusters found with
labeled clusters that actually belonged to a certain species of minerals. In fact, their work
was used only to classify rocks and not minerals and, thus, their work is only applicable to
petrography. Other methods of mineral classification, although limited to copper minerals,
have produced an acceptable, approximate 75% accuracy using laser-induced breakdown
spectroscopy (LIBS) analyzers [40]. In [41], the authors classified heavy minerals collected
from rivers. Using 3067 grains in 22 classes, they achieved 98.8% accuracy using 26 decision
attributes and a random forest algorithm.

3. Materials and Methods

Our approach consisted of four main stages (Figure 1). The first stage involved data
collection followed by preprocessing the original mosaic and SEM images to remove noise
and outlier objects. In the third stage, the grains were segmented by utilizing the contours
and superpixel-based techniques. We selected five classes for recognition on the basis of
classes with the greatest number of grains. In the final stage, we input the segmented grains
into various convolutional neural network (CNN) models.
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Figure 1. Workflow of the grains recognition method used in this paper.

3.1. Data Set Acquisition

We collected 10 kg of till grains from the field, and sediments were sieved to less than
1 mm. The samples were then processed with a fluidized bed to obtain a superconcentrate
of heavy minerals (approximately 100 mg) containing approximately 2 million grains
smaller than 50 µm. The superconcentrate was sprinkled onto carbon tape to provide a
black backdrop for the images. Images were then obtained using a camera mounted onto a
binocular microscope, and we created a photomosaic. To acquire the groundtruthed data,
i.e., mineral grain identities, we acquired a backscattered image of the grains using SEM
with X-ray fluorescence [42]. The groundtruthed data were the mineral map and referenced
with the RGB mosaic. The end result, after using the motorized conventional microscope
and 6-megapixel camera, was an approximate 2 GB mosaic image (34,674 × 33,720 pixels)
to be used as the data set for the machine-learning algorithm. We acquired 238 fields of
view with a 10% overlap between adjacent fields in the images. Figure 2 shows the sample
of the grains and the corresponding, annotated SEM image.
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3.2. Data Preprocessing

The original image background consisted of outlier grains that are not part of the SEM
annotated image; therefore, preprocessing, using various morphological operations, served
to remove outlier particles. An outlier grain is a phantom image of a grain lying outside of
the field of view. To reduce processing time, we cropped the original image to include only
1/3 of the original image by discarding 12,000 border pixels on all sides that did not contain
grains. This new image was further divided into 5608 × 5608 equally sized subimages. We
considered only five classes for classification because of unbalanced data and a low number
of instances for some of the discarded classes.

The groundtruthed image was converted into a binary image and morphological
operations were applied, i.e., dilation, filling holes, and erosion, to remove the outlier
grains, the background, and other noise. The largest filled segment of the SEM-based,
labeled image was extracted by discarding all outlier grains and other noise. The erosion
and dilation work was based on kernel size to reduce the size of the input image. Similarly,
dilation increased the size of the input image on the basis of kernel size. We applied
a kernel size of 7 × 7. The erosion and dilation for the binary image were calculated
using Equations (1) and (2), respectively, where A represents the original binary image,
and B represents the kernel. In Equation (1), Bz is translation B by vector z. Similarly, in
Equation (2), Ab is translation A by vector b.

A 	 B = z ε E | Bz, (1)

A ⊕ B = ∪b ε E Ab. (2)

Figure 3 shows the outcome of different preprocessing steps and mapping of the SEM
ground truth image and the Original Image based on the processed SEM binary image.
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Figure 3. Outcome of the preprocessing steps. Images show the original SEM images (a), the outliers
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3.3. Grain Segmentation

We used superpixel segmentation to separate mineral grain data (see Algorithm 1).
The image was first converted to binary, and morphological operations—erosion and
dilation—were applied to the image to separate the grains from each other. To convert the
image into binary, the image threshold was calculated using Otsu’s method [43]. Using
the resulting binary image, we calculated the total number of external, closed contours to
represent the possible grains in the image. Contours are closed curves that are calculated
using the edges of objects with the same values or pixel intensities. The contour count C
then serves as a seed for the superpixel segmentation method rather than using a fixed
number K as a seed. We applied Equation (3) to calculate the superpixel center grid interval
of approximately equal-sized superpixels of an input image of size N.

S =

√
N
C

. (3)

The superpixel segmentation method relies on oversegmenting the image while simul-
taneously decreasing the complexity of the image processing tasks. We applied a simple
linear iterative clustering (SLIC) method to produce high-quality segmentation in a timely
manner [44]. The method performs local k-mean clustering of the image pixels using color
similarity and proximity in the subimages. The method also uses the five-dimensional
spaces provided by the labxy image plane, where l, a, and b are the pixel vector colors
provided by the CIELAB color space, and the x and y values are the coordinates of the
pixels which represent the spatial distances. To merge the color proximity and spatial
proximity distances, we normalized the distances using Equations (4) and (5). To use the
labxy space to cluster the pixels, we required the distance measure D, which considers
approximately equal-sized superpixels.

Dc =

√
(lm − ln)

2 + (am − an)
2 + (bm − bn)

2. (4)

Ds =

√
(xm − xn)

2 + (ym − yn)
2. (5)

D =

√
(

Dc

Nc
)

2
+ (

Ds

Ns
)

2
. (6)
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The segmentation provided the xy coordinates of each superpixel. The method was
further enhanced by increasing the contrast of the images to allow the discrimination of the
grain borders. In Maitre et al. [22], the superpixel method was applied using a fixed-size
input seed value for the superpixels. This approach worked well for the color feature-based
method with classical machine-learning methods; however, this method did not rely on
deep learning. Thus, we proposed to automate the calculation of the seed values in the
segmentation method to prepare the data for deep-learning networks. The comparisons of
the superpixel boundaries and the outcome for the segmented grains for both methods are
presented in Figures 4 and 5, respectively.
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Algorithm 1: Segmentation and Annotation of Grains

Input: Grains mosaic image M with BSE groundtruthing image G and classes n = 5
Output: Segmented grains S with their annotation A

read M, read G
B← binary (grayscale (M), Otsu)
Be ← erosion (B, ones (15, 15))
Bc ← find external contours (Be, chain approx simple)
Bcount ← length (Bc)
GrainsApprox← Bcount × 2.5
Mhq ← histogram equalization (M)
S′ ← superpixel (Mhq, GrainsApprox, compactness = 20, sigma = 1)
D← unique colors (G)
c← 0
for g in S′

Sc ← g
if (∑n, m

i=0, j=0 g (i, j)! = [0, 0, 0] ) ≥
(
(i×j)

1.5 & 25
)

for d in D
Md ← count (g (i, j) = d )

Ac, 1, Ac, 2 ← Max1(M), Max1(M)
else

Ac, 1, Ac, 2 ← 0
c← c + 1

end for
Select n classes with maximum grain count

3.4. Grain Class Annotation

We selected five main classes on the basis of the number of segmented grains for each
class and the group distribution of visually similar, rock-forming minerals (Table 1). We
selected six types of individual grain that were further mapped to five classes, including
the background class. These segmented images were labeled by mapping the original
subimages to the SEM-based subimages using the superpixel-based method. The bounding-
box method was then applied to extract the grains that had a rectangular format. The
grains with a height:width ratio greater than 1.75 were discarded. A total of 21,091 images
were segmented.

Table 1. Summary of the selected grain classes.

Class Label Primary Grain Type Secondary Grain Type Number of Grains

C1

Albite None

6879 images

Quartz None
Quartz Albite
Albite Quartz
Albite Any class > 256 pixels
Quartz Any class > 256 pixels

C2

Augite None

3295 images
Tschermakite Any class > 256 pixels
Tschermakite Augite
Augite Tschermakite
Augite Any class > 256 pixels

C3
Magnetite Any class > 256 pixels 3823 images
Magnetite None

C4
Hypersthene Any class > 256 pixels 988 images
Hypersthene None

C5 Background - 6106 images

The final data set consisted of 21,091 images divided into five classes. Albite grain
and quartz grain images were merged into one class because they are visually similar,
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rock-forming minerals. The sample images of albite grain and quartz grain are shown
in Figure 6, which clearly indicate their visual similarity. Augite grain and tschermakite
grain images were also merged into one class, as are the samples shown in Figure 7,
due to their visual similarity. The background class contained images which were either
entirely black or contained very small grains (the total number of nonblack pixels was
less than 256) or contained noise in the background. Figure 8 shows the sample images
of the background class. For the experiments, these five classes’ data set images were
divided into 20% for training, and the remaining 80% was divided again into 80%/20% for
validation/training sets.
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3.5. ResNet Models for Grain Recognition

With the growing difficulties in the functions of computer vision and artificial intel-
ligence, deep neural network models are becoming increasingly complex. Such strong
models demand more data for learning to prevent overfitting. Recent deep-learning meth-
ods have been successfully applied to artificial intelligence [45,46]. Interest in convolutional
neural systems (CNN) began in 2012 with AlexNet, which was based on LeNet. New
CNN-based models have since been developed, including GoogleNet and residual neural
networks (ResNet) [47–49]. CNN’s major advantage is its ability to learn the critical features
best representing the data without any human intervention.

ResNet overcomes model complexity and the vanishing gradient problems to produce
satisfactory accuracies by training deeper networks [50]. Each ResNet block comprises
four layers. The weight layer is expressed as (Zn+1 = Wn+1Xn + Yn+1). The ReLU layer,
a nonlinear layer, is expressed as (Xn+1 = H(Zn+1)), and a third layer is a weight layer
(Zn+2 = Wn+2 + Yn+2). Xn is the input to the three layers combined, and F(Xn) is pro-
duced in the output. All these variables are matrices, and the subscripts are used to denote
the layer numbers. In ResNet, a skip or shortcut link is used to bypass the three layers to
pass Xn to an adder. Thus, the fourth layer, ReLU, is applied to F(Xn) = Zn+2 to produce
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Xn+2 = H(Zn+2 + Xn). With this skip, F(Xn) = H(Zn+2) is added to Xn before passing
through the second ReLU layer to generate Xn+2.

Skip, or shortcut, connection is a term used to refer to the X input to the adder. Because
X is passed from one layer to another, the shortcut connection then permits the residual
network so that F(X) = 0, thus, allowing a simple task to be performed by X. If this shortcut
connection is absent, then the network needs to learn that the weights layer is equivalent
to the identity matrix multiplied by X, which adds more complexity to the task. In cases
where X is not required to pass through layers, the network generates F(X) normally, as
is achieved when backpropagation is used. In this case, it is easier to train F(x) to be the
residual D(X)− X, which results in the desired output of D(X) when added to X using
the shortcut connection. Because the shortcut connection does not require weights, the
gradient values remain unchanged, thus, overcoming the vanishing gradient problem.

Building a sequence of ResNet blocks produces a ResNet architecture with deeper
networks with low training errors and excellent accuracies. The ResNet blocks might
require pooling layers when convolution or weight layers generate different F(X) matrices
than the original X matrix. The pooling adds X to F(X), which resizes X to match the size
of the F(X) matrix. This can be achieved by adding (W.X) to F(X). W, in this case, is a
zero-padded matrix in both the rows and columns missing from the original X.

3.5.1. ResNet Version 1

We used two ResNet architectures, referred to as “ResNet 1” and “ResNet 2”. Figure 9
details the design of ResNet 1 architecture at the block level. No overfitting is present in
the ResNet architecture because no additional parameters are introduced. This implies
that ResNet is an efficient deep-learning network even for hundreds of network layers.
In ResNet 1, a convolutional layer splits the feature map into two at the beginning, and
the filter size is doubled to map the convolutional layer, batch layer, and ReLU layer to
32 × 32 × 16, 16 × 16 × 32, and 8 × 8 × 64, respectively, on the basis of the i and j values,
where i represents how many times the filter size must be doubled, and j represents the
number of ResNet block iterations on the basis of N. The deep-network performance is
enhanced by adjusting the input layer using the batch normalization block. ResNet 1 has
an input image dimension of 48 × 48 × 3, with each layer in the architecture consisting of a
convolutional layer, batch normalization layer, and a rectified linear unit (ReLU).
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Figure 9. ResNet version 1 architecture for mineral recognition.

3.5.2. ResNet Version 2

ResNet 2 architecture at the block level is detailed in Figure 10, and the filter size for
each step is calculated using a flowchart in Figure 11. As for ResNet 1, the feature maps
are initially split into two, and the filter maps are doubled. A bottleneck connection is
introduced in ResNet 2 with the filter size calculated as shown in Figure 11. In addition,
the block size of the skip connection is tripled. The three layers that exist within a residual
function block are the convolutional layers sized [1 × 1], [3 × 3], and [1 × 1], in which the
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increase and decrease of input dimensions are performed using the 1 × 1 layer, and the
3 × 3 layer is the bottleneck with reduced dimensions. The stages of ResNet 2 include a
convolutional layer 32 × 32 × 16 in step 1 which produces an output of size 32 × 32 × 64.
Step 2 produces a 16 × 16 × 128 output, and step 3 produces an 8 × 8 × 256 output size.
These ResNet 2 outputs are based on the i and j values, where i represents how many times
the filter size must be doubled, and j represents the number of ResNet block iterations
based on N.
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Note that, in both ResNet 1 and ResNet 2, after the initial concatenation of the blocks
in the sequence weights → batch normalization → ReLU, the concatenated sequenced
block is repeated. The main difference between the two architectures is:

The sequence that follows the initial weight, batch normalization, and activation block
differs between the architectures. For ResNet 1, the following sequence is convolutional
block→ batch normalization block→ activation block, whereas, in ResNet 2, the sequence
is batch normalization block→ activation block→ convolutional block.

Postactivation is supported in ResNet 1.
Preactivation is supported in ResNet 2.
In ResNet 1, the second ReLU nonlinearity is added after adding F(X) to X.
In ResNet 2, the last ReLU nonlinearity is deleted, thus, allowing output of the addi-

tion of the residual mapping and identity mapping to be passed with no changes to the
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consecutive block. In addition, the gradient value at the output layer is passed back during
backpropagation, as is the input layer, thus, overcoming the vanishing gradient problem
in deep-learning networks that have hundreds or thousands of layers, thereby, improving
their performance and limiting/reducing the associated training errors.

For both ResNet models, we used experimentation to fine-tune the hyperparameters.
The final hyperparameter settings were an activation function (ReLU) learning rate = 0.001,
number of epochs = 50, and batch size = 20. These hyperparameters produced the experi-
mental results discussed in Section 4.

4. Experimental Results

The experimental setup included the use of a high processing computing machine
holding 256 GB memory with a graphical processing unit (GPU) Nvidia Tesla-V100 with
5120 CUDA cores. We applied Python 3.8 for the programming of all phases, including
the preprocessing, classification, and identification. The data set was split so that 80% was
used for training and the remaining 20% was available for testing. Note, however, that the
80% training portion was actually divided again into an 80% training and 20% validation
split. We tested variable epoch sizes, and the ideal epoch size was chosen to ensure that the
system avoided over- and underfitting. We tested various parameter settings for ResNet
1 and ResNet 2 to obtain the optimal results and evaluated their performance against the
better-known deep-learning approaches of LeNet, AlexNet, and GoogleNet.

ResNet 1 and ResNet 2 achieved higher validation accuracies than LeNet, AlexNet,
and GoogleNet (Table 2). The validation accuracy of ResNet 2 was slightly higher than
for ResNet 1. We obtained these scores by applying the segmentation methods presented
in [22]. In the latter paper, they achieved a global accuracy of 89% using a RF classifier;
however, their data were not effective when deep-learning algorithms were applied.

Table 2. Results using minerals segmentation used in [22] with different CNN models.

CNN Model Training Loss Validation Loss Training
Accuracy (%)

Validation
Accuracy (%)

LeNet 1.1329 1.5627 66.67 39.29

AlexNet 0.3917 2.8706 88.89 39.88

GoogleNet 0.9911 1.4571 83.33 43.37

ResNet 1 (32) 1.0715 1.3784 72.29 45.61

ResNet 2 (47) 1.0263 1.3269 76.94 49.23

We used superpixel segmentation combined with the proposed ResNet architectures
to produce much higher validation accuracies than those achieved in [22]. LeNet, AlexNet,
and GoogleNet produced validation accuracies ranging from 74.4% to 86.3%, with the
highest accuracy achieved by AlexNet as shown in Table 3. However, the proposed ResNet
1 and ResNet 2 achieved a higher validation accuracy of 89.8% and 90.6%, respectively.
Notice that, compared to the highest achieved validation accuracy in [22], which was 49%,
our proposed method increased by 84.69%, which is a significant increase by all measures.
The highest achieved validation accuracy of 90.5% produced by the ResNet 2 architecture
of 47 layers sets a new threshold for researchers in the field of grain recognition. It is
also an improvement of 1.69% when compared to the accuracy achieved in [22] using an
RF classifier.

We varied the number of layers for ResNet 1 and ResNet 2 to determine the best
parameters for achieving the highest accuracy. The best accuracy for ResNet 1 was achieved
using 74 layers (Table 4); however, although there was a slight improvement going from 32
to 74 layers, training times increased markedly for 74 layers. Hence, ResNet 1 with 32 layers
was the chosen architecture for this application. For ResNet 2, we found the highest
validation accuracy using 47 layers, accompanied by a reasonable training time. Although
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the training time between 29 layers and 47 almost doubled, the increased validation
accuracy justified using the 47 layers for this application.

Table 3. Results using proposed minerals segmentation with different CNN models.

CNN Model Training Loss Validation Loss Training
Accuracy (%)

Validation
Accuracy (%)

LeNet 1.063 0.6374 61.60 74.43
AlexNet 0.3425 0.3847 90.00 86.30
GoogleNet 0.7875 0.626 72.40 76.23
ResNet 1 (32) 0.3418 0.3668 90.40 89.80
ResNet 2 (47) 0.3523 0.3621 90.40 90.56

Table 4. Comparison of results using proposed minerals segmentation with different ResNet models
and varying number of layers.

Model # of Layers Training
Loss

Validation
Loss

Training
Accuracy (%)

Validation
Accuracy (%)

Training
Time (h)

Validation
Time (h)

ResNet 1 20 0.3219 0.3579 90.76 89.77 75.00 0.18
ResNet 1 32 0.3418 0.3668 90.40 89.80 133.76 0.30
ResNet 1 74 0.3586 0.3771 90.62 89.88 278.83 0.55
ResNet 2 29 0.3491 0.3770 90.38 89.86 173.74 0.29
ResNet 2 47 0.3523 0.3621 90.40 90.56 291.30 0.55
ResNet 2 110 0.3738 0.3895 90.07 90.05 671.26 0.96

We compared the various ResNet-model–layer combinations in terms of training
accuracy (Figure 12), validation accuracies (Figure 13), training loss (Figure 14), and valida-
tion loss (Figure 15). A consistent pattern emerged of ResNet 1 (32 layers) and ResNet 2
(47 layers) being the best models of the series.
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The confusion matrices in Figure 16 show the comparison of each class’s accuracy
for the best proposed model (ResNet version 2 with 47 layers). The left confusion matrix
shows the percentage accuracies for each class, and the right confusion matrix shows
correctly classified grain images for each class. The results in the confusion matrix indicate
that the classes C1 and C5 achieved higher accuracies as they had more grain images for
the training.
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When we compared our ResNet 2 model (47 layers) with techniques published in the
recent literature—using the published method on our grain data set—we observed that the
superpixel-based grain segmentation and the ResNet 2 (47 layers) clearly outperformed the
existing techniques and achieved the highest accuracy values (Table 5).

Table 5. Comparison of the proposed method with existing methods.

Reference Methodology Accuracy (%)

This paper Modified superpixel grains with ResNet2 with
47 layers 90.56

Julien et al. (2019) [22] Superpixel color features with random forests 89.00
Julien et al. (2019) [22] Superpixel segmented grains with CNN 49.23
Brian et al. (2021) [50] Neighborhood component analysis and cubic SVM 65.75
Brian et al. (2021) [50] Neighborhood component analysis quadratic SVM 39.72%

5. Discussion and Conclusions

We presented two improved residual network architectures to automate the detec-
tion and count of individual mineral grains. These algorithms, ResNet 1 and ResNet 2,
are modified versions of ResNet. We adopted the superpixel segmentation method and
applied preprocessing techniques to provide the seed for the segmentation method, which
made the data more appropriate for deep-learning algorithms. The ResNet 2 architec-
ture with 47 layers produced the highest validation accuracy of 90.5%. To our knowl-
edge, this is the highest reported accuracy achieved using deep-learning networks for this
particular application.

Few papers explore the use of machine-learning techniques and deep-learning al-
gorithms for the automatic recognition, classification, and counting of grain minerals;
however, the existing approaches offer benchmarks against which we can compare our
results. Our ResNet 1 and ResNet 2 outperformed the deep-learning algorithms LeNet,
AlexNet, and GoogleNet in automatic grain detection and count application. Despite
these very encouraging results, improvements must be made prior to the application of
our deep-learning techniques in the field. The data set must be enhanced to eliminate
problems of mislabeling, unbalanced data, and fusion. Moreover, the developed approach
is limited by:

a. The scarcity of mineral data sets. A key contribution of this work is the development
of such a data set, because they are not readily available for grain mineral classification.

b. Unbalanced data for different classes. In the developed data set, there was an unequal
number of images available for each class.

c. High-performance GPUs are required for training. We had access to a GPU system;
however, the training step required a considerable amount of time to be performed.
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Future work will include developing data sets for the purpose of grain mineral recog-
nition and enhancing new and current methods to achieve a higher recognition rate with
more mineral classes. These advances will include applying various image fusion and
registration techniques to greatly improve the mapping of the original images with the
labeled images. We will also explore other techniques for segmentation that may enhance
accuracy. These may include the region-growing-based method, fuzzy C-means, and
deep-learning segmentation.
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