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Abstract: Mark Duffy produced a complete set of grinding data on a pilot-scale tower mill. Here
these data are analyzed in terms of grinding kinetics. The results show that the data can be fitted
with a simple first-order breakage model, which is not normally observed in any grinding system,
including other types of grinding machines such as tumbling ball mills and rod mills. The model has
only two parameters, making it possible to determine the parameters using simple search methods.
The results show that larger particles break faster than smaller particles, as is usually observed in all
mills. Statistical analysis of the data showed that one of the parameters could be fixed for seven of
the nine tests.
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1. Introduction

As part of our work on constructing simulation models for grinding machines, to be
used for process design in programs such as ModSim [1], we undertook a review of the
literature on tower mills. The most complete study useful for our purpose was the work
done by Duffy [2] on a pilot-scale tower mill at the Mount Isa Mines in Australia, using an
ore sample from the mine. The work contains nine tests on this ore, run as batch grinding
tests. Since Duffy provided no data analysis from a kinetic point of view, his results are
re-examined here using the concepts of grinding kinetics [3].

One important and recurrent discussion that arises from the mill modeling work is
related to the number of parameters that are required to describe the breakage and selection
functions. More parameters tend to produce better fits but at a cost, which is the lack of
meaning of the calculated parameters resulting from the large flat-model response that
is generated from increasing the number of degrees of freedom. Fewer parameters are
desirable because they are easier to determine and tend to have a simpler, clear graphical
representation (slopes and intercepts). However, fewer parameters will also produce lower
quality fits (larger values for the objective function, deviation from measured data, etc.). It
is reasonable to say that having fewer parameters is the more attractive alternative, mostly
because it is easier to implement solutions for fewer parameters (such as the Solver™
supplement in Excel™). In favorable scenarios at least two parameters are required for
the breakage function (as in a truncated Gaudin–Schuhmann model) and two parameters
for the selection function (given we are not in the abnormal breakage region), giving a
minimum number of four model parameters to describe the grinding action in a perfectly
mixed region of a mill. Further reduction of parameters in the classical size-mass balance
model is not possible. The simple model, however, contains only two model parameters,
and this, at the very least, means that it is much easier to implement and to determine
parameter values, making this alternative more attractive. The simple model was first
proposed by Gaudin and Meloy [4]. The idea driving it is quite logical, and it is possible to
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determine the rate of production of particles smaller than any given size if the grinding
rate of all particles larger than the size is known.

It is important to understand the difference between the classic size-mass balance
model and the simple model. The classic size-mass balance model is illustrated in the
diagram in Figure 1.

Figure 1. The classic size-mass balance model. The model depicts a perfectly mixed mill region,
represented by the dotted line, with each size range within the region represented as a triangle. The
arrows represent the contributions from a feed stream and to a product stream and the internal flows
from and to each size class.

The perfectly mixed mill region represented in Figure 1 is being fed F t/h of coarse
particles and producing P t/h of finer particles. Each triangle represents a particle size
range in the perfectly mixed region. There is no special location associated with each size
range, but, in the diagram, the coarsest particles are represented by the top triangle. The
lower the position of the triangle in the sketch, the finer the particle size range it represents.

For the fourth size class, accounting for all particles leaving the size class in the left
side of the equation and all particles entering the class in the right side of the equation:

Hh4S4 + Pp4 = F f4 + Hh1S1b4,1 + Hh2S2b4,2 + Hh3S3b4,3 (1)

At steady state, F = P. Furthermore, for a perfectly mixed region, hi = pi. Equation (1)
can be rewritten as:

Hp4S4 + Fp4 = F f4 + H(p1S1b4,1 + p2S2b4,2 + p3S3b4,3)

Dividing both sides by F, and rewriting the sum within parenthesis using sigma notation:

H
F

p4S4 + p4 = f4 +
H
F

4−1

∑
j=1

pjSjb4,j
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The ratio H/F is equal to τ, the average residence time in the perfectly mixed region.
Solving for p4:

p4(τS4 + 1) = f4 + τ
4−1

∑
j=1

pjSjb4,j

p4 =
f4 + τ ∑4−1

j=1 pjSjb4,j

τS4 + 1

It can be readily seen that this expression can be written in a general form for any size
class i within the perfectly mixed region:

pi =
fi + τ ∑i−1

j=1 pjSjbi,j

τSi + 1
(2)

Equation (2) represents the population balance model solution for a continuous, per-
fectly mixed mill region. It is in fact a size-mass balance with all distributions as mass-
weighed distributions rather than the number-weighed distributions that are used in formal
population balance models. Equation (2) can be solved recursively starting with size i = 1.

The solution in Equation (2) can be easily expanded to a series of perfect mixers in
series, with each mixer fed with the product of the previous one.

Classification effects can be incorporated as well, and this is required in overflow
ball mills that are operated with relatively lower slurry viscosities, in which case overflow
classification becomes important, and in grate discharge mills, such as ball mills, ROM
mills and SAG mills.

For the simple model it is not necessary (nor desirable) to be concerned with the
destinations of all breakage products (the breakage function). All that we are concerned
with is the rate of breakage of all particles larger than a given size. A diagram could be
envisaged for this model in the same fashion as the diagram for the classic model. This is
shown in Figure 2.

Figure 2. The simple model. The model depicts a perfectly mixed mill region, represented by the
dotted line, with each size range within the region represented as a triangle. The arrows represent
the contributions from a feed stream and to a product stream.



Minerals 2022, 12, 679 4 of 13

For the simple model, the same definitions as in the classic model in Figure 1 are used,
except that here the rates of breakage of each size class Si are replaced by cumulative rates
Ki as we are only interested in the rate of production of particles smaller than size i from all
particles larger than size i. It is worth pointing out that K1 = S1 and Ki 6= Si for i > 1.

Similarly, a balance for the fourth size class can be written as:

F f4 + H(h1 + h2 + h3 + h4)K4 = Pp4 (3)

Again, at steady state, F = P. Furthermore, for a perfectly mixed region, hi = pi.
Equation (1) can be rewritten as:

F f4 + H(p1 + p2 + p3 + p4)K4 = Fp4

f4 +
H
F
(p1 + p2 + p3 + p4)K4 = p4

Using the definition of the cumulative distribution for the sum within the parenthesis:

f4 + τ(1− P4)K4 = p4 (4)

and for any size i, Equation (4) can be generalized to:

fi + τ(1− Pi)Ki = pi (5)

This is the simple model for a perfectly mixed region of a continuous grinding mill,
as proposed by Gaudin and Meloy [4]. More recently, the simple model was revisited to
make estimates of the charge in a SAG pilot mill [5]. In that work the cumulative rates were
assumed to be constant or highly independent of the hold-up size distribution, and this
apparently worked well for predicting the charge level under distinct grinding conditions,
with power draw as the driving charge level regulator.

2. Test Methods

Although Duffy gives a complete description of the mill and test methods, a summary
is given here for convenience. Figure 3 shows a typical illustration of the mill. The vertical
drive shaft is fitted with one or two spirals that circulate slurry (water and ore) and media
(steel balls) from the bottom of the mill to the top of the spiral, where they overflow and
are recirculated to the bottom. A region above the top of the spiral acts as a settling region
and finer material leaves the mill overflow as product. When used in the batch mode
this overflow is pumped back to the base of the mill without external classification. The
test starts by loading a measured amount of slurry with a known solid concentration and
particle size distribution into the mill until the mill is filled. The mill is then started, slurry
circulates via the overflow return pipe and samples are taken from the recycling output at
suitable time periods.

Provided that the volume of the sample taken is small compared to the total volume in
the mill, this is exactly like a normal batch test except it is not necessary to stop and empty
the mill to take a sample. If the recirculation rate is sufficiently high (see below) then the
product sample will be representative of the variation of the size distribution of the mill
contents with time. There is little change in hold up or slurry density during the test. The
mill size is given as about 1.1 m high and 0.24 m wide, and it was manufactured by the
Kubota Tower Mill Corporation.
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Figure 3. Illustration of the Kubota Tower mill rigged to operate as a batch mill.

3. Mill Conditions

The measured conditions in the mill for each of the nine tests are given in Table 1.

Table 1. Measured mill conditions.

Run No. Ball Dia.
mm

Ball Load
kg

Slurry Conc.
wt.% Solids

Slurry Weight
kg

1 9 110 59 153
2 9 110 47.5 132.5
3 12.7 110 54.8 131
4 12.7 130 52.5 125.5
5 12.7 150 49.4 122
6 12.7 150 54.2 132
7 12.7 150 64.3 134.5
8 12.7 150 57.4 132
9 12.7 150 49 130.5

For a mill of this size, it is convenient to work in units of kg and liter, with densities
expressed as kg/L (=g/cm3 = specific gravity). Let the ball diameter be d (mm), the load of
balls be BL (kg), the slurry (often called pulp) concentration be s (weight % solids or weight
fraction of solids) and the charge of slurry (ore and water) be pulp weight (kg). The density
of the steel balls is given as 7.9 kg/L and the ore as ρore = 3.82 kg/L.

These values can be expressed as derived values using definitions similar to those
used in tumbling ball mills [6]. Let W be the weight of ore in the charge (referred to as the
hold up), J be the fraction of the mill volume filled by a bed of balls at rest with a formal
porosity of 40% and U be the fraction of this bed porosity that is filled by the ore particles
as a bed, also with a formal porosity of 40%. Let the active volume of the mill be defined as
V = the combined volume of slurry and balls (liters). Then:

• pulp density = 1/[(s/ρore) + (1 − s)]
• pulp volume = pulp weight/pulp density
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• volume of balls = ball load/ball density
• total volume = pulp volume + ball volume
• hold up W = pulp weight × slurry concentration as weight fraction of ore
• J = (ball volume/0.6)/total volume
• U = (W/ore density)/ball volume

The measured values obtained by Duffy produce the data given in Table 2.

Table 2. Derived mill conditions.

Run No. Mill Volume
(L)

Pulp Density
(kg/L)

W
(kg)

J
(-)

U
(-)

T
(min)

1 100.4 1.77 90.3 0.24 1.7 N.A
2 100 1.54 62.9 0.24 1.18 0.7
3 91.9 1.68 71.8 0.24 1.35 0.8
4 93.4 1.63 65.9 0.28 1.05 0.7
5 96.7 1.57 60.3 0.33 0.83 0.9
6 98 1.67 71.5 0.33 0.99 1
7 89.4 1.91 86.5 0.33 1.19 N.A
8 94.8 1.74 75.8 0.33 1.04 1.1
9 102.6 1.56 64 0.33 0.88 0.7

It can be seen that expressing the mill conditions in a form similar to that used for
tumbling ball mills gives values very similar to the conditions used in ball mills to get
optimum performance, especially U being close to 1 for most of the runs. The mean active
mill volume determined from the amount of slurry and balls necessary to fill the mill to
overflow is 96.4 L, which is consistent with the physical dimensions of the mill, and the
variation of values from the mean is believed to be consistent with the expected variation
in experimental determination of the inputs.

Furthermore, considering the pumped flow rates of overflow back to the mill, each
liter of flow contains:

• liters of solids = slurry conc./[slurry conc. + ρore (1 − slurry conc.)]
• kg of solids = liters of solids × ρore

Thus, knowing the volume flow rate of slurry, the weight flow rate of solids can be
calculated. The mean residence time of solids in the mill is defined by τ = W/(weight flow
rate of solids) and these results are also shown in Table 1 for those tests where flow rates
are available in Duffy’s thesis.

The values of the volume flow rate are somewhat variable with the test time, but the
estimates of mean residence time show that the solids being ground circulate at least once
per minute. Since the first test time is 15 min this seems an adequate justification for a fully
mixed mill.

All tests were carried out with the same stirrer speed of 100 rpm.

4. Preliminary Analysis of the Kinetics of Size Reduction

The kinetics of size reduction is determined from the rate at which the particle size
distribution of the feed is reduced to smaller particle sizes. The symbolism to describe
the size distributions is as follows. Let the particle size distribution of the material (being
ground) in the mill at zero grinding time (the feed) be described by the cumulative fraction
by weight Fi less than size xi, where x is a sieve size (or equivalent) in microns and i is an
integer indexing a 1/

√
2 size interval with the upper size of xi, with i ranging from 1 for

the largest size to n, where n is the number of size intervals. Thus, the nth interval is size xn
to 0 (known as the sink interval). Similarly, let the product size distributions Pi,k be defined
for a series of grinding times t in minutes indexed by the integer k, starting with 1, i.e., t1,
t2, . . . tk.

Table 3 shows the results for Run 1:
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Table 3. Particle size distributions of feed and product for Run 1, x in microns, t = 15, 30, 60, 90, 120,
150 min.

xi Fi Pi,1 Pi,2 Pi,3 Pi,4 Pi,5 Pi,6

300 1 1 1 1 1 1 1
212 0.998 0.997 0.999 1 1 1 1
150 0.97 0.976 0.991 0.997 0.999 0.999 1
106 0.886 0.889 0.959 0.983 0.994 0.996 0.999
75 0.712 0.769 0.845 0.92 0.963 0.979 0.994
53 0.534 0.6 0.677 0.781 0.873 0.914 0.966
38 0.407 0.448 0.517 0.624 0.749 0.791 0.89

26.5 0.285 0.338 0.378 0.477 0.541 0.593 0.687
18.8 0.189 0.235 0.256 0.33 0.372 0.414 0.488
13.3 0.129 0.17 0.179 0.236 0.265 0.295 0.349
9.4 0.092 0.12 0.128 0.168 0.186 0.21 0.246
6.6 0.063 0.085 0.091 0.116 0.128 0.147 0.168

Examination of these data indicated that the results fitted the “simple” model of batch
grinding kinetics [4,7]. This model results from a compensation condition where larger
particle sizes break more quickly than smaller sizes but the fraction of their breakage
products that is smaller than a chosen size x (less than the breaking sizes) is lower, to the
extent that the rate of production of material smaller than size x depends on the amount of
material larger than size x but NOT on the size distribution of the larger sizes. The normal
batch grinding equation then becomes:

rate of increase of mass of particles less than size xi = sum of all contributions from
breakage of larger sizes

that is:
dP(xi, t)

dt
W =

i−1

∑
j=1

Bi,jSjwjW (6)

where:
wj is the fraction of the hold up W that has particle sizes in the size interval indexed

by j.
Bi,j is the primary cumulative breakage distribution function (i.e., the mass fraction of

products broken from the size interval indexed by j that have sizes less than or equal to
particle size xi).

Sj is the specific rate of breakage of particles in the size range of interval j, j < i. Since
the compensation condition states that Bi,j Sj is a function of xi only, Bi,j Sj can be replaced
by S(xi). This now has the meaning of the specific rate of breakage of all sizes larger than xi.

Since S(xi) is a constant for a chosen xi it can be taken out of the summation, while W
cancels and the sum of wj is the fraction of the particle mass that is greater than or equal to
size xi; i.e., 1 − P(xi,t). Separating and integrating Equation (6) from t = 0 to t = τ with these
changes and using the initial condition of 1 − P(xi,0) = 1 − F(xi) gives the simple model
equation for batch grinding:

P(xi, τ) = 1− [1− F(xi)] exp(−Si−1τ) i > 1
= 1 i = 1

(7)

The applicability of this equation to the data can be tested by plotting (1 − P)/(1 − F)
for chosen particle sizes, on a log scale, versus τ on a linear scale, as shown in Figure 4.
There is scatter in some of the results, but the general pattern is that the model describes the
data with reasonable precision. Note that Pi depends on Si−1 not Si, as P2 clearly depends
on S1. Furthermore, Equation (7) is continuous in grinding time t but discrete in size x.



Minerals 2022, 12, 679 8 of 13

Figure 4. Example of fit of simple-model first-order disappearance according to Equation (7), shown
as a solid line, for selected sizes (Run 1).

The simple solution for batch grinding for time t is:

1− P(xi, t) = (1− Fi) exp(−Sit) i > 1
= 0 i = 0

(8)

This can be plotted as the fraction 1 − P(xi,t)/(1 − Fi) versus grinding time t. It is
algebraically convenient to denote the ratio 1 − P(xi,t)/(1 − Fi) as Y(i,t):

Y(i, t) = exp(−Sit) (9)

where t is a suitable range of time values. Therefore, a plot of Y(i,t) versus t on a log-linear
scale will give a straight line. Similarly, Xi,k is defined as the matrix of experimental values
of (1 − Pi,k)/(1 − Fi), with k indexing the (discontinuous) values of experimental grinding
times. Si is adjusted to match the experimental values for a chosen i (i.e., a chosen xi). This
is repeated for different sizes. A good fit to the experimental values of Xi,k will show if the
simple model applies and the vector of Si values can be obtained.

Figure 5 shows that the relation can be expressed as:

S(x) = a
(

x
xs

)α

, a = 7.5 × 10−5, α = 1.27, xs = 1 (10)

Figure 5. Variation of specific rate of breakage Si with particle size xi. The solid line is Equation (10)
for the given parameters.
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It should be understood that xs is a standard size, 1 micron in this case, so x/xs is
dimensionless and a has units of fraction per minute; i.e., min−1. It is common to leave out
xs as its value is one, but its inherent presence must be remembered to avoid confusion
with units.

In the simple model of grinding kinetics, S(x) has the meaning of the specific rate of
breakage (fraction per unit time) of all particles greater than size x to sizes less than or equal
to size x. Thus, a and α are characteristic parameters that vary with mill conditions and the
material being ground. The cumulative primary breakage distribution B is dimensionally
normalized and is:

B(x, y) =
(

x
y

)α

y ≥ x (11)

Then, as:
S(y) = ayαB(x, y)S(y) = axα (12)

Equation (12) is the compensation condition that is necessary for the simple model to be
valid [7]; i.e., SB is a function of x but not of larger size y. Equation (10) can be expressed as:

Si = a(xi)
α (13)

Equation (7) gives:
PCi,k = 1− (1− Fi)exp(−Sitk) (14)

where PC is the computed model value.
In addition to the methods of determining a and α given above, the values can be

found by assuming the model to apply (as indicated here) and choosing values for a and α
that give the best fit between the computed and experimental values of the product size
distributions, as is shown in Figure 6. The criterion chosen here is unweighted least squares
of error (as described in the Statistical Analysis in Section 6):

difPi,k = Pi,k − PCi,k (15)

WSi,k =
−−−−−−−−→

(difPi,k)
2 (16)

SSQ = ∑
k

∑
i

WSi,k (17)

Figure 6. Product size distributions at grinding times 0 (feed), 15, 60 and 150 min; symbols are
experimental data, lines the model values (a = 7.6 × 10−5 min−1, α = 1.27, Run 1).

The adequacy of the fit with the simple model can also be demonstrated by comparing
measured and calculated % < size for selected sizes for all grinding times. This is shown in
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Figure 7. The slope of the straight line in this figure is 1, passing through 0, and there is
very little scatter for the selected particle sieve sizes.

Figure 7. Experimental values of % < size versus predicted model values, for sizes xi = 75, 26.5 and
9.4 microns, for the six grinding times (a = 7.6 × 10−5 min−1, α = 1.27, Run 1).

5. Results for All Runs

Table 4 gives the results for a and α plus the SSQ criterion value for each run.

Table 4. Estimates of the simple model parameters.

Run No. a (min−1) α SSQ Slurry Conc.
(wt. % Ore)

1 7.6 × 10−5 1.27 0.021 59
2 2.6 × 10−5 1.7 0.019 47.5
3 2.7 × 10−5 1.5 0.039 54.8
4 3.0 × 10−5 1.5 0.028 52.5
5 2.0 × 10−5 1.7 0.025 49.4
6 1.3 × 10−5 1.8 0.014 54.2
7 3.0 × 10−5 1.5 0.218 64.3
8 4.0 × 10−5 1.5 0.059 57.4
9 2.0 × 10−5 1.8 0.022 49.0

It can be seen that Run 7 has an SSQ several times higher than the other values. There
was nothing unusual about the test conditions, but Duffy reported that the mill appeared
to be blocking during this run. Consequently, Run 7 was ignored in further analysis of the
results. It can be observed that the values of α are 1.5 plus or minus about 0.3. It is expected
that the a values should vary with slurry density (see below) but there is no physical reason
why changes in slurry density would make smaller particles break slower or faster with
respect to larger particles, so the value of α should be constant. In addition, it has been
shown [8] that determination of parameters in the presence of variability in the data can
give ranges of the parameter values that are equally valid. A discussion in detail of the
application of statistics to the determination of kinetic breakage parameters is given in
Austin, Klimpel and Luckie, [9].

Consequently, the data for Run 1 were re-examined to see if the use of α = 1.5 would
give a statistically significant worse result than α = 1.27. For any value of α the value of a
that gives the minimum SSQ is found by a search, and α is also searched to get the optimum
minimum.

Trial values of a and α for Run 1 are:

• SSQ = 0.019 for α = 1.27, a = 7.9 × 10−5;
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• SSQ = 0.014(5) for α = 1.4, a = 5.2 × 10−5;
• SSQ = 0.016 for α = 1.5, a = 3.7 × 10−5;
• SSQ = 0.027 for α = 1.6, a = 2.5 × 10−5.

It can be seen that there is a range of a, α pairs that give little change in SSQ values.
The optimum minimum was for α = 1.45, a = 4.4 × 10−5, giving SSQ = 0.014(5).

6. Statistical Analysis

In order to see if the value of α = 1.5 was valid, a statistical analysis [9] was adapted
to apply to the simple model. Since this model considers a kinetic mass-time balance
for breakage of material greater than sieve size x to product less than size x, the correct
definition of error is Pi − PCi. In this model there are only two parameters, a and α. An
investigation was made of weighting factors as follows.

Values of error could have had a bias of becoming larger error values at higher 1 − PC
values. However, the error values were so variable that it was not possible to decide on the
weighting relation with a graphical examination, so a least squares search was undertaken.
The objective was to minimize the sum of squares of error taken over all the data points
with a suitable weighting factor.

SSQW = ∑
k

∑
i

[
(difPi,k)

2[
(1− PCi,k)

γ]
]

(18)

The value of γ was varied from 0 to 2, giving: γ = 0, SSQW = 0.014; γ = 1/2,
SSQW = 0.032; γ = 1, SSQW = 0.097; γ = 1.5, SSQW = 0.56; and γ = 2, SSQW = 9.9. The
results suggest that there is no weighting factor; that is, γ = 0 and the sum of squares is of
“absolute error squared”; γ = 2 would give “relative error squared”.

The values of a and α that give the minimum SSQ are called “optimal” and the
corresponding SSQ is the optimal value. Then, the F factor is defined as

F =

(
SSQ

n−N+1

)
(

SSQopt
n−N

) (19)

In this equation, n is the number of data points and N is the number of parameters
being searched. Each test had 12 data points and 6 times, so n = 72. N is 2 for a and α, but
when α is set (at 1.5 in this case) then SSQ has N replaced by N − 1. Examination of a table
of F values [10] as a function of Q(F|ν1,ν2) where ν1 = n − N, ν2 = n − N + 1 and Q is the
probability that SSQ > SSQopt, will show if the SSQ error from forcing alpha to be 1.5 is
significantly greater than SSQopt, according to where F is placed in the table.

For the case considered here, the value of F < 1.5 (95% confidence level) implies
that SSQ is not significantly greater than SSQopt. Table 5 gives the results of applying
Equation (19) to all tests (except Run 7).

Table 5. The “F-Test” results for Runs 1 to 9.

Run α a SSQopt α a SSQ F

1 1.45 4.4 × 10−5 0.014 1.5 3.7 × 10−5 0.016 1.12
2 1.7 2.6 × 10−5 0.019 1.5 4.8 × 10−5 0.028 1.45
3 1.4 3.7 × 10−5 0.012 1.5 3.7 × 10−5 0.013 1.07
4 1.65 1.7 × 10−5 0.024 1.5 3.0 × 10−5 0.028 1.15
5 1.7 2.0 × 10−5 0.025 1.5 3.85 × 10−5 0.037 1.46
6 1.8 1.3 × 10−5 0.014 1.5 3.5 × 10−5 0.018 1.28
7 Excluded
8 1.6 2.8 × 10−5 0.028 1.5 3.95 × 10−5 0.029 1.03
9 1.8 2.0 × 10−5 0.009 1.5 4.85 × 10−5 0.021 2.30
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It is seen that the F value is less than 1.5, a requisite to conclude that there is no
significant error introduced by using α as 1.5 with the corresponding a values, except in
Run 9. Thus, it was decided to choose α as 1.5 for all runs and therefore to use only the
values of a to correlate the effects of test conditions on specific rates of breakage.

7. Summary and Conclusions

(1) The data give strong evidence that the kinetics of size reduction in this batch grinding
system can be fitted with the simple model of first-order breakage. It must be empha-
sized that this very special form of the general equations for the kinetics of grinding
has not been found to apply to other mills, such as tumbling ball mills, rod mills, etc.,
either in our own experience or in that of others (to the best of our knowledge). In fact,
it has generally been used only to illustrate the concepts involved. It is possible that
the condition in Equation (12) holds reasonably well for the range of sizes covered
by Duffy’s tests. Figure 6 shows a slight degree of deviation from the measured size
distributions that may be due to model deficiency, but it is also possible that this is just
the result of the highly restricted number of parameters (only one) that were allowed
to vary. Further work is required to verify if the simple model can be applied to other
grinding systems (with different mill types, grinding conditions and ores).

(2) The model requires only the determination of two parameters, a and α, to calculate
the specific rates of breakage for any set of mill conditions. This makes it possible
to determine the parameters with simple search methods, using only the feed and
product size distributions.

(3) Statistical analysis of the data from nine test runs, with the variables ball load, ball
diameter and slurry density, showed that a value of α = 1.5 could be used for seven of
the nine runs.

(4) There seems to be no reason to doubt that the model can be extended to steady state
continuous operation of the mill, as is done by extending the batch grinding kinetics
of a laboratory or pilot-scale ball mill to the operation of a full-scale [11].

(5) It is necessary in progressing from batch testing to continuous operation to allow
for exit classification due to sedimentation in the upper part of the continuous mill.
The data were not sufficient to make any estimates of exit classification because no
samples were taken from the sedimentation zone, only from the overflow.

(6) In addition, it will be necessary to determine a residence time distribution for this
type of mill, as well as methods for scale-up to full-scale mills, probably via net mill
power. These factors will be considered in future parts of our work.

(7) As in tumbling ball mills, the positive value of α shows that larger particle sizes are
broken more rapidly than small particles.

Author Contributions: Conceptualization, L.G.A.; Formal analysis, L.G.A. and C.L.S.; Investigation,
L.G.A.; Software, L.G.A.; Writing—original draft, C.L.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. King, R.P. Modelling and Simulation of Mineral Processing Systems, 2nd ed.; SME: Englewood, CO, USA, 2012.
2. Duffy, M.S. Investigation into the Performance Characteristics of Tower Mills. Master’s Thesis, Department of Metallurgy,

University of Queensland, St Lucia, QLD, Australia, 1994.
3. Austin, L.G.; Klimpel, R.R.; Luckie, P.T. The Batch Grinding Equation: The Size-Mass Rate Balance. In Process Engineering of Size

Reduction: Ball Milling; Society of Mining Engineers of the AIME: New York, NY, USA, 1984; Chapter 4, pp. 61–78.
4. Gaudin, A.M.; Meloy, T.P. Model and a Comminution Distribution Equation for Repeated Fracture. Trans. SME-AIME 1962, 223,

43–50.



Minerals 2022, 12, 679 13 of 13

5. Amestica, R.; Gonzales, G.D.; Barria, J.; Magne, L.; Menacho, J.; Castro, O. A SAG Mill Circuit Dynamic Simulator Based on a
Simplified Mechanistic Model. In Proceedings of the XVIII International Mineral Processing Congress, Sydney, Australia, 23–28
May 1993.

6. Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Mill Conditions in Tumbling Ball Mills: Definitions. In Process Engineering of Size Reduction:
Ball Milling; Society of Mining Engineers of the AIME: New York, NY, USA, 1984; Chapter 1.

7. Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Solution of the Batch/Plug Flow Grinding Equation: The Simple Solution. In Process
Engineering of Size Reduction: Ball Milling; Society of Mining Engineers of the AIME: New York, NY, USA, 1984; Chapter 8,
pp. 169–171.

8. Klimpel, R.R.; Austin, L.G. The Back Calculation of Specific Rates of Breakage from Continuous Mill Data. Powder Technol. 1984,
38, 77–91. [CrossRef]

9. Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Statistical Analysis. In Process Engineering of Size Reduction: Ball Milling; Society of Mining
Engineers of the AIME: New York, NY, USA, 1984; Chapter 10, pp. 221–223.

10. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions; National Bureau of Standards Applied Mathematics
Series 55; U.S. Government Printing Office: Washington, DC, USA, 1964; pp. 986–990.

11. Austin, L.G.; Julianelli, K.; De Souza, A.S.; Schneider, C.L. Simulation of wet ball milling of iron ore at Carajás, Brazil. Int. J. Miner.
Process 2007, 84, 157–171. [CrossRef]

http://doi.org/10.1016/0032-5910(84)80036-4
http://doi.org/10.1016/j.minpro.2006.09.010

	Introduction 
	Test Methods 
	Mill Conditions 
	Preliminary Analysis of the Kinetics of Size Reduction 
	Results for All Runs 
	Statistical Analysis 
	Summary and Conclusions 
	References

