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Abstract: Asphaltene precipitation and deposition can occur at both the surface and subsurface levels,
leading to the formation of organic-based scales. Asphaltene precipitation can also lead to changes
in petrophysical properties such as wettability, which affects the ultimate recovery. Asphaltene
precipitation is linked to changes in fluid composition driven by pressure drawdown and temperature
variation across the reservoir. Thus, asphaltene deposition can adversely influence the ultimate
recovery. Thermal recovery methods are invoked to mitigate the adverse effects of asphaltene
precipitation. The behavior of asphaltene under thermal recovery along with the link between
the asphaltene molecular structure and its response to the increase in temperature during thermal
recovery are not fully understood. In this paper, realistic asphaltene structures based on actual crude
samples were recreated on a computational platform, and several characteristics of the asphaltene
structures (density, viscosity, and interfacial tension) were evaluated during the heating process.
The density of asphaltene was correlated with the percentage of aromatic carbon in its structure.
The viscosity and interfacial tension decreased substantially as the temperature increased. The IFT
reduced by approximately 30 mN/m as the temperature was increased from 300 K to 450 K. Moreover,
the mechanical stability of asphaltene was found to be highly influenced by heating. The findings
provide nanoscale insights into the behavior of asphaltene during thermal recovery, which can be
used to improve the design of thermal recovery processes.

Keywords: asphaltene; thermal recovery; heavy oil; petrophysics; molecular simulation

1. Introduction

Petroleum typically includes four components: aliphatic hydrocarbon saturates (e.g.,
n-alkanes), polycyclic aromatics and their alkylated derivatives, resins, and asphaltenes,
which are collectively known as SARA (saturates, aromatics, resins, and asphaltenes).
During field production, along with secondary and tertiary recovery phases, crude oil
is subject to continuous changes in pressure and temperature, which in turn trigger as-
phaltene deposition [1]. Asphaltene precipitation leads to severe plugging formation and
alters the wettability, which consequently reduces the ultimate recovery. Moreover, as-
phaltene deposition causes enormous increases in operational expenses and difficulties
in field maintenance. Asphaltene deposition can be mitigated through chemical soaking,
mechanical scraping, microbial, and dissolution approaches. Physical cleaning includes
processes such as scratching and pigging, which are costly. A proactive approach involves
the addition of crystal modifiers and asphaltene stabilizers such as sodium dodecyl sulfate,
triton X-100, and benzoic acid to inhibit aggregation [2,3]. These treatments are commonly
used in surface facilities but are rarely applied to the reservoir itself because of technical
difficulties.

The above methods rely on either shifting the thermodynamic equilibrium to reverse
precipitation or inhibiting aggregation by chemically altering the bonding between asphal-
tene units. However, the formation of asphaltene is inevitable, especially under subsurface
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conditions where rock–oil interactions, along with the temperature and pressure, are diffi-
cult to control. Hence, enhanced recovery methods such as thermal recovery are invoked
to mitigate the adverse effect of asphaltene deposition on the ultimate recovery [4]. The pri-
mary aim of thermal recovery is to reach a temperature that provides favorable asphaltene
transport and interfacial properties.

Asphaltenes are high-molecular-weight compounds containing nitrogen (N), sulfur
(S), and oxygen (O) heteroatoms as minor skeletal components. Asphaltenes possess
island–ocean, rosary, or archipelago molecular structures [5,6]. The presence of N, S,
O, and other non-hydrocarbon ingredients such as iron, nickel, manganese, and copper
affect the chemical and physical behaviors of asphaltene. Generally, asphaltenes consist
of carbon (80%–86%), hydrogen (6%–8%), sulfur (2%–3%), nitrogen (0.5%–2%), oxygen
(0.5%–2%), and trace metals (0.1%–0.2%) [7]. Asphaltenes are soluble in aromatic solvents
such as benzene, toluene, and xylene, while they are insoluble in liquefied gases such as
ethane, methane, and propane [7]. The solid parts of asphaltenes are soluble in toluene and
insoluble in n-heptane.

The precipitation of asphaltenes is initiated by the shifting of the thermodynamic
equilibrium of the crude oil. Disturbed asphaltenes regain their equilibrium state by associ-
ating with other surrounding hydrocarbon molecules. Association with other asphaltene
molecules leads to aggregation and eventually precipitation from the oil phase onto the rock
surface [8,9]. The asphaltene deposition envelope (ADE) highlights the effects of pressure
and temperature changes on asphaltene formation (as shown in Figure 1). The typical
ADE diagram shows that asphaltene precipitation increases as the pressure decreases to
the bubble point, with the most precipitation occurring at the bubble point [10]. When the
pressure drops below the bubble point, precipitation decreases [7]. The rate of precipitation
is also affected by changes in temperature. For heavy crude oils, asphaltene precipitation
increases with increasing temperature. In contrast, for light oil, precipitation decreases with
increasing temperature. Many studies have focused on the nonlinear relationships between
asphaltene precipitation and changes in pressure and temperature [3]. Typically, asphaltene
precipitation is correlated with the presence of heavy hydrocarbons, and reducing the den-
sity of the crude oil will reduce precipitation [11,12]. The deposition of asphaltene on rock
grains, which is induced by the polarity of asphaltenes, is linked to alterations in wettability
and early water breakthrough during secondary recovery [13–18]. The interactions between
rock and crude oil are augmented by the polarity of asphaltene and acid/base reactions.
The asphaltene content was found to be a key factor in such interactions [19,20]. The
experimental findings are consistent with microscopic investigations based on molecular
simulation [21–30]. Molecular simulations have linked the asphaltene aggregation rate
to the structure of the asphaltene model [31–36] and the type of organic solvent [37]. In
general, molecular simulations complement the experimental results and reveal asphaltene
aggregation in an organic solvent followed by thin-film formation [38–40]. However, a
comprehensive description of asphaltene film dynamics throughout a typical production
process and different enhanced oil recovery schemes has not been reported. Thermal
recovery processes are applied to heavy oil reservoirs [41]. Despite the differences among
these thermal methods, they are all based on increasing the temperature of the heavy oil
to improve its flow parameters and interfacial properties [42]. Asphaltene is a primary
component of heavy oil, and a thorough assessment of its behavior during thermal pro-
cesses is crucial for understanding the overall effect of heating on heavy oil [43,44]. In this
article, the behavior of asphaltene and asphaltene–water interactions were microscopically
studied under a range of temperatures reflective of typical heating profiles encountered in
real reservoirs. Realistic asphaltene structures derived from an actual oil sample were used
to generate the asphaltene phase for comprehensive molecular simulations. The remainder
of the paper is organized as follows: Section 2 outlines the methodology, including the
recreation of asphaltene within a computational platform, the governing potential function,
the characteristics of the asphaltene film, and asphaltene–water interactions under a range
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of temperatures. Section 3 then presents the results and discussion, and concluding remarks
are provided in Section 4.
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Figure 1. Typical asphaltene deposition envelope (ADE).

2. Methodology

Representative asphaltene molecular units served as the building blocks in the sim-
ulations. Alqam et al. [5] derived realistic asphaltene structures based on the detailed
characterization of oil samples collected from a carbonate formation; from these asphaltene
structures, three models were selected (Table 1). The selected models vary in the percentage
of aromatic carbon, molecular weight, and carbon-hydrogen ratio. Moreover, the third
model has two island-like fused benzene rings connected by a sulfur atom [45].

The variation in the aforementioned characteristics provides an opportunity to eluci-
date the effects of aromaticity, polarity, and the presence of heteroatoms on the thermody-
namics and volumetric properties of asphaltene. The interactions within the asphaltene
molecules and between asphaltene and other molecules such as water (i.e., in the case of
hot water/steam injection) were captured through the non-bonding 9-6 potential function
given by:
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Equation (1) models the interactions between two atomic centers with charges qi and
qj and separated by a distance rij. The potential exhibits a minimum at a distance greater
than σ, and the maximum attraction is given by ε. In the second term of the right side of
Equation (1), ε0 is the dielectric constant.

For unalike centers, a proper mixing rule is needed. The sixth-power averaging rule
has been shown to be sufficient for approximating σ and ε, as given in Equations (2) and
(3) [46]:
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The σ and ε values for different atomic centers were parametrized using a predefined
forcefield. Forcefields such as COMPASS and CFF93 have been extensively used for
organic-based materials [47]. These forcefields have been complimented by the launch of
the polymer-consistent forcefield PCFF+ [32], which was used to configure the parameters
appearing in Equations (1)–(3). The same molecular modeling approach has been applied
in similar systems and achieved decent results that reasonably match the experimental
results [48–55].

Table 1. Asphaltene structures with different percentages of aromatic carbon adopted for use in this study.

Asphaltene Molecular Structure Molecular Formula Percentage of Aromatic Carbon

1
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2.1. Asphaltene Film

The asphaltene films were constructed from the respective asphaltene macromolecules
given in Table 1 by starting from some number of macromolecular units and condensing
them to yield the final structures. For this purpose, molecular dynamics simulations were
run using LAMMPS. First, 100 units of asphaltene were initialized in a low-density three-
dimensional periodic boundary cell (i.e., asphaltene was initialized at a low density by
placing the molecular units in a relatively large cell to avoid any molecular instability).
Subsequently, the energy was minimized, the molecular velocity was initialized, and a
simulation run was conducted in an isochoric–isothermal NVT ensemble at 900 K. The
high temperature helped to speed up the molecular relaxation (i.e., 250 ps in this study). A
200 ps run was then conducted in an isobaric–isothermal ensemble at 20.67 MPa and the
same temperature. The temperature was then gradually decreased to 700 K, 500 K, and
finally to 350 K through three consecutive runs in the NPT ensemble. In this study, a final
temperature of 350 K and a final pressure of 20.67 MPa were selected to represent typical
conditions encountered in the reservoir. The final density of the asphaltene 1, asphaltene 2,
and asphaltene 3 films were 1.14, 1.02, and 1.13 g/cm3, respectively, and the three cells had
respective sizes of 41.08 × 41.08 × 41.08 Å, 40.55 × 40.55 × 40.55 Å, and 42.52 × 42.52 ×
42.52 Å. These cell sizes were sufficient to yield representative volumes, as demonstrated
in previous studies [49,54]. The final structures are shown in Figure 2. The structures
were further analyzed in terms of their ability to host molecules by characterizing the
intermolecular spaces. This was carried out by the continuous insertion of nonoverlapping



Minerals 2022, 12, 1315 5 of 16

spheres with a predefined threshold [56]. The distributions of intermolecular space in the
asphaltene structures are shown in Figure 3.

Minerals 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 

and the three cells had respective sizes of 41.08 × 41.08 × 41.08 Å, 40.55 × 40.55 × 40.55 Å, 
and 42.52 × 42.52 × 42.52 Å. These cell sizes were sufficient to yield representative volumes, 
as demonstrated in previous studies [49,54]. The final structures are shown in Figure 2. 
The structures were further analyzed in terms of their ability to host molecules by charac-
terizing the intermolecular spaces. This was carried out by the continuous insertion of 
nonoverlapping spheres with a predefined threshold [56]. The distributions of intermo-
lecular space in the asphaltene structures are shown in Figure 3.  

 
Figure 2. Visual representations of the final asphaltene structures. 

 
Figure 3. Intermolecular space (in radius) for the asphaltene films, revealing similar pore size dis-
tributions. 

2.2. Viscosity Calculations 
The viscosity, which is a crucial parameter for assessing the effect of heating on mo-

bility, was calculated from the velocity and molecular trajectories of the equilibrated as-
phaltene films during a simulation run under the NVT ensemble with an extended simu-
lation time of 5 ns [57,58]. The viscosity package of MedeA software was used to complete 

Figure 2. Visual representations of the final asphaltene structures.

Minerals 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 

and the three cells had respective sizes of 41.08 × 41.08 × 41.08 Å, 40.55 × 40.55 × 40.55 Å, 
and 42.52 × 42.52 × 42.52 Å. These cell sizes were sufficient to yield representative volumes, 
as demonstrated in previous studies [49,54]. The final structures are shown in Figure 2. 
The structures were further analyzed in terms of their ability to host molecules by charac-
terizing the intermolecular spaces. This was carried out by the continuous insertion of 
nonoverlapping spheres with a predefined threshold [56]. The distributions of intermo-
lecular space in the asphaltene structures are shown in Figure 3.  

 
Figure 2. Visual representations of the final asphaltene structures. 

 
Figure 3. Intermolecular space (in radius) for the asphaltene films, revealing similar pore size dis-
tributions. 

2.2. Viscosity Calculations 
The viscosity, which is a crucial parameter for assessing the effect of heating on mo-

bility, was calculated from the velocity and molecular trajectories of the equilibrated as-
phaltene films during a simulation run under the NVT ensemble with an extended simu-
lation time of 5 ns [57,58]. The viscosity package of MedeA software was used to complete 

Figure 3. Intermolecular space (in radius) for the asphaltene films, revealing similar pore size distributions.

2.2. Viscosity Calculations

The viscosity, which is a crucial parameter for assessing the effect of heating on
mobility, was calculated from the velocity and molecular trajectories of the equilibrated
asphaltene films during a simulation run under the NVT ensemble with an extended
simulation time of 5 ns [57,58]. The viscosity package of MedeA software was used to
complete the calculations. Since one of the primary objectives of this study was to model
the viscosity of asphaltene as a function of temperature, the viscosity calculations were
repeated under increasing temperature. An equilibration molecular dynamic simulation
consisting of runs under the NPT and NVT ensembles was conducted prior to the viscosity
calculations for the considered range of temperatures.
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2.3. Water–Asphaltene Interactions and Interfacial Tension Calculations

The interactions between water at elevated temperatures and asphaltene were quanti-
fied using two approaches. In the first approach, the water molecules hosted by asphaltene
at a given temperature were assessed by running equilibrium Gibbs ensemble Monte Carlo
simulations. These simulations mimicked the water molecules crossing the interface from
the aqueous phase to the asphaltene film. The Gibbs ensemble Monte Carlo simulations
were run using the water fugacity as an input for the calculations (see Table 2).

Table 2. Fugacity of water as a function of temperature calculated using the Peng–Robinson equation
of state at 20.67 MPa.

T (K) Fugacity (MPa)

300 0.004
350 0.052
375 0.137
400 0.311
450 1.149

To calculate the interfacial tension (IFT), the boundary of asphaltene was adjusted in
the z-direction to allow for the stacking of asphaltene by water. The water layer consisted
of 600 water molecules with a density of 1.0 g/cm3. The simulation workflow consisted of
an equilibration stage for the changes in temperature and an extended NVT simulation,
with the last 300 ps used to calculate IFT. This simulation time was sufficient for the IFT
value to converge, as shown in Figure 4. The calculations were carried out using the IFT
package in MedeA software.
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2.4. Mechanical Stability of the Asphaltene Film

The asphaltene film is subject to forces during primary and enhanced recovery. During
thermal recovery, the increase in temperature may also affect film stability. In this study,
the mechanical properties of the asphaltene films were assessed under continuous strain



Minerals 2022, 12, 1315 7 of 16

in concert with energy quantification. The relationship between the strain and change in
energy is governed by Equation (4):

U =
Etot − E0

V0
=

1
2

6

∑
i=1

6

∑
j=1

Cijeiej, (4)

where U is defined as the change in energy (Etot − E0) resulting from the applied strain e
divided by the initial volume V0. The subscripts i and j yield a tensor with 36 elements
across the structure, and C is a stiffness matrix component. The number of elements is
reduced to three as the asphaltene film forms a cubic cell. The energy was quantified by
running equilibration molecular dynamics simulations before and after deformation. The
simulation workflow consisted of a minimization stage followed by an extended NVT
run. This approach has been applied extensively to investigate the mechanical stability of
different materials [59].

3. Results and Discussion
3.1. Asphaltene Physical Properties

Asphaltene density is used to macroscopically distinguish asphaltene based on type.
In this study, three asphaltene models with different chemical structures were constructed
from single units through molecular dynamics simulation. The density of each structure
was obtained as a function of temperature based on equilibration molecular dynamics
simulations (Figure 5).
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The density of the first and third structures (asphaltene 1 and 3) was higher than that
of the second structure (asphaltene 2). This could be attributed to the higher fraction of
sheet-like carbon (i.e., aromatic carbon) in the molecular structure of asphaltene 1 and 3,
which allowed for more condensed stacking compared to asphaltene 2. For all structures,
the density decreased as temperature increased. Interestingly, the density of asphaltene 2
decreased to slightly below 1 g/cm3 at high temperatures.

Next, the viscosity was analyzed for the same range of temperatures, as shown in
Figure 6. At a low temperature (i.e., 300 K), the viscosities of the asphaltene 1, 2, and
3 structures were 963, 390, and 149 cP, respectively. These values are within the range
anticipated for waxy and heavy organic-based materials. Asphaltene 1 had a higher
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viscosity than the other two, which can be attributed to its structure. Asphaltene 1 has eight
fused benzene rings while asphaltene 2 has five. Asphaltene 3 has two separate three and
four fused benzene rings. Interestingly, the viscosity at lower temperatures followed the
order of the size of fused benzene rings.
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As the temperature increased from 300 to 350 K, the viscosity reduced drastically to
60.3 and 19.6, and 57.0 cP, respectively, for the three structures. These changes suggest that
the pour point (i.e., the temperature above which a material is considered to behave like a
liquid) was in the range of 300–350 K. As the temperature continued to increase to 450 K,
the viscosity continued to reduce to 19.4 cP for asphaltene 1 and 1.3 cP for asphaltene 2.
Asphaltene 3, however, showed less sensitivity to a further decrease in the temperature
as the viscosity was maintained almost the same with increasing the temperature. This
suggests that the intermolecular forces induced by the polarity of sulfur restrict further
reduction in the viscosity.

3.2. Interactions with Water and Interfacial Behavior

Thermal recovery often involves the injection of hot water/steam. Hence, it is vital to
understand the interactions between water and asphaltene as a function of temperature.
For this purpose, the asphaltene films were molecularly stacked by a water layer, and IFT
calculations were performed for the three structures (Figure 7).

The initial IFT values for asphaltene 1, 2, and 3 were 75.7, 72.0, and 67.0 mN/m,
respectively. Similar to the density and viscosity, the IFT decreased with increasing temper-
ature, reaching 35.4, 27.0, and 24.0 mN/m for the three asphaltenes, respectively, without a
noticeable influence of sulfur. The visual representations of the stacked asphaltene–water
systems (Figure 8) show that the dispersion effect of water molecules increased as the
temperature increased, suggesting that heating can instigate emulsion. Notably, the effect
of temperature was more pronounced in asphaltene 2 and 3 compared to asphaltene 1,
consistent with the reduction in IFT.



Minerals 2022, 12, 1315 9 of 16Minerals 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 7. Calculated IFT values of the asphaltene structures as a function of temperature. 

The initial IFT values for asphaltene 1, 2, and 3 were 75.7, 72.0, and 67.0 mN/m, re-
spectively. Similar to the density and viscosity, the IFT decreased with increasing temper-
ature, reaching 35.4, 27.0, and 24.0 mN/m for the three asphaltenes, respectively, without 
a noticeable influence of sulfur. The visual representations of the stacked asphaltene–wa-
ter systems (Figure 8) show that the dispersion effect of water molecules increased as the 
temperature increased, suggesting that heating can instigate emulsion. Notably, the effect 
of temperature was more pronounced in asphaltene 2 and 3 compared to asphaltene 1, 
consistent with the reduction in IFT.  

Figure 7. Calculated IFT values of the asphaltene structures as a function of temperature.
Minerals 2022, 12, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 8. Visual representations of the water–asphaltene stacked systems upon the completion of 
the IFT calculations. 

To provide more insight into the effect of temperature on asphaltene–water interac-
tions, Gibbs ensemble Monte Carlo simulations were employed for the three structures. 
These simulations aimed to quantify the capacity of asphaltene to disperse the water layer 
by hosting water molecules. As outlined in the methodology section, water fugacity was 
evaluated as a function of temperature, and the number of water molecules entrapped by 
asphaltene was determined (Figure 9). Asphaltene became able to host water molecules 
when the temperature exceeded 350 K, and the capacity to host water increased drastically 
as the temperature increased further. Compared to asphaltene 1, asphaltene 2 had a 
stronger capacity for hosting water molecules. These results are consistent with the IFT 
calculations and the visual representations of the asphaltene–water systems are given in 
Figures 7 and 8. 

Figure 8. Visual representations of the water–asphaltene stacked systems upon the completion of the
IFT calculations.

To provide more insight into the effect of temperature on asphaltene–water interac-
tions, Gibbs ensemble Monte Carlo simulations were employed for the three structures.
These simulations aimed to quantify the capacity of asphaltene to disperse the water layer
by hosting water molecules. As outlined in the methodology section, water fugacity was
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evaluated as a function of temperature, and the number of water molecules entrapped by
asphaltene was determined (Figure 9). Asphaltene became able to host water molecules
when the temperature exceeded 350 K, and the capacity to host water increased drasti-
cally as the temperature increased further. Compared to asphaltene 1, asphaltene 2 had a
stronger capacity for hosting water molecules. These results are consistent with the IFT
calculations and the visual representations of the asphaltene–water systems are given in
Figures 7 and 8.
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3.3. Mechanical Integrity

The molecular simulation framework provides an opportunity to assess the mechanical
stability of the asphaltene films using the approach outlined in Section 2.4. The asphaltene
films were continuously deformed to a final strain of 0.4 with a strain increment of 0.02. The
stress–strain relationships of the three films were then obtained and plotted at temperatures
of 300 and 450 K (Figures 10–12).

The stress–strain relationships for the asphaltene structures revealed solid-like char-
acteristics at 300 K with elastic deformation followed by mechanical failure via strain-
softening behavior. The asphaltene 3 structure had a slightly higher yield strength than
the other two structures. This could be attributed to the structural difference between the
three models. Upon heating to 450 K, the behavior completely shifted, and the three films
deformed plastically without a clear elastic region. Notably, the toughness (i.e., the area
enclosed by the stress–strain curve) decreased from 0.0457 to 0.0312 GPa for the asphaltene
1 model. The toughness of the asphaltene 2 model decreased from 0.0390 to 0.0256 GPa.
Similarly, the toughness of asphaltene 3 decreased from 0.0498 to 0.0331 GPa. The reduction
in the toughness of asphaltene 3 was lesser than the other two structures, which was also
observed in the viscosity trend of the same model. Again, resistance to heating might be
attributed to the presence of sulfur.



Minerals 2022, 12, 1315 11 of 16

Minerals 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 9. Asphaltene–water interactions (presented as the millimoles of water hosted per kilogram 
of asphaltene) as a function of temperature. 

3.3. Mechanical Integrity 
The molecular simulation framework provides an opportunity to assess the mechan-

ical stability of the asphaltene films using the approach outlined in Section 2.4. The as-
phaltene films were continuously deformed to a final strain of 0.4 with a strain increment 
of 0.02. The stress–strain relationships of the three films were then obtained and plotted 
at temperatures of 300 and 450 K (Figures 10–12).  

 
Figure 10. Stress–strain relationships for the asphaltene 1 structure at 300 and 450 K. Figure 10. Stress–strain relationships for the asphaltene 1 structure at 300 and 450 K.

Minerals 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 11. Stress–strain relationships for the asphaltene 2 structure at 300 and 450 K. 

 
Figure 12. Stress–strain relationships for the asphaltene 3 structure at 300 and 450 K. 

The stress–strain relationships for the asphaltene structures revealed solid-like char-
acteristics at 300 K with elastic deformation followed by mechanical failure via strain-sof-
tening behavior. The asphaltene 3 structure had a slightly higher yield strength than the 
other two structures. This could be attributed to the structural difference between the 
three models. Upon heating to 450 K, the behavior completely shifted, and the three films 
deformed plastically without a clear elastic region. Notably, the toughness (i.e., the area 
enclosed by the stress–strain curve) decreased from 0.0457 to 0.0312 GPa for the asphal-
tene 1 model. The toughness of the asphaltene 2 model decreased from 0.0390 to 0.0256 
GPa. Similarly, the toughness of asphaltene 3 decreased from 0.0498 to 0.0331 GPa. The 
reduction in the toughness of asphaltene 3 was lesser than the other two structures, which 
was also observed in the viscosity trend of the same model. Again, resistance to heating 
might be attributed to the presence of sulfur. 

  

Figure 11. Stress–strain relationships for the asphaltene 2 structure at 300 and 450 K.

Minerals 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 11. Stress–strain relationships for the asphaltene 2 structure at 300 and 450 K. 

 
Figure 12. Stress–strain relationships for the asphaltene 3 structure at 300 and 450 K. 

The stress–strain relationships for the asphaltene structures revealed solid-like char-
acteristics at 300 K with elastic deformation followed by mechanical failure via strain-sof-
tening behavior. The asphaltene 3 structure had a slightly higher yield strength than the 
other two structures. This could be attributed to the structural difference between the 
three models. Upon heating to 450 K, the behavior completely shifted, and the three films 
deformed plastically without a clear elastic region. Notably, the toughness (i.e., the area 
enclosed by the stress–strain curve) decreased from 0.0457 to 0.0312 GPa for the asphal-
tene 1 model. The toughness of the asphaltene 2 model decreased from 0.0390 to 0.0256 
GPa. Similarly, the toughness of asphaltene 3 decreased from 0.0498 to 0.0331 GPa. The 
reduction in the toughness of asphaltene 3 was lesser than the other two structures, which 
was also observed in the viscosity trend of the same model. Again, resistance to heating 
might be attributed to the presence of sulfur. 

  

Figure 12. Stress–strain relationships for the asphaltene 3 structure at 300 and 450 K.



Minerals 2022, 12, 1315 12 of 16

3.4. Wettability Alteration

The water/asphaltene interface showed high sensitivity to the increase in temperature,
as discussed in Section 3.2. The overall impact of thermal recovery, however, is also
governed by the rock/fluid interactions (i.e., wettability). In general, it is well-documented
that maximum recovery is anticipated at intermediate to strong water-wetness conditions.
Upon deposition, the thin layer of asphaltene coating the rock surface acts to shift wettability
toward oil-wet characteristics [19,54]. The deposited asphaltene film is, however, subject to
deterioration during thermal recovery (see Figures 8–12). To cast more light on wettability
alteration, asphaltene, water, and substrate (calcite) were stacked and equilibrated at two
temperatures to elucidate the wettability mode. The calcite structure is recreated in a similar
manner as in other molecular simulation studies [60,61]. The structures were constructed as
calcite coated with a thin layer of asphaltene interacting with water. Water and asphaltene
layers of equal thickness were selected (i.e., 1 nm) while 4 nm of calcite was used. Snapshots
of the system were taken during an extended NVT stage (i.e., 5 ns) to qualitatively assess
the wettability, as shown in Figure 13.
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Figure 13. Stacked system of calcite/asphaltene 3/water showing the time evolution of fluid-fluid,
fluid-rock interactions at 300 and 450 K. The red layer represents water, while the black is asphaltene
3 stacked on calcite.

It can be seen that the system at the higher temperature showed a drastic change
where water molecules caused the detachment and replacement of the asphaltene film with
time. These observations are consistent with the results of IFT and mechanical integrity
analyses.

3.5. Consistency with Experimental Observations

This study provided in-depth nanoscale investigations of the changes in the physical
and interfacial properties of asphaltene during a thermal recovery scheme. Some efforts
have been done experimentally to unfold the underlying mechanisms of thermal recovery
enhancement. These studies vary in their scale from simple core scale to full reservoir scale.
Table 3 provides a summary of some studies highlighting the primary property under
investigation.
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Table 3. Summary of some experimentally reported investigation of thermal recovery effects on oil
physical and interfacial properties.

Reference Type of Formation Property under Investigation Observation

Rao [62] Carbonate Wettability
Upon hot water injection, the
wettability shifted from oil to

water wet

Tang et al. [63] Carbonate Viscosity
The viscosity of the oil
reduced to 2 cP as the

temperature reached 240 ◦C

Al-Hadrami and Blunt [64] Carbonate Interfacial tension

The interfacial tension
reduced significantly as the

temperature increased which
resulted in reduced capillary

forces

Roosta et al. [65] Carbonate/Quartz Wettability
The wettability shifted toward

water wet system as the
temperature increased

Bardon and Longeron [66] NA Interfacial tension

The interfacial tension
reduced which influenced the

relative permeability
positively

The molecular simulation investigation reported in this study showed that increasing
the temperature could reverse the wettability by washing out the precipitated asphaltene
layer (see Figure 13) which is consistent with the experimental observations reported by
Rao [62] and Roosta et al. [65]. Moreover, the increase in the temperature reduces the
interfacial tension significantly for all asphaltene types considered in this study which is
also consistent with the experimentally reported studies [64,66].

4. Conclusions

Thermal recovery methods have been applied to enhance recovery from heavy oil
reservoirs. The effects of heating during thermal recovery on the characteristics of crude oil
have been actively investigated. However, the behavior of asphaltene and its interactions
with the aqueous phase is not well understood. In this study, realistic asphaltene models
were created in a computational platform to assess the characteristics of asphaltene upon
heating. The following conclusions can be drawn:

• The density of asphaltene was influenced by the chemical structure and temperature.
Asphaltene containing a higher percentage of aromatic carbon had a higher density.
The density was inversely correlated with temperature.

• Similar to the density, the viscosity of asphaltene increased with increasing temper-
ature. The asphaltene structure containing the largest share of fused benzene rings
had the highest viscosity at lower temperatures. At higher temperatures, however, the
presence of sulfur seemed to restrict further reduction in the viscosity. The pour points
of the asphaltene models were between 300 and 350 K.

• The temperature affected the interfacial tension, which decreased from more than
70 mN/m at 300 K to approximately 24 mN/m at 450 K. This can be explained
by the enhanced ability of asphaltene to disperse the water phase under increasing
temperature.

• Mechanical analysis revealed the solid-like behavior of asphaltene with both elastic
and plastic deformation at 300 K. The mechanical behavior changed drastically upon
heating, and the toughness of the asphaltene films decreased by approximately 60%.

• The findings provide in-depth insights into asphaltene behavior as a function of
temperature. These insights can be used to optimize the design of thermal recovery
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processes. The findings of this study should be experimentally validated and repeated
by extending this study to other asphaltene models.
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Nomenclature

T Temperature, K
P Presssure, psi, MPa, or Pa
VP Pore volume, m3

E Young’s modulus, GPa
B Bulk modulus, GPa
G Shear modulus, GPa
ν Poisson’s ratio, dimensionless parameter
rij Separation distance between two center forces
qi,j Atomic charge
ε0 Dielectric constant
σ Distance at which the interaction potential is zero
ε Maximum amplitude of the potential well
E0 Energy of the structure, J
Etot Energy after deformation, J
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