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Abstract: A novel mineral-like phosphate hydrate Na6.9Ni2+
0.9V3+

4.3Al0.8(PO4)8(H2O)2

(Z = 2) was obtained under high-temperature hydrothermal conditions by modeling the
chemistry of geothermal brines in natural geological solutions. The compound, char-
acterized by scanning electron microscopy and microprobe analysis, possesses an or-
thorhombic symmetry with the Cccm space group; the unit cell parameters are a = 6.4082(8),
b = 19.6813(19), c = 10.5035(11) Å. Here we report its crystal structure studied by low-
temperature single crystal X-ray diffraction and discussed as derived from the α-CrPO4

archetype, known for a large range of compounds with promising properties. Three-
dimensional continuous migration pathways for Na+ within the structure were found and
confirmed by a bond valence energy landscape analysis. The migration barriers turned
out to be ~0.44 eV along the a and b directions and ~0.42 eV along the c axis. These values
suggest that the compound may be a potential electrode material for sodium-ion batteries.

Keywords: mineral-like phosphate hydrate; crystal structure; hydrothermal synthesis;
low-temperature X-ray diffraction; α-CrPO4 archetype; structurally related minerals and
synthetic phases; sodium migration; cathode material

1. Introduction
Along with oxides, the most common in the Mineral Kingdom, both quantitatively and

in terms of species diversity, are natural oxygen-containing phases with complex anions,
e.g., silicates, phosphates, vanadates, sulfates, borates, and so on. These minerals hold
promising technological potential, thus maintaining the constant interest of the scientific
community in designing synthetic analogues and modifying natural oxo salts with cations
of transition and alkali metals. Such compounds are widely used as catalysts, sorbents,
molecular sieves, and ion exchangers, as well as in various magnetic materials and resources
for energy technologies, in particular, as the basis of electrodes in portable energy sources,
etc. [1–4]. Particularly, large availability and distribution of phosphates in the Earth’s
crust, where they occupy third place after silicates and oxides, guarantee low cost and
environmental safety of their laboratory synthesized counterparts [5,6].
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Data on mineral crystal genesis contains important information about the conditions
under which a particular structure can form. Chemical compositions of minerals—natural
inorganic compounds—indicate the types of cations (and anions) that can form a stable
crystal structure, and the results of X-ray diffraction analysis provide information about pre-
ferred crystallographic positions for certain atoms. Experimental laboratory studies make it
possible to establish the limits of miscibility of solid solutions and outline the ways to con-
trol cationic ordering, defect concentrations, and oxidation state of ions, which is important
for creating electrochemically active, catalytic, magnetic, and other functional materials.

Many modern renewable energy sources use large batteries to adjust frequency and
vary peak performance. For such stationary devices, service life, power, price, and avail-
ability of materials are critical. Sodium ion batteries meet these criteria. Na ranks seventh
in the elemental content of the Earth’s crust; its global amount (23,000 ppm) is extremely
high. The close properties of Li and Na as alkali metals are used to develop sodium-ion
batteries based on the operating principles and manufacturing techniques of well-designed
lithium-ion devices. Sodium ion (Na+) is heavier and has a larger ionic radius than lithium
ion (Li+), and therefore Na-ion batteries are not expected to compete with the Li-ion tech-
nology in terms of volumetric and gravimetric energy density, but it is likely that the Na
rich resources will be used to ensure cost attractiveness and complement Li-ion batteries in
large scale applications [7–11]. Notably, Na ions can exhibit a higher diffusion in crystal
structures compared to Li ions. This leads to a higher power density of these types of
batteries, which look like a reasonable solution to replace toxic lead-acid counterparts.

The extensively studied candidates for battery application are phosphate-based ma-
terials, among which vanadium phosphates are known as high efficiency positive elec-
trodes (cathodes). Vanadium can form a number of electrochemically active redox couples
(V4+/V5+, V3+/V4+, and V2+/V3+) offering wide tunability as to chemical compositions
and redox potentials [12]. Particularly, fluoride-phosphates with the general formula
Na3V2(PO4)2F3−2yO2y turned out to be the most attractive: they demonstrate outstanding
performance in Na-ion cells, providing an energy density of ~500 W h kg−1 which is
comparable with the performance of commercial Li-ion battery cathodes [13]. In the search
for such compounds, we obtained a mineral-like phosphate, which is discussed here as a
derivative of the α-CrPO4 structure type [14].

2. Materials and Methods
2.1. Hydrothermal Synthesis

Micron-size single crystals of the compounds (Figure 1) were obtained under high-
temperature hydrothermal conditions. To simulate the chemistry of geothermal brines in
natural geological solutions, we used chemically pure reagents AlCl3:NiCl2:VCl3:NaH2PO4

components in a weight ratio of 1:1:2:3, which corresponded to 7.5 mmol of AlCl3, 7.7 mmol
of NiCl2, 12.7 mmol of VCl3, and 25 mmol of NaH2PO4.

Subsequently, all components were dissolved in 10 mL of distilled water; the result-
ing solution was transferred to a 20 mL copper-lined nickel–chromium alloy autoclave.
To preserve the oxidation state, a small amount of citric acid (0.25 g) was added to the
vanadium-containing samples. The autoclaves were closed and placed in a furnace, where
they were heated to 673 K for 24 h and kept at this temperature and a pressure of 50 MPa
for 10 days. The pressure in the system was calculated based on the filling factor of the
autoclave; it gradually increased with increasing temperature. It is critical for safety reasons
to use superalloy autoclaves, as the creep rupture stress significantly enlarges with the
increase in temperature. After the reaction, the autoclave was allowed to cool naturally
for several hours. The precipitate was separated by filtration, washed with hot distilled
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water, dried at room temperature for 12 h, and examined for the chemical composition and
crystal structure.
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Figure 1. (a) Secondary-electron SEM image, showing sample morphology; (b) Photograph of a
crystals’ drusen.

2.2. X-Ray Energy-Dispersive Analysis

Obtained crystals of the presumably new phase were analyzed with a scanning electron
microscope (SEM), i.e., a JEOL JSM-6480LV Oxford X-MaxN equipped with an energy-
dispersive X-ray (EDX) spectrometer. The unpolished surface of the crystal was covered
with a carbon film of about 25 nm thickness. To minimize the thermoelectric effect of
the electron probe, leading to dehydration and intense migration of low-charged sodium
cations outside the interaction region, the probe current and electrical load per unit area
of the samples were reduced using the fast scan mode for relatively large surface areas.
The measurement conditions were optimized with an acceleration voltage of 20 kV and a
current of 10 nA, at which the sample was stable; the spectrum acquisition time was 50 s.

2.3. Single-Crystal X-Ray Diffraction

The X-ray diffraction data were acquired at 110 K for the single crystal on a Bruker
APEX-II CCD diffractometer using Mo-Kα radiation. The intensities of reflections were
corrected for background, Lorentz and polarization effects, and absorption [15]. Most
calculations for the structural study were performed with the WinGX program system [16].
The crystal structure was solved via direct methods and refined against the F2 data using the
SHELX programs [17,18]. Atomic scattering factors and anomalous dispersion corrections
were taken from the “International Tables for Crystallography” [19]. Structural data were
deposited via the joint CCDC/FIZ Karlsruhe deposition service under the deposition
number 2,405,079. Cif-data can be obtained free of charge from FIZ Karlsruhe. The cif and
checkcif files can also be found in the Supplementary Materials to this paper.

3. Results and Discussion
3.1. Chemical Composition

The energy-dispersive X-ray (EDX) microanalysis of light-green prismatic crystals
showed the presence of Na, Ni, V, Al, P, and O atoms according to their principal K-shell
emission lines.
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3.2. Crystal Structure Solution

Crystal data and details of data collection and refinement are presented in Table 1. The
orthorhombic phase with unit-cell parameters a = 6.4082(8), b = 19.681(2), c = 10.504(1) Å
crystallizes in the space group Cccm. In the course of the structure solution, two symmetri-
cally independent positions in octahedral surroundings of O atoms were found. According
to the coordination geometry and the chemical compositions, these structural sites were
supposed to be mixed, populated by V/Ni and V/Al atoms. Our refinement has shown
that the 8h position at the two-fold rotation axis is statistically occupied by V3+ and Ni2+

(M1), while the 4f Wykoff position at the inversion center adopts V3+ and Al (M2). We also
found two pairs of split Na sites and one Na site that is partly populated.

Table 1. Crystal data and details of the X-ray data collection and refinement for
Na6.9Ni2+

0.9V3+
4.3Al0.8(PO4)8(H2O)2.

Crystal Data
Formula weight 2500.51

Crystal system, space group Orthorhombic, Cccm
Unit cell parameters, Å a = 6.4082(8)

b = 19.6813(19)
c = 10.5035(11)

Volume, Å3 1324.7(3)
Z, Calculated density, g/cm3 2, 3.134

Crystal size, mm 0.042 × 0.155 × 0.437
Data Collection

Radiation Mo-Kα, graphite monochromator
Temperature, K 110(2)
Scanning mode ω

Measuring range max θ = 29.99◦

Reflections (total) 6683
Rint, Rσ 0.1084, 0.0620

Refinement
Refinement method Full-matrix least-squares on F2

Reflections unique/observed 1025/804
Parameters 89

Absorption correction, Tmax/Tmin Numerical, 0.648/0.536
Goodness-of-fit, S 1.109

Residuals [I > 2sigma(I)] R1 = 0.0516, wR2 = 0.1073
∆ρ (max/min), e/Å3 0.862 and −0.794

One of the localized O atoms was supposed to form a water molecule, due to its
non-bonded character. This oxygen atom was refined as statistically distributed between
two structural sites at a short O−O distance of 0.92(4) Å. The corresponding hydrogen atom
was located via the electron density difference synthesis, and its coordinates were refined.
The crystal structure was refined to R = 0.0516 using anisotropic displacement parameters
for all non-hydrogen atoms. The refinement resulted in the crystal chemical formula
Na3.46(V3+

1.54Ni2+
0.46)M1(V3+

0.61Al0.39)M2(PO4)4(H2O) (Z = 4), which reflects a distribution
of cations between two positions (M1 and M2) in the octahedra. The simplified formula
for Z = 2 can be written as Na6.9Ni2+

0.9V3+
4.3Al0.8(PO4)8(H2O)2. In Table 1, we report the

crystallographic characteristic of the title compound and the experimental conditions of
data collection and refinement. Table 2 presents the final atomic positions and equivalent
displacement parameters. Characteristic distances are given in Table 3. The data of bond
valence calculations [20], exposed in Table 4, are consistent with the assumed oxidation
state of V and Ni. Most figures displaying crystal structures were made with the Diamond
program [21].
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Table 2. Atomic coordinates and equivalent anisotropic displacement parameters for
Na6.9Ni2+

0.9V3+
4.3Al0.8(PO4)8(H2O)2..

Atom x y z Uiso */Ueq Occ. (<1)

V1 0.750000 0.750000 0.500000 0.0102(5) 0.609(15)
Al1 0.750000 0.750000 0.500000 0.0102(5) 0.391(15)
V2 0.000000 0.65880(5) 0.750000 0.0105(3) 0.787(17)
Ni1 0.000000 0.65880(5) 0.750000 0.0105(3) 0.213(17)
P1 0.8422(3) 0.58964(8) 0.500000 0.0122(4)
P2 0.500000 0.70237(8) 0.250000 0.0128(4)
O1 0.5403(5) 0.75461(15) 0.3611(3) 0.0133(7)
O2 0.3126(5) 0.65892(15) 0.2849(3) 0.0166(7)
O3 0.7066(7) 0.6539(2) 0.500000 0.0188(10)
O4 0.9847(6) 0.58914(17) 0.6170(3) 0.0231(8)
O5 0.7004(8) 0.5290(3) 0.500000 0.0391(16)
O6 0.572(3) 0.500000 0.750000 0.104(10) 0.5

Na1 0.8413(18) 0.500000 0.750000 0.032(2) 0.351(5)
Na2 0.245(2) 0.7844(9) 0.500000 0.057(7) 0.252(12)
Na3 0.1606(7) 0.9072(3) 0.500000 0.0362(13) 0.660(4)
Na4 0.133(2) 0.9366(8) 0.5880(15) 0.0362(13) 0.170(4)
Na5 0.000000 0.500000 0.750000 0.032(2) 0.298(10)
H1 0.679(6) 0.519(4) 0.783(7) 0.150 * 0.5

* H1 atom has been refined in an isotropic approximation.

Table 3. Na6.9Ni2+
0.9V3+

4.3Al0.8(PO4)8(H2O)2. Characteristic distances, Å.

P1—tetrahedron P2—tetrahedron M1 *—octahedron M2 **—octahedron Na1—seven-vertex
polyhedron

P1—O5 1.499(5) P2—O2 1.519(3) × 2 M1—O4 1.960(3) × 2 M2—O3 1.911(5) × 2 Na1—O4 2.423(6) × 2
—O4 1.532(3) × 2 —O1 1.577(3) × 2 —O2 2.037(3) × 2 —O1 1.985(3) × 4 —O4′ 2.503(6) × 2
—O3 1.535(5) —O1 2.082(3) × 2 —O6 2.65(2)

—O5 2.835(4) × 2

Na2—octahedron Na3—seven-vertex
polyhedron Na4—octahedron Na5—octahedron

Na2—O1 2.46(1) × 4 Na3—O5 2.410(8) Na4—O5 2.09(2) Na5—O4 2.245(3) × 4
—O2 2.548(9) × 2 —O4 2.584(6) × 2 —O2 2.33(2) —O6 2.75(2) × 2

—O2 2.614(4) × 2 —O5 2.42(1)
—O5 2.632(8) —O6 2.48(2)
—O3 2.644(7) —O4 2.52(1)

—O3 2.96(1)

* M1(V3+
1.54Ni2+

0.46). ** M2(V3+
0.61Al0.39).

Table 4. Bond valence data for Na6.9Ni2+
0.9V3+

4.3Al0.8(PO4)8(H2O)2 *.

Atom M1 M2 P1 P2 Na1 Na2 Na3 Na4 Na5 H1 Σ

O1 0.385↓2 0.474↓4 1.114↓2 0.021↓4→2 1.99
O2 0.435↓2 1.303↓2 0.017↓2 0.074↓2 0.082 1.91
O3 0.580↓2 1.248 0.068 0.015 1.91

O4 0.536↓2 1.258↓2
0.107↓2
0.132↓2

0.080↓2 0.050 0.051↓4 2.22

O5 1.376 0.043↓2→2
0.070
0.128

0.166→2
0.064→2

0.085 2.20

O6
(H2O) 0.072 0.054 0.022↓2 0.415 0.56

Σ 2.71 3.06 5.14 4.83 0.64 0.12 0.64 0.41 0.25 0.5

* M1(V3+
1.54Ni2+

0.46), M2(V3+
0.61Al0.39). The bond valence sums calculated for the sodium atoms and water

molecules reflect the statistical occupancy of structural positions by them (see text). Symbols → and ↓ denote an
increase in the corresponding contributions in rows and columns due to symmetry.

3.3. Crystal Chemistry in Comparison with Related Minerals and Synthetic Analogues
3.3.1. Analysis of Interatomic Distances and Crystal Structure Description

Figure 2 shows the basic structural units of the anionic framework. Both symmetrically
independent octahedra are mainly occupied by V3+ ions, which are “diluted” by Ni2+ [M(1)],
or Al3+ cations [M(2)]. In the M(1)O6 octahedra with C2 symmetry and the V:Ni = 3:1, three
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pairs of M(1)—O distances are equal to 1.960(3), 2.037(3), and 2.082(3) Å (average 2.026 Å).
The centrosymmetric M(2)O6 octahedra populated by V and Al atoms in a ratio of 3:2 are
obviously smaller, with four equal M(2)—O distances of 1.986(3) Å and two shorter ones of
1.912(5) Å (average 1.961 Å). The P(1)O4 tetrahedra with Cm symmetry are characterized
by two P—O bond lengths of 1.532(3) and two others of 1.499(5) and 1.534(5) Å. Strongly
distorted P(2)O4 tetrahedra at the two-fold axis have two P—O bond lengths equal to
1.519(3) Å and two larger ones of 1.577(3) Å. The shortest P(1)—O distances of 1.499(5)
Å correspond to “pendant” oxygen vertices in the tetrahedra, not shared with polyhedra
forming a mixed anionic framework (Table 3).
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at the 90% probability level. Symmetry code: (′) 1.5 − x, 1.5 − y, 1 − z; (′′) x, y,1 − z; (′′′) 0.5 + x, 1.5 − y,
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Intercrossed chains built by alternating M(1)- and M(2)-centered octahedra linked via
oxygen-bridging contacts are aligned in the [101] and [101] directions (Figure 3a). Each
M(2)O6 polyhedron, jointly occupied by V and Al atoms, shares four O vertices with
neighboring M1O6 octahedra that are jointly populated by V and Ni atoms. Alternatively,
every M(1)O6 polyhedron shares two O vertices with M(2)O6 octahedra (Figure 3b) to
form two-layered slabs perpendicular to the b axis of the unit cell at y = ¼ and ¾. P(2)O4

tetrahedra share all vertices and one edge with octahedra within the slabs, while one vertex
of P(1)O4 tetrahedra is not shared with octahedra and is directed along the b axis in the
space between the slabs (Figure 3c).
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Figure 3. (a) Intercrossed chains of octahedra strengthened by orthophosphate tetrahedra in the
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4.3Al0.8(PO4)8(H2O)2 crystal structure; (b) Two-layered slab formed by MO6 octahe-

dra and PO4 tetrahedra displaced along the [010] direction with Na atoms in the interstices; (c) The
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A bi-periodic anionic network with the formula [Ni2+
0.9V3+

4.3Al0.8(PO4)8]6.9− is neu-
tralized by Na+ cations mostly distributed in the free space between the slabs (Figure 4a).
All Na atoms are disordered in the structure. Thus, Na5 lies in a special position, 4b, with
D2 symmetry and is surrounded by four O4 and two H2O ligands forming octahedra.
The Na1 atoms in seven-vertex polyhedra on a 2-fold axis (a special position 8g) are at a
forbidden distance Na1 − Na5 = 1.02(1) Å. Our refinement has shown that Na1 and Na5
statistically occupy their sites in a ratio of 0.70:0.30. Similarly, Na3 and Na4 atoms with Cm

and C1 symmetry, respectively, are displaced at 1.10(1) Å from each other; they occupy the
structural sites in a ratio of 0.66:0.34. The Na3 atoms accommodate seven-vertex polyhedra,
while Na4 atoms are in an octahedral surrounding of five O and one H2O ligand. The
Na2O6 polyhedra with Cm symmetry are statistically populated for 25% (Figure 4a). The
H2O molecules between the slabs of MO6 octahedra and PO4 tetrahedra link the slabs
via hydrogen bonds (Table 5). Together with the sodium atoms, the H bonds connect
neighboring two-periodic anionic structural fragments along the b axis (Figure 4b).
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Table 5. H-bonding in Na6.9Ni2+
0.9V3+

4.3Al0.8(PO4)8(H2O)2.

D—H ········A D—H, Å H ······· A, Å D ·······A, Å angle D—H ··· A, ◦
O6—H1 ······· O5 0.850(1) 2.47(9) 2.811(6) 105(7)

3.3.2. Structurally Related Synthetic and Mineral Phases

The α-CrPO4 crystal structure is known as the archetype for a large range of com-
pounds with promising properties. In particular, the hollow structure of α-VPO4 [22]
and NaV3(PO4)3 demonstrates a high reversible capacity and excellent cycling stability,
attributed to its ability to accommodate alkaline metal ions within its structural channels.
At the same time, the NaVPO4F [23] and NaVOPO4 [24] compounds adopt a KTP structure
closely related to α-CrPO4. These materials display several advantages, including high
average operating potential, excellent structural stability, and superior rate capability. It
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makes them promising candidates for use as cathode materials in sodium-ion batteries.
Additionally, incorporating specific cations or transition metals can significantly enhance
their conductive properties.

The first “stuffed” α-CrPO4-type structure NaV2.67+
3(PO4)3 was described by

Kinomura et al. in 1989 [25]. The NaV3(PO4)3 represents an anode material for Na-
ion batteries, which exhibits a high reversible capacity of 140 mA h g−1 with the capacity
retention of about 98% after 100 cycles [26]. In addition, this material demonstrates required
thermal stability up to ∼450 ◦C in the charged state, which is critical for long-term cycling
and large-scale applications. The transport mechanism of Na+ is cooperative diffusion
along the b- or c-axis [27]. At the moment, numerous isotypic phosphates with first-row
transition metals and some arsenates were synthesized and studied.

Cr atoms occupy two symmetrically independent positions in the oxygen environment
in the α-CrPO4 crystal structure. When introducing two different transition metals in the
crystallization system, these atoms usually orderly populate the 4a and 8g structural sites
within the Imma space group to form compounds with a common formula NaAB2(TO4)3,
where A and B denote fist-raw transition metals, and T indicates P or As. These crystal
structures represent [AB2(TO4)3]− anionic frameworks neutralized by Na+ ions. When the
amount of Na atoms becomes higher, or K atoms also participate in the phase composition,
the crystal structure changes for bi-periodic double layers with K, Na atoms, and H2O
molecules between the slabs (Table 6). The structure transformation is accompanied by an
increase of one parameter of the unit cell, its volume, and space group change.

In Table 6 we have summarized minerals with crystal structures derived from the
α-CrPO4 archetype and the laboratory obtained structurally related V-containing phos-
phates prioritized for our study. Most synthetic phases are orthorhombic and crystallize
in the similar body-centered space group Imma as their isostructural prototypes α-CrPO4

and VPO4. These compounds with body-centered unit cells are characterized by so-called
“stuffed α-CrPO4” structures with a tri-periodic framework made of octahedra and tetra-
hedra that are sharing corners and/or edges, generating channels parallel to the [100]
and [010] directions, in which the sodium atoms are located, whereas in the α-CrPO4 the
corresponding channels are vacant. A similar crystal structure is inherent to the yakubovi-
chite, CaNi2Fe3+(PO4)3 [28], a rare representative of a natural Ni phosphate and a unique
mineral that obeys the “stuffed” α-CrPO4 type (A synthetic analogue of yakubovichite,
CaNi2Fe3+(PO4)3, is known (see Ouatta et al. 2017 [29])). According to [28], the association
with Ni-phosphides—negevite NiP2, halamishite Ni5P4 and transjordanite Ni2P—indicates
the yakubovichite formation during pyrolytic oxidation (dry roasting) of these minerals.
The following process could be accompanied by side reactions with Ca-bearing phases—
calcite, lime, or fluorapatite,—which served as a source of Ca [28].

One more mineral, sverigeite, Na(Mn1.37Mg0.63)SnBe2(SiO4)3(OH) [30], is character-
ized by the same orthorhombic body-centered space group Imma that is inherent to the
α-CrPO4, and close unit cell parameters to the parameters of the α-CrPO4 “stuffed” deriva-
tives (Table 6). The sverigeite crystal structure includes SnO6 and (Mn, Mg)O6 octahedra,
strongly corrugated beryllosilicate chains built from 3- and 4-membered rings, and Na
atoms. A rewritten formula of sverigeite, [NaBe2(OH)]Mn2Sn(SiO4)3 reveals its structural
similarity with yakubovichite, [Ca]Ni2Fe(PO4)3 as shown in Figure 5. In spite of signifi-
cantly different compositions of these minerals, their crystal structures can be considered
as designed using the same bi-periodic modules, which have been highlighted in the α-
CrPO4 archetype structure (Figure 6).
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Figure 5. The crystal structures of (a) phosphate mineral yakubovichite, (b) beryllosilicate sverigeite
in xz projections, and (c) the fragment of sverigeite crystal structure showing corrugated chains
formed by SiO4 and BeO3OH tetrahedra.
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Figure 6. The crystal structures of (a) α-CrPO4, (b) yakubovichite and (c) sverigeite exposed in
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tetrahedra (light blue), are highlighted.

As we mentioned before, the amount of extra framework atoms and their size regulate
structural changes from tri-periodic frameworks to bi-periodic slabs (double layers) and
by increasing the unit cell axis perpendicular to the slabs. This process associates with a
reduction in body-centered cells to face-centered, or primitive, and even with a decrease
in symmetry to monoclinic. The Na6.9Ni2+

0.9V3+
4.3Al0.8(PO4)8(H2O)2 crystal structure can

be considered as an illustration for this kind of transformation from the framework to
layered construction, where double-layered modules built by octahedra and tetrahedra
alternate with Na atoms and water molecules. Another example of the framework structure
conversion can be noticed in connection with a hydrated layered vanadium (III) phosphate,
K3V3(PO4)4·H2O [31]. A primitive Pnna orthorhombic unit cell with the b parameter equal
to 20.850(1) Å, is assigned to the compound with layers of corner-sharing VO6 octahedra
linked by corners and edges with PO4 tetrahedra forming a hydrated K+ ion interlayer.
The crystal structure and thermal stability of this hydrated phase suggest that it may
be a suitable alkali cation intercalation host for K+ ions and alternative alkali ions. This
suggestion is supported by the exhibited electrochemical activity of K3V3(PO4)4 ·H2O
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vs. K/K+, displaying characteristic charge and discharge plateaus at 3.7–3.9 and 3.6 V,
respectively. A monoclinic reduction (space group C2/c) from the orthorhombic Imma
symmetry has been found in the Na3V3+

3(PO4)4 layered structure with a tri-periodic Na+

ion channel allowing excellent cycling and rate performance (92% of its capacity is retained
after 100 electrochemical cycles). According to [32], the voltage profiles of Na3V3(PO4)4

show that it can reversibly uptake nearly one Na+ ion with a 3.9 V voltage plateau, which
is the highest value among Na-containing V-based orthophosphates ever reported.

Table 6. Crystal chemical data for synthetic V-bearing phosphates and structurally related minerals,
based on the α-CrPO4 archetype.

Compound/Mineral Unit Cell
Parameters, Å Space Group; Z; V, Å3 Crystal Structure Description Ref.

α-CrPO4 archetype

α-CrPO4

a = 10.403(2)
b = 12.898(2)
c = 6.299(1)

Imma
12

845.19
CrPO4 tri-periodic framework [14]

Synthetic V-bearing phosphates

α-VPO4

a = 10.5591(1)
b = 13.1051(1)
c = 6.33928(7)

Imma
12

877.22(2)
VPO4 tri-periodic framework [22]

NaV2.67+
3(PO4)3

a = 10.488(2)
b = 13.213(3)
c = 6.455(1)

Imma
4

894.52

[V2.67+
3(PO4)3]− anionic

tri-periodic framework with
Na+ ions in the channels

[25]

NaFeV2(PO4)3

a = 10.5067(4)
b = 13.2437(6)
c = 6.3946(2)

Imma
4

889.80(6)

[Fe2+V3+
2(PO4)3]− anionic

tri-periodic framework with
Na+ ions in the channels

[33]

NaCoV2(PO4)3

a = 10.495(1)
b = 13.184(1)
c = 6.3920(6)

Imma
4

884.4(1)

[Co2+V3+
2(PO4)3]− anionic

tri-periodic with Na+ ions in
the channels

[33]

NaNiV2(PO4)3

a = 10.5091(5)
b = 13.1212(5)
c = 6.3540(3)

Imma
4

876.16(6)

[Ni2+V3+
2(PO4)3]− anionic

tri-periodic with Na+ ions in
the channels

[33]

Na3.46(V3+
1.54Ni2+

0.46)M1

(V3+
0.61Al0.39)M2(PO4)4(H2O)

a = 10.504(1)
b = 19.681(2)
c = 6.4082(8)

Amaa *
4

1324.7(3)

[Ni2+
0.46V3+

2.15Al0.39(PO4)4]3.46−

bi-periodic anionic slabs
(double layers) joint together

by Na+ ions and hydrogen
bonds

This work

K3V3+
3(PO4)4·H2O

a = 10.7161(4)
b = 20.850(1)
c = 6.5316(2)

Pnna
4

1459.36

[V3+
3(PO4)4]3− bi-periodic

anionic slabs (double layers)
joint together by K+ ions and

hydrogen bonds

[31]

Na3V3+
3(PO4)4

a = 19.6724(4)
b = 6.4041(1)
c = 10.5890(2)
β = 91.967(2)

C2/c
4

1323.24

[V3+
3(PO4)4]3− bi-periodic

anionic slabs (double layers)
joint together by Na+ ions

[32]

Minerals

Yakubovichite
CaNi2Fe3+(PO4)3

a = 10.388(1)
b = 13.088(1)
c = 6.4794(6)

Imma
4

880.94(2)

[Ni2Fe3+(PO4)3]2− anionic
tri-periodic framework with

Ca2+ ions in the channels
[28]

Ozerovaite,
Na2K(Al1.64Fe3+

0.36)(AsO4)4

a = 10.615(2)
b = 20.937(3)
c = 6.3932(9)

Cmca
4

1420.9(3)

[(Al, Fe3+)(AsO4)4]3−

bi-periodic anionic slabs
(double layers) joint together

by Na+ and K+ ions

[34]

Pansnerite,
Na1.6K1.4(Fe3+

1.65Al1.35)(AsO4)4

a = 10.7372(3)
b = 20.8367(8)
c = 6.4734(2)

Cmca
4

1448.27(7)

[(Fe3+, Al) (AsO4)4]3−

bi-periodic anionic slabs
(double layers) joint together

by Na+ and K+ ions

[35]

Sverigeite,
Na(Mn1.37Mg0.63)SnBe2

(SiO4)3(OH)

a = 10.815(8)
b = 13.273(8)
c = 6.818(6)

Imma
4

978.71(7)

[(Mn, Mg)SnBe2(SiO4)3OH]−
tri-periodic framework with

Na+ ions in the channels
[30]

* A non-standard setting of the space group Cccm is given for uniformity of the unit cell parameters.

The structural derivatives from the α-CrPO4 archetype, discussed above, characterized
by unit cell volumes lying in the approximate range of 1320–1460 Å3, have similar crystal
structures formed by bi-periodic modules built from octahedra and tetrahedra interlayered
with alkali ions and water molecules. These topologically identical modules represent
fragments “extracted” from the parent α-CrPO4 structure, where they are directly connected
via common edges and vertices of polyhedra adjacent along the largest unit cell axis
(Figure 7).
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Figure 7. Repeating modules in (a) pansnerite, Na1.6K1.4(Fe3+
1.65Al1.35)(AsO4)4 and

(b) Na3.46(V3+
1.54Ni2+

0.46)M1(V3+
0.61Al0.39)M2(PO4)4(H2O) crystal structures displayed along the

axis of about 10.5 Å.

Likewise, the unit cell parameters of about ~21 Å, are inherent to the isotypic minerals
ozerovaite, Na2KAl3(AsO4)4 [34], and pansnerite, K1.5Na1.5Fe3+

3(AsO4)4 [35], the crystal
structures of which can also be considered as derivatives of the structure of α-CrPO4. Both
orthorhombic minerals were found in the fumaroles of the second scoria cone of the Great
Tolbachik fissure eruption, Kamchatka, Russia. According to [35], they were deposited
from hot gas as sublimates or formed as a result of the interaction between fumarolic gas
and basalt scoria at temperatures not lower than 430–450 ◦C. Ozerovaite and pansnerite
crystallize in the space group Cmca; they have many synthetic analogues among arsenates
with alkali and transition metals mentioned in [34]. The ozerovaite and pansnerite crystal
structures are also built of the bi-periodic slabs, i.e., fragments of the α-CrPO4 archetype.

The main difference between the crystal structures of synthetic phosphates
Na3V3+

3(PO4)4, K3V3+
3(PO4)4·H2O and Na3.46(V3+

1.54Ni2+
0.46)M1(V3+

0.61Al0.39)M2(PO4)4

(H2O) on the one hand, and the structures of arsenate minerals ozerovaite and pansnerite,
on the other hand, is the arrangement of bi-periodic fragments isolated from the α-CrPO4

structure, along the axis of about 21 Å. As can be seen from Figure 7, the “α-CrPO4” mod-
ules, neighboring in the [010] direction in pansnerite, are shifted along the c axis compared
with the neighboring modules in the title structure.

4. Ionic Conductivity
As discussed previously, the family of α-CrPO4 derivative compounds has shown

promise as materials for metal-ion batteries. For this reason, the Na ion migration in
the new modification Na3.46(V3+,Ni2+)2(V3+

,Al)(PO4)4·H2O was analyzed to evaluate its
potential as an electrode material. Primarily, we assessed the geometric parameters of the
crystal structure using the ToposPro package [36] to determine whether there is sufficient
space for the migration of Na ions within the structure. The Dirichlet program calculated
the free space between the “framework” atoms forming the (V3+,Ni2+)2(V3+

,Al)(PO4)4

slabs. The water molecule found to be partially populated was excluded from the analysis
because it would naturally evaporate through the calcination or charging/discharging
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process, as observed for zeolitic water non-bonded to any framework cation, e.g., in
K3V3(PO4)4·H2O [31]. Partitioning the free space into Voronoi–Dirichlet polyhedra revealed
38 voids, 7 of which had a radius of at least 1.54 Å and were connected by channels with a
width of at least 2.0 Å. As a result, a three-dimensional (3D) percolating network of voids
suitable for Na+-ion migration was identified. Remarkably, all Na atoms in the structure
are located in the calculated migration paths, thus allowing all 3,5 Na atoms per formula
unit to contribute to conductivity.

3D continuous migration pathways for Na+ in the Na3.46(V3+,Ni2+)2(V3+
,Al)(PO4)4·H2O

structure were also confirmed by bond valence energy landscapes (BVEL) analysis (Figure 8),
and the migration barriers were calculated to be ~0.44 eV along the a and b directions and
~0.42 eV along the c axis. These values are close to those obtained for Na+ migration in
the empty α-VPO4 [22] framework and suggest that this compound might exhibit ionic
conductivity and serve as a potential positive electrode material for sodium-ion batteries if
vanadium and/or nickel redox transitions are accessible. The theoretical specific capacity
of the presented compound upon deintercalation of all sodium ions is close to 155 mAh/g.
However, it seems impossible to achieve such a high level of capacity due to the absence of a
rigid three-periodic structure after total removal of Na ions. The bvlain Python package [37,38]
was used to determine the bond valence site energies, create the landscapes [39], and calculate
ion migration barriers. The bond valence force field parameters are taken from the data
provided by He et al. [40].
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,Al)(PO4)4·H2O crystal structure (yellow isosurfaces) with Eact set to 0.44 eV
illustrated using VESTA 3 software [41]. The phosphate tetrahedra are dark-grey. MO6 octahedra are
shown in red.

5. Conclusions
The sodium vanadium phosphate hydrate, Na3.46(V3+

1.54Ni2+
0.46)M1(V3+

0.61Al0.39)M2

(PO4)4(H2O), was synthesized under high-temperature hydrothermal conditions. Its crystal
structure, studied by low-temperature single crystal X-ray diffraction, is discussed as a new
member in a series of mineral and synthetic phases derived from the α-CrPO4 archetype,
known for a large range of compounds with promising properties. The title structure is
formed by intercrossed chains of alternating M1- and M2-centered octahedra linked via
oxygen-bridging contacts. Every M1O6 polyhedron shares two O vertices with M2O6

octahedra to form two-layered slabs perpendicular to the b axis of the unit cell. P2O4

tetrahedra share all vertices and one edge with octahedra within the slabs, while one vertex
of P1O4 tetrahedra is not shared with octahedra and is directed along the b axis in the
space between the slabs. A tri-periodic network of voids suitable for Na+-ion migration
was identified within the structure. These continuous migration pathways for Na+ were
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confirmed by the BVEL analysis, and the migration barriers turned out to be about 0.44 eV
along the a and b directions and ~0.42 eV along the c axis. These relatively low values
within the method indicate the potential of the compound as an electrode material for
sodium-ion batteries.
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