Timing of Paleozoic Metamorphism in the Jiaobei Terrane, East China: Evidence from Apatite U-Pb Age and Trace Element Composition

Kefei Sun 1,2, Maoguo An 1,2,*, Xiangyong Jiang 1, Chenglong Zhi 1,2 and Hongjie Tan 1

1 School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
2 Shandong Provincial Lunan Geology and Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Jining 272100, China
* Correspondence: maoguoan0311@163.com

Abstract: The northward subduction of the Paleo-Tethys oceanic crust in the Paleozoic is critical for the tectonic evolution of the Qinling-Tongbai-Hong’an-Dabie-Sulu-Imjingang-Gyeonggi orogenic belt. However, the Paleozoic geological fingerprint of the Paleo-Tethys oceanic crust subduction in the Dabie-Sulu orogenic belt remains obscure. In the present study, apatite from the Muniushan monzogranite in the Houkuang area was analyzed to constrain the age of metamorphism in the Jiaobei Terrane and is regarded as the response to the Paleo-Tethys oceanic crust subduction in the Early Permian. Muniushan apatite with obvious negative Eu anomaly is enriched in LREE and depleted in HREE. The chondrite-normalized REE patterns of apatite correspond with I-type granitoids and mafic igneous rocks, implying a magmatic origin. Igneous apatite grains have reset compositional zonation in the cathodoluminescence image. Apatites plotted on a support vector machine apatite classification biplot and Eu/Y-Ce discrimination diagram shows a tendency from the region of “mafic igneous rocks and I-type granitoids” to “low and middle metamorphic”. This evidence consistently suggests that the Muniushan apatite suffered metamorphism at a later stage. The twenty-six apatite grains from the Muniushan monzogranite yield a metamorphic age of 297 ± 8 Ma (by LA-ICP-MS U-Pb), which is different from the Muniushan zircon SHRIMP U-Pb results of 2110 ± 4 Ma, indicating the metamorphism occurred in the Early Permian and reset the U-Pb system of apatite. The Early Permian metamorphism that occurred in the Jiaobei Terrane is synchronous to the subduction of the Paleo-Tethys oceanic crust and is the response to the Paleo-Tethys oceanic crust subduction.

Keywords: apatite; U-Pb geochronology; trace elements; late Paleozoic metamorphism; Jiaobei Terrane

1. Introduction

The Qinling-Tongbai-Hong’an-Dabie-Sulu (east-central China)-Imjingang-Gyeonggi (central Korea) orogenic belt was formed in the Paleozoic to early Mesozoic convergent plate motion (Figure 1a,b) [1–4]. The Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt, between the North China Block (NCB) and the South China Block (SCB), experienced the early to mid-Paleozoic oceanic arc accretion, Prototethyan and Paleo-Tethys oceanic crustal subduction, the Late Permian to Triassic continental subduction, HP/UHP metamorphism and subsequent exhumation [5–10]. The arc-continent collision in the late Paleozoic was caused by the northward subduction of the Paleo-Tethys oceanic crust, leading to the low-P metamorphism in the Qinling-Tongbai orogenetic belt, the HP eclogite facies metamorphism in the Hong’an orogenetic belt and the crustal accretion to the NCB [11–13]. The subduction of the Paleo-Tethys oceanic crust in the Hong’an orogenetic belt starts in the Carboniferous resulting in the eclogite facies metamorphism at 309 ± 3 Ma [14]. The Ogcheon belt, south of the Gyeonggi orogenetic belt, is regarded as an eastern continuation of the Dabie-Sulu belt between the North and South China blocks (Figure 1a) [4,15–18]. The Ogcheon belt also underwent the Early Permian (290–280 Ma) regional metamorphic event, which is
synchronous to the Paleozoic Paleo-Tethys oceanic crust subduction [4,15,16]. However, geological fingerprints of Paleozoic arc-continent collision in the Dabie-Sulu Orogenic Belt in east China remain obscure.

The Jiaobi Terrane, northwest of the Sulu Belt, was coalesced with the Sulu Terrane during the Paleozoic to early Mesozoic convergent plate motion (Figure 1b). Paleoproterozoic Muniushan monzogranite, southeasternmost of the Jiaobi Terrane, is susceptible to the Paleo-Tethys oceanic crust subduction (Figures 1 and 2). Apatite, a common and important accessory mineral, is formed in different apatite-generation environments. The temperature sensitivity (350–570 °C) of the apatite U-Pb system makes it a representative medium-low temperature thermochronology tool [19–25]. It is prone to isotopic resetting, which occurred in the metamorphism and recorded the age of metamorphism [26–30]. In the present study, representative Muniushan monzogranite from the Jiaobi Terrane was selected to investigate a representative geological fingerprint of the Paleozoic arc-continent collision that occurred in the Dabie-Sulu orogenic belt. Muniushan apatite U-Pb geochronology and compositional analyses were conducted to prove that the late Paleozoic metamorphism that occurred in the Jiaobi Terrane was in response to the northward subduction of the Paleo-Tethys oceanic crust during the same period.

2. Geological Background

The Jiaobi Terrane, to the east of the regional Tan-Lu Fault, consists of the Jiaobi Uplift in the northwest and the Jiaolai Basin in the southeast (Figure 1a,b) [31–34]. The Jiaobi Uplift mainly comprises the Neoarchean Jiaodong group of amphibolites and tonalite-trondhjemite-granodiorite (TTG) gneisses and the Paleoproterozoic sedimentary Fenzishan and Jingshan groups [1,2,33,35–38]. Magmatic intrusions into the Jiaobi Uplift include the Late Jurassic (ca. 160–145 Ma) Linglong granite, the Early Cretaceous (ca. 130–122 Ma) Guojialing granitoid, and the Early Cretaceous (ca. 119–110 Ma) Aishan-Type granitoid (Figure 1b) [31,39–44]. The main controlling structure in the Jiaobi Uplift is the NE-trending Sanshandao, Jiaojia, Zhaoping, and Qixia fault zones (Figure 1b) [45–47]. The Jiaolai Basin is the Cretaceous pull-apart basin, where the development is controlled by Late Mesozoic strike-slip and pull-apart movements along NNE-trending faults [37,48–50]. The exposed formations in the area include the Paleoproterozoic sedimentary Fenzishan and Jingshan groups, the Cretaceous Laiyang group and the Cenozoic clastic rocks [51,52]. Magmatic rocks in the Jiaolai Basin comprise the Paleoproterozoic Muniushan and Early Cretaceous Aishan granites (Figure 1b) [53,54]. The main controlling structure in the Jiaolai Basin is the NE-trending Tan-Lu and Muping-Jimo fault zones (Figure 1b).

The Houkuang area is located in the northeastern part of the Jiaolai Basin (Figures 1 and 2). Abundant gold resources in the area are widespread, such as the Tudui, Shawang, Dongliujia, Longkou, and Houkuang gold deposits [34,43,55,56]. The strata consist of the Paleoproterozoic biotite granulite, diopside granulite and biotite schist, Cretaceous gravel sandstone, muddy siltstone and conglomerate, and Cenozoic clastic rocks. The major fault is dominated by the SE-dipping Guocheng Fault. The main magmatic rock exposed in the area is the Paleoproterozoic Muniushan monzogranite (Figure 2).
Figure 1. Simplified map showing the location of the Jiaobei Terrane (a) and geological map of the Jiaodong Peninsula (b). The dashed line means the eastern continuation of the Dabie–Sulu orogenic belt and the rectangle shows the Muniushan monzogranite [35].

Figure 2. Geological map of the Houkuang gold deposit in the Jiaolai Basin showing the major geological units and sample locations [35].

3. Samples and Methodology

3.1. Sample Description

One monzogranite sample was collected from the Muniushan pluton, namely 21HK01 (37°19′01″ N, 120°51′58″ E). The sample locations and hand specimen photographs are shown in Figures 2 and 3. Monzogranite intrudes into the Paleoproterozoic Jingshan group (Figure 3a,b). Shear joints are distributed on the surface of Muniushan pluton, which was affected by the mylonitization (Figure 3c,d). The light gray-black monzogranite samples are characterized by a medium-fine granular texture and massive structure (Figure 4a). The main minerals are quartz, plagioclase, and K-feldspar, and the secondary minerals are chlorite and sericite (Figure 4b,c). The quartz from monzogranites is subhedral to anhedral and the particle size distribution ranges from 0.1~0.6 mm (Figure 4b). The plagioclase...
and K-feldspar have subhedral to anhedral crystals, of which the particle size distribution ranges from 0.2 to 0.5 mm and 0.1 to 0.3 mm (Figure 4b,c). Chloritization and sericitization were observed under the microscope (Figure 4b,c). The apatite is mainly accessory mineral in the monzogranite (Figure 4d).

Figure 3. Field photographs of the Muniushan monzogranites. Field photographs showing the monzogranite intrudes into the Paleoproterozoic Jingshan group (a,b). Field photographs showing the shear joint and mylonitization on the monzogranite (c,d).

Figure 4. Photomicrographs showing the Muniushan monzogranite samples. Hand specimens of the Paleoproterozoic Muniushan monzogranites (a). Transmitted crosspolarized light photomicrographs (b,c). Single polarized photomicrograph (d). Pl = plagioclase, Qz = quartz, Chl = chlorite, Kfs = K-feldspar, Ser = sericite, Ap = apatite [23,24,57].

3.2. Apatite LA-ICP-MS U-Pb Dating

The separation of apatite grains was carried out at the Langfang Chengxin Geological Service Co., Hebei Province, China. The apatite grains were separated from the Muniushan monzogranite through coarse and fine crushing, panning, magnetic separation, and other methods. Magnetic techniques were used to separate the apatite grains from the clastic grains. In order to investigate the internal structure of the apatite, the relatively complete and transparent apatite crystals were mounted in the epoxy, polished to nearly half-section,
and cleaned in an ultrasonic cleaner containing a 5% HNO₃ solution. Transmission, reflection, and CL imaging were also completed at the Langfang Chengxin Geological Service Co., Langfang, China.

The apatite U-Pb analyses were carried out using the LA-ICP-MS at the Yanduzhongshi Geological Analysis Laboratory, Beijing, China. The laser analyses were performed using a Neptune double-focusing multiple-collector ICP-MS attached to a 193 nm NWR193 Ar-F excimer laser ablation system. All apatite analyses were completed with a beam diameter of 37 µm, 10 Hz repetition rate and a 0.25 ml/pulse power, during a 70 s analysis including 20 s measurement of gas blank, followed by ablation of the sample for approximately 40 s by raster. MAD2 [58], McClure Mt. [59], Otter Lake and Durango were used as the age standards for apatite U-Pb. Data were processed using the Isoplot 3.0 program [21,60,61].

3.3. Trace Element Analyses of Apatite

The LA-ICP-MS analyses of trace elements in apatite were carried out at the Isotopic Laboratory, Tianjin Center, China Geological Survey, Tianjin, China, using a 193 nm excimer ArF LA system and an Agilent 7900a ICP-MS. All analyses were conducted with a beam diameter of 29 µm, 8 Hz ablation frequency, and 80 mJ laser energy. In order to ensure the accuracy of the test, the NIST SRM 610 and 612 reference material glasses were used as an external reference material for trace element determinations on apatite. The internal element standard isotope was ⁴³Ca for apatite trace element analyses. Concordia plots and age calculations were reported at the 2σ uncertainty level and were processed using the ICPMSDataCal 11.8 program [62]. Thirty-three elements such as Ca, P, Si, Al, Fe, Mg, Mn, Sr, Y, and REE of apatite were determined in the experiment.

4. Results

4.1. Morphology and Geochronology of Apatite

The 21HK01 apatite was dated by LA-ICP-MS, and the morphology and plots of data are shown in Table 1 and Figure 5b,c. Most apatite grains from the monzogranite (21HK01) are colorless, transparent, and subhedral to anhedral. Apatite grains from sample 21HK01 display lengths of 100–250 µm and length/width ratios ranging from 2:1 to 4:1. In the CL image, apatite grains show a changed compositional zonation. Twenty-six apatite grains were analyzed on the light and dark compositional zonation. The samples yield a lower intercept age of 297 ± 8 Ma (n = 26, MSWD = 1.2) and a weighted mean age of 295 ± 11 Ma (n = 26, MSWD = 0.7) (Figure 5b,c), representing the metamorphic age.

Figure 5. CL image of apatite grains from monzogranite sample 21HK01 (a). Apatite Tera-Wasserburg concordia plots for Muniushan apatite U-Pb analyses (b). Weighted mean ⁴⁰⁰Pb/²₃⁸U ages for Muniushan apatite U-Pb analyses (c).
4.2. Trace Elements of Apatites

The trace element composition and plot of apatite are shown in Table 2 and Figure 6. The total LREE (ΣLREE) ranges from 650 to 1591 ppm, and the total HREE (ΣHREE) ranges from 231 to 855 ppm. The Eu anomalies are >0.62 (Eu/Eu* = 0.62–1.02). Apatite is enriched in LREE and depleted in HREE. The contents of Sr and Y from the Muniushan apatite ranges from 440.8 to 655.6 ppm and 128.4 to 503.4 ppm. The Sr/Y contents are between 1.24 and 4.43.

Figure 6. Chondrite-normalized REE + Sr multi-element plots ('spidergrams') of Muniushan apatite [63].

Table 1. LA-ICP-MS U-Pb apatite data from monzogranite (21HK01) at Houkuang.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Th</th>
<th>U</th>
<th>Th/U</th>
<th>207Pb/206Pb Ratio 1σ</th>
<th>207Pb/235U Ratio 1σ</th>
<th>206Pb/238U Ratio 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>21HK01-02</td>
<td>18</td>
<td>5</td>
<td>3.56</td>
<td>0.7492 ± 0.0190</td>
<td>25.2888 ± 0.2111</td>
<td>0.2488 ± 0.0110</td>
</tr>
<tr>
<td>21HK01-03</td>
<td>13</td>
<td>4</td>
<td>3.61</td>
<td>0.5126 ± 0.0203</td>
<td>6.2460 ± 0.2403</td>
<td>0.0935 ± 0.0028</td>
</tr>
<tr>
<td>21HK01-04</td>
<td>11</td>
<td>3</td>
<td>3.62</td>
<td>0.5533 ± 0.0239</td>
<td>6.9290 ± 0.2295</td>
<td>0.0995 ± 0.0027</td>
</tr>
<tr>
<td>21HK01-05</td>
<td>16</td>
<td>6</td>
<td>2.78</td>
<td>0.6071 ± 0.0208</td>
<td>11.4069 ± 0.4121</td>
<td>0.1383 ± 0.0042</td>
</tr>
<tr>
<td>21HK01-07</td>
<td>6</td>
<td>3</td>
<td>2.26</td>
<td>0.6956 ± 0.0245</td>
<td>13.1914 ± 0.4346</td>
<td>0.1541 ± 0.0045</td>
</tr>
<tr>
<td>21HK01-08</td>
<td>21</td>
<td>4</td>
<td>4.68</td>
<td>0.3804 ± 0.0208</td>
<td>3.3962 ± 0.1559</td>
<td>0.0709 ± 0.0021</td>
</tr>
<tr>
<td>21HK01-09</td>
<td>13</td>
<td>5</td>
<td>2.47</td>
<td>0.4698 ± 0.0178</td>
<td>5.7372 ± 0.2228</td>
<td>0.0909 ± 0.0024</td>
</tr>
<tr>
<td>21HK01-11</td>
<td>8</td>
<td>4</td>
<td>2.00</td>
<td>0.5315 ± 0.0229</td>
<td>7.6438 ± 0.3909</td>
<td>0.1073 ± 0.0043</td>
</tr>
<tr>
<td>21HK01-15</td>
<td>15</td>
<td>5</td>
<td>3.15</td>
<td>0.5119 ± 0.0234</td>
<td>6.7918 ± 0.2511</td>
<td>0.1003 ± 0.0029</td>
</tr>
<tr>
<td>21HK01-17</td>
<td>15</td>
<td>6</td>
<td>2.56</td>
<td>0.4387 ± 0.0131</td>
<td>4.847 ± 0.1352</td>
<td>0.0840 ± 0.0018</td>
</tr>
<tr>
<td>21HK01-18</td>
<td>10</td>
<td>4</td>
<td>2.38</td>
<td>0.5298 ± 0.0257</td>
<td>7.0921 ± 0.2743</td>
<td>0.1036 ± 0.0027</td>
</tr>
<tr>
<td>21HK01-19</td>
<td>13</td>
<td>4</td>
<td>3.21</td>
<td>0.3997 ± 0.0159</td>
<td>4.0936 ± 0.1495</td>
<td>0.0785 ± 0.0021</td>
</tr>
<tr>
<td>21HK01-20</td>
<td>7</td>
<td>3</td>
<td>2.07</td>
<td>0.5729 ± 0.0290</td>
<td>9.1053 ± 0.4528</td>
<td>0.1223 ± 0.0051</td>
</tr>
<tr>
<td>21HK01-22</td>
<td>12</td>
<td>3</td>
<td>3.73</td>
<td>0.5013 ± 0.0322</td>
<td>5.7695 ± 0.2848</td>
<td>0.0942 ± 0.0035</td>
</tr>
<tr>
<td>21HK01-23</td>
<td>7</td>
<td>3</td>
<td>2.15</td>
<td>0.6555 ± 0.0166</td>
<td>18.8423 ± 0.7507</td>
<td>0.2071 ± 0.0062</td>
</tr>
<tr>
<td>21HK01-24</td>
<td>8</td>
<td>3</td>
<td>2.34</td>
<td>0.5269 ± 0.0181</td>
<td>7.8596 ± 0.2612</td>
<td>0.1137 ± 0.0033</td>
</tr>
<tr>
<td>21HK01-25</td>
<td>10</td>
<td>5</td>
<td>2.09</td>
<td>0.5818 ± 0.0185</td>
<td>11.2593 ± 0.5663</td>
<td>0.1431 ± 0.0033</td>
</tr>
<tr>
<td>21HK01-26</td>
<td>9</td>
<td>3</td>
<td>2.73</td>
<td>0.5499 ± 0.0235</td>
<td>9.6934 ± 0.6076</td>
<td>0.1298 ± 0.0058</td>
</tr>
<tr>
<td>21HK01-27</td>
<td>14</td>
<td>5</td>
<td>2.61</td>
<td>0.4891 ± 0.0130</td>
<td>6.9329 ± 0.1698</td>
<td>0.1067 ± 0.0022</td>
</tr>
<tr>
<td>21HK01-29</td>
<td>6</td>
<td>3</td>
<td>2.30</td>
<td>0.5879 ± 0.0313</td>
<td>9.5268 ± 0.2753</td>
<td>0.1290 ± 0.0042</td>
</tr>
<tr>
<td>21HK01-30</td>
<td>9</td>
<td>3</td>
<td>2.58</td>
<td>0.6800 ± 0.0257</td>
<td>23.3600 ± 1.2905</td>
<td>0.2484 ± 0.0102</td>
</tr>
<tr>
<td>21HK01-32</td>
<td>7</td>
<td>3</td>
<td>2.33</td>
<td>0.6587 ± 0.0244</td>
<td>17.7866 ± 0.7779</td>
<td>0.2014 ± 0.0088</td>
</tr>
<tr>
<td>21HK01-33</td>
<td>10</td>
<td>3</td>
<td>2.94</td>
<td>0.6387 ± 0.0213</td>
<td>16.1999 ± 0.7132</td>
<td>0.1882 ± 0.0080</td>
</tr>
<tr>
<td>21HK01-34</td>
<td>14</td>
<td>4</td>
<td>3.28</td>
<td>0.7293 ± 0.0158</td>
<td>32.4341 ± 0.9251</td>
<td>0.3267 ± 0.0085</td>
</tr>
<tr>
<td>21HK01-36</td>
<td>5</td>
<td>3</td>
<td>1.75</td>
<td>0.5571 ± 0.0205</td>
<td>10.0301 ± 0.2563</td>
<td>0.1366 ± 0.0030</td>
</tr>
<tr>
<td>21HK01-37</td>
<td>7</td>
<td>3</td>
<td>2.46</td>
<td>0.5858 ± 0.0206</td>
<td>11.2902 ± 0.3714</td>
<td>0.1475 ± 0.0040</td>
</tr>
</tbody>
</table>

Apatite from monzogranite (21HK01): 297 ± 8 Ma (MSWD = 1.3, n = 26)
Table 2. LA-ICP-MS apatite trace element composition.

<table>
<thead>
<tr>
<th>Sample</th>
<th>01-01</th>
<th>01-02</th>
<th>01-06</th>
<th>01-07</th>
<th>01-13</th>
<th>01-14</th>
<th>01-18</th>
<th>01-19</th>
<th>01-21</th>
<th>01-23</th>
<th>01-28</th>
<th>01-29</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>184,206</td>
<td>185,857</td>
<td>186,152</td>
<td>183,180</td>
<td>203,961</td>
<td>221,295</td>
<td>201,068</td>
<td>195,086</td>
<td>182,191</td>
<td>187,632</td>
<td>184,656</td>
<td>187,170</td>
</tr>
<tr>
<td>Sr</td>
<td>604.4</td>
<td>495.8</td>
<td>503.8</td>
<td>613.6</td>
<td>622.6</td>
<td>607.5</td>
<td>655.6</td>
<td>503.3</td>
<td>440.8</td>
<td>504.5</td>
<td>539.7</td>
<td>551.5</td>
</tr>
<tr>
<td>Y</td>
<td>114.8</td>
<td>185.4</td>
<td>393.6</td>
<td>253.1</td>
<td>503.4</td>
<td>202.1</td>
<td>148.2</td>
<td>216.2</td>
<td>243.1</td>
<td>182.3</td>
<td>152.7</td>
<td>128.4</td>
</tr>
<tr>
<td>La</td>
<td>125.7</td>
<td>109</td>
<td>268</td>
<td>150.4</td>
<td>148.4</td>
<td>116.1</td>
<td>184.8</td>
<td>144.1</td>
<td>146.1</td>
<td>143.1</td>
<td>151.1</td>
<td>159.6</td>
</tr>
<tr>
<td>Ce</td>
<td>395.4</td>
<td>304.3</td>
<td>762.9</td>
<td>465.1</td>
<td>381.9</td>
<td>356.6</td>
<td>459.1</td>
<td>384.1</td>
<td>417.3</td>
<td>448.4</td>
<td>422.3</td>
<td>367.1</td>
</tr>
<tr>
<td>Pr</td>
<td>47.7</td>
<td>41.3</td>
<td>101.3</td>
<td>67.5</td>
<td>49.5</td>
<td>61.1</td>
<td>56.6</td>
<td>48.2</td>
<td>58.6</td>
<td>66.2</td>
<td>56.3</td>
<td>48.4</td>
</tr>
<tr>
<td>Nd</td>
<td>214.5</td>
<td>195.9</td>
<td>458.8</td>
<td>317.2</td>
<td>214.9</td>
<td>363.3</td>
<td>252.7</td>
<td>214.3</td>
<td>280.1</td>
<td>327.9</td>
<td>259.7</td>
<td>226.4</td>
</tr>
<tr>
<td>Sm</td>
<td>36.8</td>
<td>38.9</td>
<td>87.3</td>
<td>61.6</td>
<td>39.1</td>
<td>123.4</td>
<td>45.2</td>
<td>40.0</td>
<td>52.5</td>
<td>64.7</td>
<td>44.4</td>
<td>32.4</td>
</tr>
<tr>
<td>Eu</td>
<td>9.4</td>
<td>9.4</td>
<td>21</td>
<td>15.2</td>
<td>9.5</td>
<td>27.4</td>
<td>12.2</td>
<td>10.4</td>
<td>11.3</td>
<td>14.7</td>
<td>10.1</td>
<td>8.9</td>
</tr>
<tr>
<td>Gd</td>
<td>36.4</td>
<td>41.9</td>
<td>86.4</td>
<td>61.2</td>
<td>38.2</td>
<td>148.7</td>
<td>46.5</td>
<td>40.1</td>
<td>53.9</td>
<td>60.7</td>
<td>44.3</td>
<td>31.9</td>
</tr>
<tr>
<td>Tb</td>
<td>4.2</td>
<td>5.1</td>
<td>10.9</td>
<td>7.2</td>
<td>4.3</td>
<td>19.3</td>
<td>5.9</td>
<td>4.7</td>
<td>6.6</td>
<td>7.1</td>
<td>5.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Dy</td>
<td>217.7</td>
<td>27.6</td>
<td>59.9</td>
<td>37.7</td>
<td>23.2</td>
<td>91.1</td>
<td>31.3</td>
<td>24.2</td>
<td>34.2</td>
<td>36.2</td>
<td>28.4</td>
<td>19.1</td>
</tr>
<tr>
<td>Ho</td>
<td>4.2</td>
<td>5.8</td>
<td>12.3</td>
<td>7.8</td>
<td>4.8</td>
<td>16.6</td>
<td>6.4</td>
<td>4.9</td>
<td>7.1</td>
<td>7.5</td>
<td>5.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Er</td>
<td>10.7</td>
<td>15</td>
<td>31.9</td>
<td>19.6</td>
<td>12</td>
<td>40.3</td>
<td>16.4</td>
<td>12.3</td>
<td>17.7</td>
<td>19.1</td>
<td>15.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Tm</td>
<td>1.4</td>
<td>1.9</td>
<td>4.1</td>
<td>2.4</td>
<td>1.6</td>
<td>4.8</td>
<td>2.1</td>
<td>1.5</td>
<td>2.1</td>
<td>2.3</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Yb</td>
<td>9.1</td>
<td>11.3</td>
<td>24.6</td>
<td>16.3</td>
<td>10</td>
<td>26.6</td>
<td>13.2</td>
<td>10.3</td>
<td>13.1</td>
<td>15.1</td>
<td>12</td>
<td>9.2</td>
</tr>
<tr>
<td>Lu</td>
<td>1.5</td>
<td>1.9</td>
<td>4</td>
<td>3</td>
<td>1.6</td>
<td>3.9</td>
<td>2.7</td>
<td>2.2</td>
<td>2.5</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Sr/Y</td>
<td>4.33</td>
<td>2.67</td>
<td>1.32</td>
<td>1.99</td>
<td>4.06</td>
<td>1.24</td>
<td>3.01</td>
<td>4.43</td>
<td>2.33</td>
<td>1.81</td>
<td>2.77</td>
<td>3.53</td>
</tr>
<tr>
<td>ΣLREE</td>
<td>747</td>
<td>650</td>
<td>1591</td>
<td>1000</td>
<td>799</td>
<td>897</td>
<td>953</td>
<td>791</td>
<td>902</td>
<td>985</td>
<td>888</td>
<td>773</td>
</tr>
<tr>
<td>ΣHREE</td>
<td>231</td>
<td>296</td>
<td>628</td>
<td>408</td>
<td>247</td>
<td>855</td>
<td>326</td>
<td>248</td>
<td>353</td>
<td>394</td>
<td>297</td>
<td>253</td>
</tr>
</tbody>
</table>

5. Discussion

5.1. Origins of Apatite

Apatites in this study are subhedral to anhedral and show pronounced LREE enrichment and HREE depletion on their chondrite-normalized REE patterns (Figures 5a and 6). As seen in the CL images, apatite grains show a changed but homogeneous compositional zonation (with light-dark zoning) (Figure 5a) and are interpreted to be of primary magmatic origin [64,65]. The “coupled REE pattern” of Muniushan apatite also shows the similar curve of apatite in mafic igneous rocks and I-type granitoids previously published, supporting the view of magmatic origin (Figure 6) [65–71]. In addition, the support vector machine apatite classification biplot and Eu/Y-Ce discrimination diagram show that Muniushan apatite has a trend toward the low- and medium-grade metamorphic and metasomatic fields that is interpreted as the influence of metamorphism at a later stage (Figure 7) [3,24,72,73]. The apatite only appears in Muniushan monzogranite, which implies that the apatite has a genetic relationship with the monzogranite. Previous studies of the geochronological data of Muniushan monzogranite show emplacement ages of ca. 2.1 Ga and metamorphic ages of ca. 1.85 Ga [74–77]. The apatite yields a U-Pb Tera-Wasserburg concordia plot with lower intercept age of 297 ± 8 Ma, which is significantly different from the zircon SHRIMP U-Pb geochronology results of the Muniushan monzogranite cluster at 2110 ± 4 Ma [77]. This may be explained by the closure temperature, at which the rock is formed and cools to a temperature where the loss path of daughter isotopes is negligible compared to the accumulation amount after radioactive timing begins [73,78]. The temperature of medium-grade metamorphism is above 550 °C, which is often higher than the apatite U-Pb closure temperature of 350–550 °C, and is easily to lead the isotopic resetting [3,79–82]. Therefore, we present Muniushan apatite with a magmatic origin that is affected by the metamorphism later.
The early crystallization of plagioclase would reduce the Eu anomalies in the oceanic crust in the Permo-Triassic [2,17,88,94,95]. The Hong'an Block situated in the west of the Dabie–Sulu orogenic belt forms the transition between zones exposing low-pressure and ultra-high-pressure rocks and is a coherent part of the Triassic Dabie–Sulu HP–UHP Terranes [88,89]. The subduction of the Paleo–Tethys oceanic crust possibly starts at ca. 320–300 Ma, as suggested by the late Paleozoic eclogite facies metamorphism in the Huwan shear zone in the Hong'an Block [2]. Published Nd isotope studies for eclogites in the Huwan shear zone have shown that eclogites have high Nd$_{(i)}$ values of -1.9 to 5.8, indicating the protoliths were derived from oceanic basalts [96]. Previous zircon Hf isotope analyses from the eclogite in the Huwan shear zone exhibit a large range in ϵHf$_{(i)}$ values from -4.9 to 12.4 and young T_{DM} age of 516 ± 48 Ma and are interpreted as the incorporation of a small quantity of older crustal materials during the protolith formation [1]. All these studies, therefore, argue for an eclogite connection of the Late Silurian. Metamorphic zircons from the eclogite in the Huwan shear zone are characterized by relatively flat REE patterns, low 176Lu/177Hf ratios (0.000004–0.000075) and slightly negative Eu anomalies (Eu/Eu* = 0.31–1.02) [2]. The early crystallization of plagioclase would reduce the Eu contents in residual melts and then influence their concentrations in zircon crystallizing.

Figure 7. Diagrams showing apatite trace element composition. Apatites plotted on a support vector machine apatite classification biplot (a) and a Eu/Y vs. Ce discrimination diagram of apatite [83,84] (b). Abbreviations: ALK—alkali-rich igneous rocks; HM—partial melts/leucosomes/high-grade metamorphic rocks; IM—mafic I-type granitoids and mafic igneous rocks; LM—low- and medium-grade metamorphic and metasomatic rocks; S—S-type granitoids and high aluminum saturation index (ASI) ‘felsic’ I-types; UM—ultramafic rocks including carbonatites, lherzolites, and pyroxenites.

5.2. Implications of the Timing of Paleozoic Metamorphism in the Jiaobei Terrane

The metamorphism of Muniushan apatite may be caused by the hydrothermal fluid from the magmatic intrusion event that occurred in the Early Permian. The apatite U-Pb age of 297 ± 8 Ma from the monzogranite samples represents the age of the magma intrusion. However, no magmatic hydrothermal events have been reported in the late Paleozoic in the Jiaobei Terrane so far. Geological fingerprints of the Paleozoic magmatic intrusion are also lacking in the Jiaobei Terrane to prove this [33–35,45,48]. Therefore, we suggest that the metamorphic age of Muniushan apatite may be explained by the northward subduction of the Paleo-Tethys oceanic crust. In the Carboniferous to early Mesozoic, the Paleo-Tethys oceanic crust subducted northward, and the Qinling-Tongbai-Hong’an-Dabie-Sulu (east-central China)-Imjingang-Gyeonggi (central Korea) orogenic belt was influenced by the subduction [85–93]. Thus, we propose that metamorphism of Muniushan apatite may be affected by the northward subduction of the Paleo-Tethys oceanic crust and is the response of the Jiaobei Terrane to the subduction event. Apatite’s U-Pb age of 297 ± 8 Ma represents the age of the Early Permian subduction.

Previous studies along the Qinling-Tongbai-Hong’an-Dabie-Sulu collisional belt show that the Hong’an-Dabie-Sulu collisional belt was influenced by the subduction of the Paleo-Tethys oceanic crust in the Permo-Triassic [2,17,88,94,95]. The Hong’an Block situated in the west of the Dabie-Sulu orogenic belt forms the transition between zones exposing low-pressure and ultra-high-pressure rocks and is a coherent part of the Triassic Dabie-Sulu HP-UHP Terranes [88,89]. The subduction of the Paleo-Tethys oceanic crust possibly starts at ca. 320–300 Ma, as suggested by the late Paleozoic eclogite facies metamorphism in the Huwan shear zone in the Hong’an Block [2]. Published Nd isotope studies for eclogites in the Huwan shear zone have shown that eclogites have high Nd$_{(i)}$ values of -1.9 to 5.8, indicating the protoliths were derived from oceanic basalts [96]. Previous zircon Hf isotope analyses from the eclogite in the Huwan shear zone exhibit a large range in ϵHf$_{(i)}$ values from -4.9 to 12.4 and young T_{DM} age of 516 ± 48 Ma and are interpreted as the incorporation of a small quantity of older crustal materials during the protolith formation [1]. All these studies, therefore, argue for an eclogite connection of the Late Silurian. Metamorphic zircons from the eclogite in the Huwan shear zone are characterized by relatively flat REE patterns, low 176Lu/177Hf ratios (0.000004–0.000075) and slightly negative Eu anomalies (Eu/Eu* = 0.31–1.02) [2]. The early crystallization of plagioclase would reduce the Eu contents in residual melts and then influence their concentrations in zircon crystallizing.
from such magma [64]. Thus, it is considered that zircon was formed under eclogite facies conditions, in the presence of garnet and absence of feldspar [2]. Published 40Ar-39Ar, U-Pb, Rb-Sr, and Sm-Nd ages to date the eclogite facies metamorphism in the Hong’an Block span from ca. 420–220 Ma [1,13,14,97–99]. According to the in situ zircon U-Pb and mineral Lu-Hf isochron methods, the Carboniferous metamorphic ages were documented from the same samples in several outcrops from the Huwan shear zone [94,95,97,98]. The Carboniferous zircon U-Pb ages range from 315 ± 17 to 301 ± 13 Ma with a weighted mean of 309 ± 3 Ma, which is taken as the best estimated age of the eclogite facies metamorphism, starting in the Huwan shear zone [2,14]. In addition, previous simultaneous in situ trace element and Lu-Hf and U-Pb isotope analyses of zircon grains from the Xiongdian and Sujaïhe eclogite in the Hong’an Block identify that the eclogite facies metamorphism occurred persistently in the Late Carboniferous to Early Permian period at ca. 306 to 283 Ma [90,91,100]. Taken together, these dates provide unambiguous evidence for the Carboniferous eclogite facies metamorphism. Previously, it has been suggested that the oceanic and continental subductions were a continuous process in the Hong’an orogenic belt, and the subduction of Paleo-Tethys oceanic crust began prior to ca. 315 Ma, reaching peak HP eclogite facies metamorphism at ca. 310 Ma, and starting exhumation at ca. 260 Ma [95]. Thus, the eclogite facies metamorphism in the Carboniferous in the Huwan shear zone is regarded as the response to the Paleo-Tethys oceanic crust subduction. Similar evidence was also found in the Ogcheon belt in South Korea [4,15,16,101]. The Ogcheon belt (south of the Gyeonggi belt), located in the east of the Dabie-Sulu orogenic belt, is often seen as the eastern continuation of the Dabie-Sulu orogenic belt [4,92]. According to the Pb-Pb whole-rock ages of slate and uraninite electron-microprobe Th-U total Pb chemical ages, the Ogcheon belt underwent the Early Permian (290–280 Ma) regional metamorphic event that was synchronous to the Paleo-Tethys oceanic crust subduction [4,15,16,101]. This study supplied the Early Permian metamorphic ages that are consistent with the Hong’an Block and Ogcheon belt and are recorded by the Muniushan apatite in the Jiaobei Terrane. The late Paleozoic has been recognized as a quiet period for the Jiaobei Terrane due to the lack of Paleozoic geological fingerprints that record relevant geological information. However, detrital zircon of the Early Permian age (280 Ma) with metamorphic genetic characteristics was found in the Linsishan Formation in the Jiaolai Basin, indicating the Jiaobei Terrane may have experienced the metamorphism during the Early Permian at ca. 280 Ma [102]. The stratum of the Linsishan Formation consists of conglomerate and microconglomerate, which have the properties of nearby depositions, implying the source of metamorphic zircon is Jiaobei Terrane [103,104]. The Muniushan apatite in this study yields the Early Permian metamorphic age (297 ± 8 Ma) that is compatible with the metamorphic zircon (280 Ma) and thus is interpreted as the occurrence of the Early Permian metamorphism in the Jiaobei Terrane. Therefore, we argue that the Early Permian metamorphism in the Jiaobei Terrane may be caused by the northward subduction of the Paleo-Tethys oceanic crust, and the geochronological result of the Hong’an Block and Ogcheon belts is an important response to the Paleo-Tethys oceanic crust subduction, which supports this point. In summary, this research proves the occurrence of the Early Permian metamorphism in the Jiaobei Terrane, which is synchronous to the northward subduction of the Paleo-Tethys oceanic crust and may be the response to the subduction.

6. Conclusions

1. The origin of the Muniushan apatite is magmatic, the compositional characteristics being similar to the apatite in mafic igneous rocks and I-type granitoids previously published. Apatite was formed simultaneously with the Paleoproterozoic Muniushan monzogranite but suffered metamorphism later.

2. The combination of the composition and U-Pb ages of apatite can be used to constrain the younger metamorphic event that occurred in the Jiaobei Terrane in the Early Permian. Uranium-Pb geochronology of the Muniushan apatite gives a metamorphic
age of 297 ± 8 Ma, consistent with the metamorphic ages in the Hong’an Block and Ogcheon belt which represent the response of the Jiaobei Terrane to the Paleo-Tethys oceanic crust subduction in the Early Permian.

Author Contributions: Conceptualization, M.A.; writing, K.S.; review and editing, C.Z. and X.J.; formal analysis, C.Z. and H.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (42130801), the Open Funding of Shandong Provincial Lunar Geology and Exploration Institute (LNYS202101), and the Key Laboratory of Gold Mineralization Processes and Resource Utilization Subordinated to the Ministry of Natural Resources and the Key Laboratory of Metallogenic Geological Process and Resources Utilization in Shandong Province (KFKT201802, KFKT202102).

Data Availability Statement: All the data is presented in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

45. Deng, J.; Qiuf, K.F.; Wang, Q.E.; Goldfarb, R.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In situ dating of hydrothermal monazite and implications for the geodynamic controls on orogenesis and the in situ formation in the Jiaodong gold province, eastern China. Econ. Geol. 2020, 115, 671–685. [CrossRef]

54. Wei, Y.J.; Yang, L.; Qiuf, K.F.; Wang, S.; Ren, F.; Dai, Z.; Li, D.; Shan, W.; Li, Z.; Wang, J. Geology, mineralogy and pyrite trace elements constraints on gold mineralization mechanism at the giant Dayingezhuang gold deposit, Jiaodong Peninsula, China. Ore Geol. Rev. 2022, 148, 104992. [CrossRef]

56. Goldfarb, R.J.; Mao, J.W.; Qiuf, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [CrossRef]

86. Li, N.; Chen, Y.J.; Santosh, M.; Pirajno, F. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost paleo-Tethys. *Gondwana Res.* 2015, 25, 244–257. [CrossRef]

