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Abstract: This paper focuses on parametric model order reduction (PMOR) of guided ultrasonic
wave propagation and its interaction with damage in a fiber metal laminate (FML). Structural health
monitoring in FML seeks to detect, localize and characterize the damage with high accuracy and
minimal use of sensors. This can be achieved by the inverse problem analysis approach, which
employs the signal measurement data recorded by the embedded sensors in the structure. The inverse
analysis requires us to solve the forward simulation of the underlying system several thousand
times. These simulations are often exorbitantly expensive and trigger the need for improving their
computational efficiency. A PMOR approach hinged on the proper orthogonal decomposition method
is presented in this paper. An adaptive parameter sampling technique is established with the aid of
a surrogate model to efficiently update the reduced-order basis in a greedy fashion. A numerical
experiment is conducted to illustrate the parametric training of the reduced-order model. The results
show that the reduced-order solution based on the PMOR approach is accurately complying with
that of the high fidelity solution.

Keywords: fiber metal laminates; guided ultrasonic wave; structural health monitoring; proper
orthogonal decomposition; model order reduction; damage detection

1. Introduction

Fiber metal laminates (FMLs) are hybrid materials that combine the ductile properties
of metal with the high-specific stiffness of fiber-reinforced plastics (FRP). They possess
the potential to offer a significant weight reduction and excellent fatigue properties in
structural applications. These advantages led to a surge of interest in such materials in
several industries, including aerospace and automotive, in the past decade. The complex
structure of FMLs and their extensive application activated unique challenges not only for
post-manufacture certification, but also for in-service inspection. In aerospace engineering,
impacts with ground support equipment are deemed to be the major cause of in-service
damage to layered laminates [1]. Collision with birds, runway stones, and ballistic im-
pacts are some of the other sources of impact. Common damage types in composites are
matrix cracking, fiber-matrix debonding, delamination, and fiber fracture [2,3]. Of all the
mentioned damages, delamination is the most dangerous type of impact damage because
there is no visible indication of damage on the outer surface. However, it can lead to an
extremely detrimental effect on the stiffness and strength of the structure causing extensive
loss of life and property. Therefore, a reliable nondestructive evaluation (NDE) method
is required to accurately detect and characterize such damage, preferably in real-time
using a minimum number of sensors. This gave rise to a new stream of NDE known as
structural health monitoring (SHM). Several SHM techniques based on vibration, acoustics,
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and instrumentation have been developed over the years to detect damage at an early stage
in composite materials [4]. Guided ultrasonic waves (GUW) feature (a) the ability to inspect
large structures over the entire cross-sectional area; (b) the lack of need for complicated
and expensive devices; (c) great cost-effectiveness [5]. Vibration-based SHM with GUW
is widely acknowledged as one of the prominent techniques for damage identification in
composites, as their propagation behavior changes when interacting with a damage [6,7].

Numerical tools, typically finite element method (FEM), are utilized to efficiently
investigate the wave propagation and assess the suitability of GUW for damage detection.
The solution to the inverse setting that combines the forward model and measurement data
describes the location and class of the damage in the structure. As the forward simulations
are performed at high frequencies of GUW, fine spatial and temporal discretization of the
model is required. This subsequently results in a large number of degrees of freedom to
be solved. The computational effort rises drastically when such models are employed
as forward simulators in inverse problem analysis and uncertainty quantification, where
the forward model must be solved several times. Model order reduction (MOR) aims
to diminish the computational effort while the accuracy of the result remains the same.
In most cases, reduced-order models are created based on one parameter value and then
used to represent the system at different parameters in the parametric domain. However,
the application of such reduced-order models at off-design often leads to poor predictions
and failure. Therefore, every time parameters alter, modeling, solving and reduction of the
system should be repeated, which makes MOR futile. It is therefore imperative to develop
methods that preserve the parametric dependence of the system during its order reduction.
Parametric model order reduction (PMOR) methods precisely satisfy this objective. Once
the model reduction is accomplished with a PMOR method, design optimization and
parametric space exploration cycles can be swiftly achieved by conducting parametric
simulations in the trained reduced space itself.

Ettefagh et al. [8] used model updating based on model reduction by the Guyan
method for damage-detection deploying modal analysis in aluminum beams, which
showed higher accuracy and faster convergence. Fairly reasonable results were obtained by
the laminate element method simulation of GUW in notched plate-like isotropic structures
proposed by Glushkov et al. [9]. Based on heat transfer behavior, Liang et al. [10] used a
proper orthogonal decomposition (POD) based model reduction strategy to detect cracks in
a rectangular plate made of aluminum and iron. Bova et al. [11] compared the solutions of
POD and modal-singular value decomposition (SVD) methods based on an offline–online
approach in composite structures parameterized by fiber orientation and lamina thick-
ness. Reduced-order modeling using POD was performed on a flexible aluminum plate
by Capellari et al. [12]. They further used hybrid-Kalman filtering for damage detection.
However, there was no previous work that studied PMOR on FMLs.

Considering the existing studies regarding the model reduction of lamb wave propaga-
tion, this research focuses on generating a low-cost but accurate model that simulates GUW
propagation and its interaction with damage in FML for different values of the system
parameters. The proposed method in this paper is concerned with the order reduction
of high-dimensional nonlinear ordinary differential equation systems. The rest of this
paper is organized as follows. Section 2 describes the targeted high dimensional finite
element model developed in COMSOL-Multiphysics® FE software. In Sections 3 and 4,
the standard MOR method and the PMOR approach used in this project are presented.
The results from the numerical experiments are reported and discussed in Section 5. Finally,
Section 6 summarizes the findings of this benchmarking study and discusses the areas of
future work.

2. Finite Element Analysis of Lamb Wave Propagation

The numerical modeling and analysis of anti-symmetric lamb wave mode (A0) prop-
agation as well as its interaction with the defect in FML were studied using the FEM on
COMSOL-Multiphysics ® software. A 16-layered two dimensional carbon fiber reinforced
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plastic (CFRP)-steel laminate model was considered for further analysis. The simulations
were carried out for 120 kHz central frequency of excitation. The excitation was realized by
a five-cycle Hanning window sinusoidal burst, that was applied on the top and bottom left
node of the model as shown in Figure 1.

Figure 1. Model setup used for simulation of Lamb wave propagation in carbon fiber reinforced
epoxy steel laminate.

The transient force applied upon excitation is as depicted in Figure 2. The simulation
was conducted for a total time of 2.083 × 10−4 s with the excitation pulse longing for
4.167× 10−5 s. A defect was introduced in the structure by a local reduction of the Young’s
modulus within the steel lamina. As a result, a reduced Young’s modulus was assigned to
a limited number of elements.

Figure 2. Force applied during excitation of the fiber metal laminate.

The boundaries of FML were subjected to free boundary conditions. All the nodes
on the left end of the laminate were subjected to symmetry boundary condition, while the
center node on the right end of the laminate was fixed in the x-direction. The considered
thicknesses of steel and CFRP laminas and therefore, of the numerical model are 0.12 mm
and 0.125 mm, respectively. The length and thickness of the laminate are 300 mm and
1.98 mm, respectively, with a defect placed at 90 mm from the left end of the laminate.
The damage is sized to be as thick as the steel lamina and 4 mm in length. A virtual
sensor placed at 57.5 mm records the out-of-plane displacements during the simulation. It
was assumed that plane strain conditions would be prevalent. Albeit COMSOL implicit
solver was used, time step and mesh sizes were calculated using a Courant–Friedrichs–
Lewy condition. Following this, the time step size evaluated and used for the numerical
modeling was 4.17× 10−7 s. The two-dimensional quadrilateral plane strain elements with
quadratic Lagrange shape functions are used to discretize both steel and CFRP composite
layers as well as the defect introduced. To ensure a proper representation of the wave
propagation the element size is selected in accordance with [13,14]. This leads to one
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element over the thickness of each layer and an element length of 0.5 mm in the direction
of the wave propagation. Hence, the numerical model consists of 79,266 nodal degrees
of freedom in total. Finally, the material data that was used to define the steel and CFRP
composite material models are listed in Tables 1 and 2, respectively. The density of CFRP
was 1580 kg/m3.

Table 1. Mechanical properties of steel.

Density Young’s Modulus Poisson’s Ratio
(kg/m3) (GPa)

7900 180 0.3

Table 2. Mechanical properties of CFRP.

Young’s Modulus
(GPa)

E11 = 127.28 E22 = 9.24 E33 = 9.24

Poisson’s Ratio
(- )

ν12 = 0.30 ν13 = 0.30 ν23 = 0.37

Shear Modulus
(GPa)

G12 = 4.83 G13 = 4.83 G23 = 3.37

Figure 3 provides different plots of the simulated wave propagation. The displacement
field of the A0 mode over the cross-section at the time instant t = 5× 10−5 s is provided
in Figure 3a. For a better visualization, the displacement is scaled by a factor of 1× 1013.
In Figure 3b, the finite element simulated GUW signal measured by the virtual sensor
embedded in the FML is plotted. The reflected A0 signal from the defect has its peak based
on the position and worseness of the defect. Throughout this paper, it was considered that
only one defect was present in the FML and its height was the same as that of the steel
lamina. It was also assumed that the defect crops up only in the steel lamina. The simulation
time for a solve using this high-fidelity (HiFi) numerical model was 66.29 s.

(a) (b)

Figure 3. (a) Scaled displacement field over the cross-section of the FML at t = 50 µs (b) displacement signal measured at
the sensor location.
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3. Model Order Reduction by Proper Orthogonal Decomposition

Model order reduction (MOR) pursues reducing the computational time and com-
plexity of extensive dynamical systems by approximating them to the lower dimensions
without losing the response characteristics of the system. The advantage of dealing with
the basis functions is that it reduces the model order significantly. There exist several tech-
niques that reduce the dimension of the system. They are classified into two main groups
viz. Krylov and singular value decomposition (SVD) methods [15]. The former methods
rely on iterative approaches for finding approximations to large-scale dynamical systems,
whereas, the latter methods are based on the notion of expanding the Hi-Fi solution into a
sequence of orthonormal basis functions, describing the most significant features of spatial
and temporal variation of the field variable. One of the most prominent techniques in SVD
methods is the POD method. The existence of POD dates back to the work of Karl Pear-
son [16] in 1901. Since then, the POD method has been successfully applied to numerous
fields, namely, signal analysis and pattern recognition [17,18], statistics, geophysical fluid
dynamics [19–21] or meteorology. Based on the domain of its application POD is known
under several names: principal component analysis (in statistics) and Karhunen–Loève
expansion (in stochastics). The works by Liang and Wu et. al [22,23] provide detailed
descriptions of POD theory and its above-mentioned methods. For nonlinear systems,
POD combined with Galerkin projection is widely used to produce reduced-order models.
Consider an undamped linear dynamic mechanical high-fidelity (Hi-Fi) model following
the system of equations:

Mü + Ku = f (1)

with M(θ) ∈ RN×N denoting the global mass matrix, K(θ) ∈ RN×N representing the
global stiffness matrix, f(t) ∈ RN×m denoting the force of excitation, and u(θ, t) ∈ RN×m

the displacement matrix. θ ∈ D ⊂ RNp is a vector of Np parameters defining the system
from the parametric space D and t ∈ [0, tmax] is the time variable. The total number of
degrees of freedom involved in the system is given by N and the number of discretized
time steps is indicated by m. The order of this Hi-Fi model can be reduced by projecting
the basis functions from the high-dimensional space RN to a lower dimensional space Rn

using a projection matrix Φ(θ, t) ∈ RN×n where n << m:

u ≈ Φur, ü ≈ Φür. (2)

Applying the above set of equations into Equation (1) and projecting them onto the
basis, results in:

ΦTMΦür + ΦTKΦur = ΦTfh

Mrür + Krur = fr
(3)

where Mr, Kr ∈ Rn×n, and fr ∈ Rn×m are the reduced system matrices. The approximated
load matrix evaluated using the reduced-order solution is represented by fh ∈ RN×m.
The projection matrix Φ, which contains the main features of the system, can be extracted
using the POD method. To start with, a sufficient number of observations from the Hi-Fi
model was collected in a matrix called snapshot matrix. The high-dimensional model
can be analytical expressions, a finely discretized finite difference or a finite element
model representing the underlying system. In the current case, the snapshot matrix
S(θ, t) ∈ RN×m was extracted and is further decomposed by thin SVD as follows:

S = [u1, u2, . . . , um] (4)

S = PΣVT. (5)

In (5), P(θ, t) = [φ1, φ2, . . . , φm] ∈ RN×m is the left-singular matrix containing orthogonal
basis vectors, which are called proper orthogonal modes (POMs) of the system, Σ =
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diag(σ1, σ2, . . . , σm) ∈ Rm×m, with σ1 ≥ σ2 ≥ . . . ≥ σm > 0, denotes the diagonal matrix
containing the singular values

{
σk
}m

k=1 and V ∈ Rm×m represents the right-singular matrix,
which will not be of much use in this method of MOR. In general, the number of modes
n required to construct the data is significantly less than the total number of modes m
available. In order to decide the number of most influential mode shapes of the system,
a relative energy measure E described as follows is considered:

E =
∑n

k=1 σk

∑m
k=1 σk

. (6)

The error ε from approximating the snapshots using POD basis can then be obtained by:

ε =
∑m

k=n+1 σk

∑m
k=1 σk

. (7)

Based on the preferred accuracy, one can select the number of POMs required to capture
the dynamics of the system. The collection of POMs results in the projection matrix

Φ = [φ1, φ2, . . . , φn] ∈ RN×n. (8)

Once the projection matrix is obtained, the reduced system (3) can be solved for ur and ür.
Subsequently, the solution for the full order system can be evaluated using (2). The approxi-
mation of high-dimensional space of the system largely depends on the choice of extracting
observations to ensemble them into the snapshot matrix. For a detailed explanation on the
POD basis in general Hilbert space, the reader is directed to the work of Kunisch et al. [24].

4. Parametric Model Order Reduction
4.1. Overview

The reduced-order models produced by the method described in Section 3 usually
lack robustness concerning parameter changes and hence must often be rebuilt for each
parameter variation. In real-time operation, their construction needs to be fast such that
the precomputed reduced model can be adapted to new sets of physical or modeling
parameters. Most of the prominent PMOR methods require sampling the entire parametric
domain and computing the Hi-Fi response at those sampled parameter sets. This avails
the extraction of global POMs that accurately captures the behavior of the underlying
system for any given parameter configuration. The accuracy of such reduced models
depends on the parameters that are sampled from the domain. In POD-based PMOR,
the parameter sampling is accomplished in a greedy fashion-an approach that takes a
locally best solution hoping that it would lead to the global optimal solution [25–37]. It
seeks to determine the configuration at which the reduced-order model yields the largest
error, solves to obtain the Hi-Fi response for that configuration and subsequently updates
the reduced-order model. Since the exact error associated with the reduced-order model
cannot be computed without the Hi-Fi solution, an error estimate is used. Based on the type
of underlying PDE several a posteriori error estimators [38–42], which are relevant to MOR,
were developed in the past. Most of the estimators used in [26–33,36–41,43,44] focused on
the affine parameter dependency of the Hi-Fi model, which resulted in an offline/online
decomposition approach: expensive computations of lower-order matrices are done offline
while the norm of the residual for any given parameter configuration was computed online
with a minimal effort.

The POD-based global reduced-order models are well suited for approximating
parametrized elliptic and parabolic PDE models. However, the PMOR of a wide range of
hyperbolic problems with non-linearity and discontinuity still remain a challenge. There-
fore, a strong investigation is going on in the MOR research community to reduce the
Kolmogorov n-width of the solution manifold [45,46]. Projection-based MOR along with
an active manifold was carried out by Boncoraglio et al. [32] to efficiently solve multidisci-
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plinary design optimization problem, which blends both linear and nonlinear constraints
in aerodynamics. The authors used a deep convolutional autoencoder to discover the perti-
nent active manifold for dimensionality reduction of a high-dimensional design parameter
space (58 structural and shape parameters). Bui-Thanh et al. [36] achieved MOR for design
optimization of a heat conduction fin by implementing an efficient adaptive algorithm to
determine appropriate sample points over a large input parametric space (up to 21 design
parameters). McBane et al. [43] proposed a component-wise reduced-order model based
on [47,48] to optimize the topology of a lattice-type structure. They further went on to
simplify the model to increase the speedup of the optimization process. A space-time MOR
method built on least-squares Petrov–Galerkin projection was presented by Kim et al. [44]
to solve linear dynamical systems. The approach was well demonstrated on 2D diffu-
sion and 2D convection diffusion problems. Further contributions on PMOR span across
the domains of contact in multibody nonlinear dynamics [49], nonlinear fluid–structure
interaction problems [50], uncertainty quantification [51,52] and contact mechanics [53,54].

Paul-Dubois-Taine et al. [35] employed an alternative approach, built on the notion
of optimization techniques, that samples the parameters adaptively and extracts the effi-
cient global POMs. A surrogate model for the evaluated a posteriori error indicators was
constructed, which enabled the localization of parametric domain where the probability
of error is the largest. This facilitated an efficient training method to produce an accurate
reduced-order model for the underlying Hi-Fi model with complex parameter depen-
dencies. The authors have illustrated the effective functioning of the method on linear
and nonlinear mechanical systems. Considering only the linear dynamical system and
lower dimensional input parametric space, in this research work, the method presented
by Paul-Dubois-Taine et al. was adopted to accomplish PMOR for GUW propagation in a
defective FML.

4.2. An Adaptive POD-Greedy Approach

A standard POD-greedy method progresses by finding a parameter θi, at every itera-
tion i, that maximizes the norm of the error e(θ) between the reduced-order solution and
its underlying Hi-Fi solution defined as follows:

‖e(θ)‖2 =
∫ tmax

0
‖u(θ, t)−Φur(θ, t)‖2 dt. (9)

The Hi-Fi model was then solved for parameter θi to extract the basis vector corre-
sponding to θi and update the projection matrix Φ. As the Hi-Fi solution u(θ, t) in practice
was unknown prior to solving the Hi-Fi model, an error indicator was utilized in lieu of
the error norm. Besides several existing error estimators, the norm of the residual is a
well-known alternative to the error estimates:

‖r(θ)‖2 =
∫ tmax

0
‖f(t)− fh(t)‖2 dt. (10)

Throughout this paper, the a posteriori error indicator J (θ) is referred to the norm
of the residual ‖r(θ)‖2. In the classical POD-greedy approach, a finite set of candidate
parameters ζ of cardinality Nζ is searched iteratively to identify the parameter θi that yields
the largest error norm. When the dimension Np of the parameter space D is large and if the
number of randomly collected candidate parameter sets is small, it is likely that the target
parameter configuration is not included. This challenge is dealt with by determining Nζ

set of candidate parameters at every iteration i in an adaptive manner following a greedy
algorithm. It was illustrated by the works of [35,55] that the adaptive PMOR approach
requires limited offline training time relative to that of the classical PMOR method. The
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objective of adaptive parameter sampling is to seek the optimal parameter θi, in every
iteration i, from the pool of error indicators evaluated over sets of candidate parameters
of smaller cardinality. This procedure is initiated by selecting a parameter point from D
and its associated reduced-order basis Φ1 ∈ RN×1 is computed. Next, the first set q = 0
of candidate parameter points ζi,0 ⊂ D of smaller cardinality N0

ζ < Nζ are randomly
selected. For each of these points, the algorithm evaluates the reduced-order model and

also their corresponding residual-based error indicators {Jj(θ)}
N0

ζ

j=1. These error indicators

are then used to build a surrogate model Ĵ [q](θ) for the error estimator over the entire
parametric domain D. In this work, a multiple linear regression-based surrogate model is
used. Subsequently, the designed surrogate model is employed to estimate the location
of an additional set q = 1 of candidate parameters ζi,1 ⊂ D with high probability to have
largest error estimates. The cardinality of the newly added set is N1

ζ < Nζ . Once the
surrogate model was constructed, the probability of candidate points neighboring the
highest error indicator was evaluated by the following method proposed in [56]. This
involves computing the maximum value Ĵ [q]

max(θ) of the surrogate model Ĵ [q](θ) over D
and then selecting a series of targets Tj > Ĵ

[q]
max, j = 1, . . . , NT . The target values were

chosen similar to those used in [56]. Together with the mean-squared error s[q](θ) of the
surrogate model Ĵ [q](θ), the associated probability ΞTj(θ) for each of those target values

is modeled assuming a Gaussian distribution for J (θ) with mean Ĵ [q](θ) and standard
deviation s[q](θ) as:

ΞTj(θ) = κ

(
Tj − Ĵ [q](θ)

s[q](θ)

)
(11)

where κ(·) represents the normal cumulative distribution function (CDF). The point θ? ∈
D that maximizes ΞTj is then selected. The set of {θ?j }

NT
j=1 is clustered by means of K-

means clustering. The optimal number Nclust of cluster points are evaluated with the
aid of the "evalclusters" function built-in MATLAB 2019b. As a result, the parameters
corresponding to the cluster centers are added as the additional set of candidate parameters.
The algorithm then determines the reduced-order model for the additional candidate

points and estimates their error indicators {Jl(θ)}
N1

ζ

l=1. This process is then repeated until
the maximum cardinality Nζ is reached with q = Nadd sets of candidate parameters,
i.e., Nζ = N0

ζ + N1
ζ + . . . + NNadd

ζ . The pool of error indicators:

J (θ) = {Jj(θ)}
N0

ζ

j=1 ∪ {Jl(θ)}
N1

ζ

l=1 ∪ . . . ∪ {Jr(θ)}
N

Nadd
ζ

r=1 (12)

is used to adapt a new surrogate model. The accuracy of the surrogate model increases
with increasing iterations as more error indicator values will be available. The step-by-step
procedure for determining the additional candidate points is described in Algorithm 1.
Furthermore, the candidate parameters with different cardinality are concatenated to
form ζi:

ζi = ζi,0 ∪ ζi,1 ∪ . . . ∪ ζi,Nadd . (13)
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Algorithm 1 Identification of the additional points with maximum probability of having
the highest error indicator value.

Input: Surrogate model Ĵ (θ) using multiple regression technique and its associated mean-
square error s[q](θ)
Output: Nclust number of points with high probability of having largest error indicator

1: Evaluate maximum Ĵ max and minimum Ĵ min values of the surrogate model over D
2: Pick a large set of trial points S ⊂ D
3: Define NT number of target values {α1, . . . , αNT } as used in [56]
4: for j = 1, . . . , NT do
5: Compute Tj = Ĵ max + αj(Ĵ max − Ĵ min)
6: Identify the points with maximum probability for each of the target values

θ?j = arg max
θ∈S

(ΞTj(θ)) = arg max
θ∈S

(
κ

(
Tj − Ĵ (θ)

s[q](θ)

))

7: end for
8: Evaluate the optimal number Nclust of clusters
9: Cluster the set {θ?1 ,. . . ,θ?NT } by means of K-means clustering algorithm into Nclust num-

ber of clusters
10: Compute their associated Nclust cluster centers

Ultimately, the optimal parameter θi is identified as the maximizer of the error indica-
tors collected over the set ζi as follows:

θi = arg max
θ∈ζi

J (θ) (14)

and is further used to update the parameter independent projection subspace Φ. It should
be noted that θi, identified by the above-mentioned process, need not be accurate as the pa-
rameter sampling is performed roughly around the maximum error indicator. Besides that,
the relative error between the Hi-Fi model and reduced model at θi both before and after
the reduced-order basis update, eb(θ) and ea(θ), respectively, were also evaluated. As a
result, at every greedy iteration i, the following set of relative error and error indicators are
available to construct an approximate error model:

η = {(J b
1 , eb

1), (J a
1 , ea

1), . . . , (J b
i , eb

i ), (J a
i , ea

i )}. (15)

In this paper, a linear model was built to compute the relative error value for an
estimated error indicator value. The error estimator becomes much more precise as the
number of iterations i increases in the greedy algorithm. The training phase or the update
of reduced-order basis in this approach continues until either of the conditions is satisfied:
(a) the error estimate ei equals its maximum threshold emax and (b) the maximum number
of basis updates are attained i = Imax. The complete adaptive POD-greedy approach is
summarized in Algorithm 2.
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Algorithm 2 Adaptive POD-Greedy algorithm.
Input: Maximum number of iterations Imax, initial cardinality of set of candidate parame-
ters N0

ζ , parametric space D, maximum error tolerance emax,
Output: Global reduced-order basis Φ

1: Randomly select an initial parameter point from the parameter domain θ1 ∈ D
2: Compute the Hi-Fi solution {u(θ1, t)}tmax

t=0 for that parameter
3: Generate reduced-order basis Φ1 ∈ RN×1 by POD using the Hi-Fi solution
4: Initiate an empty error pool η = ∅
5: for i = 2, . . . , Imax do
6: Randomly select an initial set of N0

ζ candidates ζ = {θ(1), . . . , θ
(N0

ζ )} ⊂ D
7: for j = 1, . . . , N0

ζ do

8: Determine the reduced-order solution {w(θ(j))}tmax
t=0 for the parameter θ(j)

using reduced-order basis Φi−1
9: Estimate the corresponding residual-based a posteriori error indicator J (θ(j))

10: end for
11: Set q = 0
12: while Nq

ζ < Nζ do

13: q = q + 1
14: Fit a surrogate model Ĵ [q](θ) for the error indicators and compute its mean-

squared error s[q](θ)
15: Determine ζi,q candidates points with maximum probability of having largest

error indicator value using Algorithm 1

16: Form a set ζ = ζ ∪ ζi,q = {θ(1), θ(2), . . . , θ
(Nq

ζ )}
17: for j = Nq−1

ζ + 1, . . . , Nq
ζ do

18: Compute the reduced-order solution {w(θ(j))}tmax
t=0 for the parameter θ(j)

using reduced-order basis Φi−1
19: Evaluate their associated a posteriori error indicator J (θ(j))

20: end for
21: end while
22: Find θi = arg maxθ∈ζ J (θ)

23: if (i > 2) & (ei > emax)

24: Set Φ = Φi−1
25: break
26: end if
27: Evaluate the Hi-Fi solution {u(θi, t)}tmax

t=0 associated with θi

28: Compute the exact relative error eb
i for {w(θi)}tmax

t=0 using Φi−1 and its associated
error indicator J b

i
29: Update the reduced-order basis Φi by POD using {u(θi, t)}tmax

t=0
30: Compute the exact relative error ea

i for the reduced-order solution {w(θi)}tmax
t=0

using updated Φi and its associated error indicator J a
i

31: Form a set of error pool η = η ∪ (J b
i , eb

i ) ∪ (J a
i , ea

i )
32: Establish an error model that estimates error for a given error indicator value

using the error pool η
33: if i = Imax then
34: Set Φ = Φi

35: end if
36: end for
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5. Application

The presented adaptive POD-greedy algorithm is applied to train the reduced-order
model of Lamb wave propagation in an FML structure with damage. The Hi-Fi model of the
system under consideration was developed based on FEM using COMSOL-Multiphysics®

commercial software. As described in Section 2, the damage was modeled as the loss of
stiffness in a localized area within the steel lamina. The training was carried out on a 3D
parametric space D, defined by Young’s modulus, position on the x-axis and length of
the damage. The parameter is then θ = {Edamage, xdamage, ldamage} ∈ R3. The parametric
space is delimited by Edamage ∈ [5× 106, 50× 108] Pa, xdamage ∈ [20, 150] mm and ldamage ∈
[2, 15] mm. To avoid long simulation time and unnecessary boundary reflections of GUW,
the position of the damage on the x-axis is limited to 150 mm. At every greedy iteration,
the global reduced-order basis is enriched with a better approximating subspace using the
POD method.

Since the proposed PMOR approach is model intrusive, it is required to solve the
system of dynamic equations using the prominent Newmark’s integration method (the
algorithm is presented in Appendix A. for the completeness of this paper). The comparison
of the out-of-plane displacement of FML obtained by the Hi-Fi model and reduced-order
model, produced using adaptive PMOR approach with Galerkin projection, is shown in
Figure 4. It can be observed that almost accurate predictions are obtained with the reduced-
order model. The signal reflected by the damage in the laminate was perfectly captured by
the trained low-dimensional model. In addition, a reduced-order solution was obtained
using the same global basis for several parameter configurations in D to test its robustness
(see Figure 5). In all the cases, the predictions were very good and the damage signals
were reconstructed flawlessly. The global reduced-order basis accumulated 340 modes to
attain this accuracy. At every iteration i, an arbitrary cardinality of N0

ζ = 10 initial set of
candidate parameters were randomly sampled from the parametric space. The set was then
enriched with additional parameters in an adaptive procedure until Nζ = 20 was reached.

Figure 4. Reduced-order solution produced by the adaptive POD-greedy approach for parameter
θ = (4.05 GPa, 90 mm, 4 mm) considered in Section 2.
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(a) θ = (1.55 GPa, 50 mm, 2 mm) (b) θ = (2.55 GPa, 40 mm, 6 mm)

(c) θ = (3.55 GPa, 70 mm, 11 mm) (d) θ = (0.5 GPa, 80 mm, 3 mm)

Figure 5. The comparison of low-dimensional solution with Hi-Fi solution for four different parameter configurations in D.

The evolution of residual-based a posteriori error indicator and relative error between
the Hi-Fi model and the low-dimensional model are shown in Figure 6a,b, respectively.
The values of relative error as well as error indicator decay with increasing number of
modes implying the fine approximation of global projection matrix.

(a) Error indicator (b) Relative error

Figure 6. The evolution of (a) error indicator and (b) relative error between the Hi-Fi model and reduced-order model of
the system.
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When the cardinality of initial parameter sets was increased to N0
ζ = 15, it was

required to enrich the reduced-order basis with 354 modes to achieve accurate prediction.
This indicates that the adaptive sampling of parameters is definitely efficacious compared
to random sampling. The linear error estimator built using the collected error pool at every
iteration is shown in Figure 7. It is evident from Figure 7a,b that the error estimator is
refined with increasing greedy iterations.

(a) Niter = 75 (b) Niter = 300

Figure 7. The error estimator after (a) Niter = 75 and (b) Niter = 300 iterations constructed using the error pool set η.

The numerical experiment was performed on a 4-core Intel(R) Core(TM) i7-10510U
CPU @ 1.80 GHz processor with 16 GB RAM. The computational cost for computing
Hi-Fi solution and reduced-order solution is summarized in Table 3. Using the adaptive
POD-greedy approach, a speedup factor of 33.82 is achieved. This substantial decrease
in the computational effort is very much appreciated in inverse problem analysis for the
localization and characterization of the defect in the FML.

Table 3. Computation time for high-dimensional and reduced-order models.

Model Training Time Computational Time

High-dimensional - 66.29 s
Reduced-order 17.6 h 1.96 s

The global modes obtained for the trained parametric domain was then tested to
build the reduced-order model for a parameter lying off the trained space. The dam-
age was introduced in the CFRP lamina, which was two layers away in z-axis from the
previously considered steel lamina. The low-dimensional model was produced for the
parameter configuration θ = (3.55 GPa, 90 mm, 7 mm). Figure 8 shows that the reduced-
order solution was able to very well detect the damage present in the FML. The location
of the damage signal produced by the reduced-order model complies precisely with
that of the Hi-Fi model Moreover, there was only a subtle difference in the magnitude
of the damage signal. By extending the training parametric space to the parameter set
θ = {Edamage, xdamage, zdamage, ldamage} ∈ R4, the low-dimensional solution can be very ac-
curately obtained using the adaptive POD-greedy approach. However, the training should
be executed from the beginning when the parameter exploration space is varied.
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Figure 8. Reduced-order solution produced by the adaptive POD-greedy approach for the parameter
outside the trained space.

The accuracy of POD-based global reduced-order model, which produces the response
for any point in the parametric space, depends on the size of the extracted global reduced-
order basis. In some cases, due to the extensively large parametric space obtaining an
efficient global reduced-order model is quixotic (as in the case of [32]). To overcome this
limitation of global reduced-order model approach, Y. Choi et al. [31] presented a novel
methodology that accelerates the solution of design optimization problem. The approach
uses a database of local parameterized reduced-order models constructed in offline and
interpolates those reduced-order models online to produce a new reduced-order model
for an unsampled point in the parametric space queried during the optimization process.
The accuracy of the resulting reduced-order model depends on the database produced in
the offline phase. Y. Choi et al. performed an efficient database construction based on a
saturation assumption greedy procedure proposed by Hesthaven et al. [57]. According to
this greedy procedure, a saturation constant that indicates the nature of an error estimate
for a parameter is evaluated (see Definition 1 in [31]). Consequently, the computation of
error estimates at some points are judiciously avoided and the overall computation time
was considerably reduced.

Nevertheless, the approach of adaptive PMOR using a surrogate model employed
in this research work was also capable of producing an efficient global reduced-order
model for high dimensional parameter space problems. Binder et al. [55] also adopted it to
speed up the computation of a convection-diffusion-reaction PDE with parameter space
of dimension up to R10000×11 that arises in analyzing financial risks. Thus, in this work,
the application of adaptive PMOR approach for GUW propagation in a defective FML in
relatively smaller parametric space was successfully demonstrated. The resulting global
reduced-order model significantly reduced the computation time without compromising
on the accuracy.

6. Conclusions

In this paper, a parametric model reduction method was employed to produce reduced-
order models for a high-dimensional linear dynamical structural system with a speedup
factor of 33.82. A finite element method has been utilized to solve the high-dimensional
system. The global reduced-order basis produced by the presented adaptive POD-greedy
approach is robust for any parameter configuration from the considered parametric domain.
An adaptive sampling technique using a multiple linear regression-based surrogate model
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was exploited to locate the parameters that are most likely to maximize the error indicator.
The modes corresponding to these parameters were accumulated in a greedy fashion
and the global reduced-order bases are enriched until the necessary accuracy is achieved.
The method was tested and studied on a numerical experiment of guided ultrasonic wave
propagation in a damaged carbon fiber reinforced epoxy-steel laminate. The reduced-order
model generated using the presented approach was able to predict the solution and detect
the damage which was even as small as 2 mm in length very accurately. Moreover, it
was also capable of capturing a detailed response of the system for parameters that are
even marginally away from the trained parameter space. In the future, this research will
continue to use this expeditious low-cost model for the inverse analysis to (a) localize
and characterize the damage in the fiber metal laminate and (b) quantify the uncertainties
concerning the damage.

In this work, a POD-based projection method was used to produce the global reduced-
order model. However, such a linear subspace based approach will often not be able
to approximate the solutions of hyperbolic systems, which involve discontinuity and
non-linearity, with small number of modes. One has to make use of the local reduced-
order models interpolation [31] or nonlinear manifold based [32] approaches. Another
interesting aspect of our future work within this research project will be to address these
issues in the context pertinent to the guided ultrasonic wave propagation in damaged fiber
metal laminates.
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Appendix A. Newmark Time Integration Method

The Newmark’s integration method is a multi-step time integration approach com-
monly used in dynamical structural system analysis as follows:

Mük+1 + Cu̇k+1 + Kuk+1 = fk+1 (A1)

where uk+1, ük+1 represent the displacement and acceleration at a time instant t = tk+1.
The initial conditions are given as u(t0) = u0, u̇(t0) = u̇0. The temporal discretization
is done with a time step size ∆t = tk+1 − tk. Nathan M. Newmark in their method [58]
proposed the below set of interpolation equations:

uk+1 = uk + u̇k∆t + ük(
1
2
− β)∆t2 + ük+1β∆t2, (A2)

u̇k+1 = u̇k + ük(1− γ)∆t + ük+1γ∆t. (A3)

In (A2) and (A3), β and γ are the numerical modeling parameters of Newmark’s
integration algorithm. They can be tweaked to balance accuracy and stability. The value
γ = 0.5 ensures second order accuracy, while β = 0.25 results in an implicit time integration
method. This makes the procedure unconditionally stable [58]. The algorithm becomes
an explicit method when β = 0 is used. At each time step, a set of predictor and corrector
equations are solved. The procedure is described in Algorithm A1.

Algorithm A1 The Newmark time integration method.
Input: Global mass matrix M, global damping matrix C, global stiffness matrix K, load
matrix f, time step size ∆t, maximum time tmax
Output: Displacement matrix u at any given time instant

1: Calculate the number of time steps N = tmax
∆t

2: Compute ü0 = M−1(f0 −Ku0 − Cu̇0)
3: for k = 0,. . . ,N − 1 do
4: Compute the predictors using:

ũk+1 = uk + u̇k∆t + ük(
1
2
− γ)∆t2

˙̃uk+1 = u̇k + ük(1− γ)∆t

5: Solve the system of equations for ük+1:

ük+1 = (M + Cγ∆t + Kβ∆t2)−1(f(tk+1)−Kũk+1 − C ˙̃uk+1)

6: Evaluate the correctors using:

uk+1 = ũk+1 + ük+1β∆t2

u̇k+1 = ˙̃uk+1 + ük+1γ∆t

7: end for
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