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Abstract: Precise environmental modelling of pollutants distributions represents a key factor for
addresing the issue of urban air pollution. Nowadays, urban air pollution monitoring is primarily
carried out by employing sparse networks of spatially distributed fixed stations. The work in this
paper aims at improving the situation by utilizing machine learning models to process the outputs
of multi-sensor devices that are small, cheap, albeit less reliable, thus a massive urban deployment
of those devices is possible. The main contribution of the paper is the design of a mathematical
model providing sensor fusion to extract the information and transform it into the desired pollutant
concentrations. Multi-sensor outputs are used as input information for a particular machine learning
model trained to produce the CO, NO2, and NOx concentration estimates. Several state-of-the-art
machine learning methods, including original algorithms proposed by the authors, are utilized in
this study: kernel methods, regularization networks, regularization networks with composite kernels,
and deep neural networks. All methods are augmented with a proper hyper-parameter search to
achieve the optimal performance for each model. All the methods considered achieved vital results,
deep neural networks exhibited the best generalization ability, and regularization networks with
product kernels achieved the best fitting of the training set.
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1. Introduction

Air pollution monitoring is one of the most important emerging environmental issues
in the treatment of urban air pollution. Urban atmospheric pollutants are responsible for
the respiratory and other illness of urban citizens. Some of the pollutants (e.g., benzene) are
known to induce cancers in case of prolonged exposure. Therefore, the precise modelling of
pollutants distribution is needed for traffic management and for the definition of mobility
plans designed to face these problems. Nowadays, urban air pollution monitoring is
primarily carried out employing networks of spatially distributed fixed stations. A limited
number of those stations represent a problem in estimating the real distribution of gases
and particles in a complex urban environment.

The work in this paper aims at improving the situation by utilizing machine learning
models to process outputs of multi-sensor devices that are small and cheap, thus a massive
urban deployment of those devices is possible. The outputs of those sensors are less
reliable in comparison to the currently used fixed stations, therefore a mathematical model
providing sensor fusion is utilized to extract the information and transform it into desired
pollutant concentrations. The main idea is that multi-sensor outputs are used as input
information for a particular machine learning model which is trained to produce the CO,
NO2, and NOx concentrations in a supervised learning scenario. The desired outputs of the
model are provided by reliable but expensive measurements of the pollutants. Our results
should provide a proof of concept of this approach, and show that with clever processing
of sufficient data, it is possible to model and estimate concentrations of desired pollutants
even from cheap and unreliable sensors.
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Machine learning models have recently been successfully applied to many challenging
problems from image recognition and robotics to language translation and DNA sequenc-
ing [1,2]. In the majority of these areas they now provide the best solutions available,
surpassing the ”white-box” analytic solutions. While the lack of explanation abilities of
these approaches can be seen as a disadvantage, their efficiency of data modelling and
their adaptivity to new problems and datasets represent big benefits. In particular, the area
of cheap gas sensors, where the exact analytic descriptions are hard to obtain or differ for
different sensor technologies, seems to be a suitable domain for machine learning where
expert knowledge is augmented by efficient autonomous algorithms.

The application of machine learning models to the processing of sensor data presents
several challenges that have already been identified and tackled by previous research. The
majority of related work in this area uses regression approaches to model individual sensor
outputs, or in more advanced settings, to provide multi-sensor fusion with relevant data
(such as pollutant concentrations) as the output of the model.

The authors of [3] have applied several simple machine learning models for classifica-
tion and regression tasks to utilize multi-sensor data in the indoor environment for the task
of occupancy prediction formulated as supervised learning. Their models include decision
trees, Bayesian networks and linear regression. The importance of raw data preprocessing
and using multiple inputs (including augmenting data collected by humans) was stressed.
The similar indoor scenario is used in paper [4] where Bayesian and neural networks are
used for predicting and correcting multi-sensor outputs measuring temperature, humidity,
pressure, and so forth. Their results with relatively small datasets and simple models imply
the possibility of reconstructing relevant information by multi-sensor fusion.

In the last several years, deep neural networks became a very popular machine
learning tool and they were also applied in sensor information processing field. The authors
of [5] describe a low-cost multi-sensor hardware device measuring CO2 concentrations. The
complete system consists of six sensors and a deep neural network model that demonstrated
superior performance compared to linear regression, albeit the computing requirements
for training (dozens of hours) are large. A recent work [6] presents a successful application
of deep (convolutional) network for multi-sensor data fusion solving the problem of steel
element defects. Their results seem to be dependent on clever preprocessing and analysis
of the sensor output.

In this paper, we work with datasets that have been already used for analysis and
modelling by different machine learning models by De Vito et al. [7,8]. The data consists of
dozens of thousands of measurements of concentrations of several gas pollutants obtained
from multi-sensor devices recording. As mentioned earlier, the measurements are labelled
by reliable conventional air pollution monitoring stations. The technical nature of the data
is described in detail in Section 4.

Several machine learning models are compared on the task of prediction of CO, NO2
and NOx concentrations based on the multi-sensor fusion of the above obtained data. The
tested methods represent state-of-the-art approaches ranging from kernel methods to deep
neural networks. It is important to stress that all methods have been extensively tested
for their performance not only by the standard statistical measures and approaches as the
cross-validation, but also the optimal choice of hyper-parameters (types of a kernel, size of
a model, etc.) has been performed by extensive global search. In the case of regularization
networks, the hyper-parameter search is performed by a genetic algorithm, and in the case
of deep neural networks, it is performed by an evolution strategy [9].

The obtained results show that all machine learning models we have tested were able
to perform the task of modelling the pollutant concentrations from multi-sensor data in
a satisfiable way. The overall best model in terms of generalization criteria has been a
particular architecture of a deep neural network. On the other hand, the best precision
on training data has been achieved by our original architecture of kernel networks with
product units.
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The paper is organized as follows. In the next section, related work concerning
machine learning models is discussed. Section 3 describes the used machine learning algo-
rithms in more detail, namely Section 3.1 derives the regularization network, Section 3.2
introduces the extension of regularization network via composite kernels, while Section 3.3
explains how composite kernels are evolved. Then, Section 3.4 briefly introduces deep
neural networks and Section 3.5 describes how architecture of deep neural networks is
optimized. Finally, Section 4 describes the dataset. Section 5 contains the results of our
experiments and our conclusion can be found in Section 6.

2. Related Work

Among machine learning methods, kernel methods became very popular in the 1990s.
They have been applied to many real-world problems, and they are still considered to be
state-of-the-art methods in various domains [10]. In this work, we study the regulariza-
tion network (RN), a feed-forward neural network with one hidden layer, designed for
supervised learning. RN are based on a good theoretical background and their architecture
has been mathematically proven to be the solution to the problem of supervised learning
formulated as a minimization problem with regularization (see [11–14]).

The paper [15] demonstrates how the kernel function choice significantly influences
the RN performance. Therefore, the optimal choice of the kernel function always depends
on a task given. Kůrková et al. have studied the theoretical properties of kernel units with
variable and fixed widths [16–19].

More complex models, described in detail in Section 3.2, belong to the class of the
multi-kernel models. Recently, this field has been studied extensively [10,20–22]; however,
corresponding algorithms are mostly designed for the support vector machines (SVM).

In addition, the Support Vector Regression (SVR) model is used in this paper. It is
an extension of the well-known Support Vector Machine (SVM) for regression problems.
Like the SVM model, SVR depends only on a subset of the training data, because the cost
function ignores any training data close to the model prediction [23,24].

Finally, the last method considered in this work is the Deep Neural Network (DNN).
DNNs have become the state-of-the-art methods in many machine learning application
areas, recently. They have been applied to various problems, such as image and speech
recognition, natural language processing [1,2].

DNN are neural networks with multiple hidden layers. In this paper, we consider
only feed-forward networks. The types of network units typically depend on the particular
application. The commonly used units are traditional perceptrons or the rectified linear
unit (ReLU).

The weights of DNN are trained by algorithms based on stochastic gradient descent.
However, the architecture (i.e., a number and sizes of layers, and a type of activation
function) has to be set up manually by an expert. The choice of architecture influences
significantly the performance of the DNN, but still, it is typically done by a trial and error
method [25].

3. Machine Learning Methods

In this section, we will describe the machine learning models used in our experiments
in more details, with the emphasis on our original modifications and extensions. The
most important part deals with a hyper-parameter search for (composite) kernel and deep
neural networks. We have utilized evolutionary computing optimization to provide a
global search procedure for the hyper-parameter sweep. This is done to make sure the
optimal model (within some reasonable constraints) is found, and thus the performance
comparison is as fair as possible.

First, let us overview the models and hyper-parameter search algorithms:

• regularization networks (RN);

– evolutional algorithm for RN hyper-parameter search;

• RN with composite kernels;
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– evolutional algorithm for RN and composite kernel hyper-parameter search;

• deep neural networks (DNN);

– evolution strategies for DNN architecture search.

The models and algorithms in bold are our original extensions.

3.1. Regularization Networks and Kernels

This section introduces the regularization network architecture used for supervised
learning. The supervised learning we reformulate in the context of a function approxi-
mation. Given a set of data points {(~xi, yi) ∈ Rd × R}N

i=1 (where ~xi is an input, yi is a
corresponding output, and N is a number of data points) obtained by random sampling of
a real function f , the goal of supervised learning is to search for this function. Generally, the
problem is ill-posed. Therefore we add a priori knowledge about f . It is usually assumed
that f is smooth, that is, each pair of similar inputs corresponds to a pair of similar outputs.
The solution to the problem is found by minimization the functional (1) which contains
both the data and the regularization term.

H[ f ] =
1
N

N

∑
i=1

( f (~xi)− yi)
2 + γΦ[ f ], (1)

where Φ is a regularization term and γ > 0 is the regularization parameter. For a wide class
of regularization terms, the solution can be represented by a feed-forward neural network
with one hidden layer, and linear output units called a regularization network (RN) [14,26].
The RN obtained as a solution is unique and it has the form:

f (~x) =
N

∑
i=1

wiK(~xi,~x), (NγI + K)~w = ~y, (2)

where I is the identity matrix, K is the matrix Ki,j = K(~xi, ~xj), K is an appropriate kernel
function, and ~y = (y1, . . . , yN).

For the given γ and the type of kernel function K, the algorithm is simple and efficient,
since it is, in fact, a problem of solving a linear system. In our approach, the search for
suitable hyper-parameters is performed by a genetic algorithm optimization technique.
This will be described in detail in Section 3.3.

3.2. Composite Kernels

The kernel function represents our presumption (called bias in machine learning)
about a solution to the given approximation problem. Therefore, it is usually assumed to be
chosen by a user. However, this choice has a significant impact on the learning performance
and therefore should be done for each task independently.

In theory, it is typically assumed that a kernel is a symmetric and positive-definite
function. On the other hand, in practice, various other functions are used. In [27], it was
shown that conditionally positive definite kernels possibly outperform classical kernels.

Commonly used kernel functions are: linear K(~x,~y) = ~xT~y, polynomial K(~x,~y) =
(γ~xT~y + r)d, γ > 0, Gaussian radial basis function K(~x,~y) = exp(−γ||~x − ~y||2), γ > 0,
sigmoid K(~x,~y) = tanh(γ~xT~y + r). Where, γ, d and r are the kernel’s parameters.

Recently, several algorithms have been proposed to use composite kernel functions,
that is, functions consisting of combinations of basic kernel functions [20]. Data are often
multi-modal and then such composite kernels may better reflect the character of data.

In our previous papers [28,29], we have proposed composite kernel functions for RN
and, consequently, evolutionary algorithms searching for data-dependent optimal kernel
functions have been proposed in [30] for networks with product units, and in [31] for
networks with sum units. Based on Aronszajn’s breakthrough results [32], we have shown
that it is possible to use composite kernels as activation functions in the RNs (cf. [33]). Such
composite kernels also often outperform a simple kernel function.
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The product kernel is a function K:

K(~x1, . . . ,~xk,~y1, . . . ,~yk) = K1(~x1,~y1) · · ·Kk(~xk,~yk), (3)

where K1, . . . , Kk are kernel functions defined on Ω1, . . . , Ωk (Ωi ⊂ Rdi ) respectively,~xi ∈ Ωi
and Ω = Ω1 ×Ω2 × · · · ×Ωk.

The sum kernel is a function K: K(~x,~y) = K1(~x,~y) + K2(~x,~y), where K1 and K2 are
kernel functions.

It is possible to combine various types of kernels or just two functions of same type
but with different parameters, that is, two Gaussians of different widths (note that in this
case the Gaussians have the same center).

3.3. Genetic Search for Kernels

In order to find the right kernel function in a data-dependent and autonomous way,
a suitable search algorithm is needed. A sound and robust global optimization method
called genetic algorithms (GA) [34] was used in our approach. Considered to be an efficient
stochastic population-based meta-heuristic, the GA allows to search for various types
of kernels, including composite kernels. The GAs work with a population of individuals
encoding feasible solutions. During the process of search, each individual is evaluated by a
fitness function value that reflects the quality of the corresponding solution.

Populations in GA evolve so as to approach better individuals. The algorithm starts
with individuals generated randomly, and it creates a new population each iteration of the
algorithm (generation). In each iteration, the fitness of all individuals is evaluated. Based
on the fitness, the individuals are stochastically selected for reproduction and then altered
by genetic operators mutation and crossover.

To find suitable hyper-parameters for RN (described above), our individuals encode
the kernel function type, other possible parameters of the kernel function, and the regular-
ization parameter.

For example, a simple kernel function is encoded as I = {K, p, γ}, where K is the type
of kernel function, p is a kernel parameter, and γ is a regularization parameter, that is,
I = {Gaussian , width = 0.2, γ = 0.001}.

The product kernel function can be represented by the individual: I = {K0, p0, K1, p1, i1,
. . . , in, γ}, where K0, K1 are the types of kernel functions, p0, p1 are kernel parameters,
and i1, . . . , in ∈ {0, 1} is an index of kernel by which the i-th attribute is processed, i.e
I = {Gaussian, 0.73, Inverse_Multiquadric, 1.47, [0, 0, 1, 0, 1, 1, 1, 1], γ = 0.1}.

The genetic operators of mutation and crossover are rather simple and based on
standard evolutionary approaches for vectors of floating-point and discrete values. Our
mutation operator is a standard biased mutation which performs small random perturba-
tion drawn from normal distribution to a small number of randomly selected numerical
values of an individual.

The crossover operator differs slightly for different types of regularization networks:
for simple kernels of the same type, we use an arithmetic crossover that modifies the kernel
parameter and γ, that is, the new values are generated randomly:

γ = (1− r)γ1 + rγ2,

where r ∈ 〈0, 1〉 is a random number, γ1 and γ2 are parents’ values, and γ is the off-
spring value.

In the case of composite kernels, the situation is more complicated, and the standard
discrete one-point crossover is used—the sub-kernels are interchanged.

A standard and robust tournament selection is used as a selection operator.
The fitness value must reflect the quality of the corresponding RN. To estimate the

real generalization ability of a network we use a cross validation error [35]. Thus, it should
be stressed that we are looking for such hyper-parameters that minimize the crossvalida-
tion error.
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3.4. Deep Neural Networks

Artificial neural networks (ANNs) are a class of computational models used in ma-
chine learning. In general, an ANN is a large collection of simple connected units called
artificial neurons. The neurons are typically organized in layers. Networks with more
layers between the input and output layer are known as deep neural networks (DNN).

A neuron is a computational unit with n real inputs xi and one real output y. It realizes
a function y = g(∑n

i=1 wixi +w0), where g is an activation function, and wi ∈ R are weights.
A typical activation function is the sigmoid function y(z) = 1

1+e−z , but a current popular
alternative to sigmoid is the so-called rectified linear unit (ReLU): y(z) = max(0, z).

DNN realizes a function f (W) : RN → RM, where N is the number of input neurons
and M is a number of output neurons, W is a matrix of network parameters, the weights.
The learning of DNN consists of the optimization of a cost function with respect to weights
W. This optimization is typically done by a version of the stochastic gradient descent
algorithm. To prevent overfitting, various regularization techniques can be used. The most
common method is the so-called dropout, which is a very efficient way of performing model
averaging by dropping out individual neurons.

The hyper-parameters of DNN (traditionally referred to as an architecture), that is,
the number of hidden layers, the number of neurons in individual layers, and so forth, are
typically chosen by a user, often by the time-consuming trial and error method.

3.5. Evolution Strategies for DNN Design

In our work, we use evolution strategies to search for the optimal architecture (hyper-
parameters) of DNN, while the weights are learned by a conventional gradient based tech-
nique.

Evolution strategies (ES) are a kind of evolutionary algorithm. They were designed for
real-valued individuals [36]. Similarly to GA, they work with a population of individuals,
evolving them by means of selection, crossover and mutation operators. The key operator
in ES is the Gaussian mutation:

x ← x + σN(0, 1)

σ← σ(1 + αN(0, 1)),

where x is a variable under mutation and σ is the corresponding strategy coefficient, α ∈ R
is a mutation coefficient, N(0, 1) stands for normal distribution.

There are two traditional forms for evolution strategies. The (n + m)-ES generates
new generation by deterministically choosing n best individuals from the set of (n + m)
parents and offspring. The (n, m)-ES generates new generation by selecting from m new
offspring (typically, m > n). The latter approach is considered more robust against local
optima premature convergence.

Evolution strategies represent a very successful optimization approach used for solv-
ing complex and large problems.

The main idea of our approach to applying ES for DNN architecture search is to
restrict the space of feasible architectures as much as possible. Therefore, the architecture
specification is simplified. It directly follows the implementation of DNN in the popular
Keras library [37], where networks are specified as a list of fully connected layers. A layer
is then defined by the number of neurons, the type of an activation function, and the type
of regularization (such as dropout).

In our algorithm, the (n, m)-ES is used. Offspring are generated using both mutation
and crossover operators. Our individuals represent network topologies and therefore they
are not represented by real-valued vectors. So, our operators have to slightly differ from
classical ES.

Each individual represents one DNN. It consist of blocks defining the network’s layers.

I = ([sizei, dropi, acti, σsize
i , σ

drop
1 ]i)

H
i=1,
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where H is the number of hidden layers, sizei is the number of neurons in corresponding
layer that is dense (fully connected) layer, dropi is the dropout rate (zero value represents
no dropout), acti ∈ {relu, tanh, sigmoid, hard sigmoid, linear} is an activation function,
and σsize

i and σ
drop
i are strategy coefficients corresponding to size and dropout.

The crossover operator is implemented as a one-point crossover exchanging the whole
blocks (layers).

There is a variety of mutation operators. Each time mutation is performed, one of them
is chosen at random.

• mutateLayer—operates on one randomly selected layer. One of the following actions
is performed:

– changeLayerSize—Gaussian mutation is used, adapting strategy parameters σsize,
the final number is rounded (since size has to be an integer);

– changeDropOut—the dropout rate is mutated by Gaussian mutation adapting
strategy parameters σdrop;

– changeActivation—a new activation function is selected randomly from the list
of available activations;

• addLayer—new block is generated at random and inserted at random position;
• delLayer—deletes random block.

Note that the ES-like mutation comes in play only when the size of layer or dropout
parameter is changed.

Fitness and selection are similar to the GA used for evolution of kernels. The classical
cross validation error is used as fitness, and a tournament selection is utilized.

4. Data Set

We have used a real-world dataset [7,8]. It contains measurements of gas multi-sensor
MOX array devices recording several gas pollutants concentrations. Data are labelled by a
conventional air pollution monitoring station. The frequency of measurements is 1 hour,
but data contain many missing values (due to sensor malfunctions). In this paper, we use
data from 10 March 2004 to 4 April 2005. Lines with missing values are neglected. There are
five sensor measurements as inputs, and we have chosen three output values, representing
concentrations of CO, NO2 and NOx gases, as targets.

In the following text, we describe two experiments with different subsets of the data.
The first experiment was rather a simple one, it should identify if our models are able to
provide reliable results in a simplified scenario. For the first experiment, we have chosen 4
data samples per day for training, and the rest of the data is used for testing. It means we
are predicting relatively small intervals between measurements.

The second experiment presents a more realistic scenario. The data were divided into
five uniform intervals. In each of the sub-experiments, one of the intervals is chosen for
training, while the remaining 80% of the data were left for testing. We have considered
three different strategies for how to choose the training part. This task may thus be more
difficult, since the testing may also be performed on distant parts of the data, meaning, for
example, a different season of the year. Experts in the application area have suggested that,
from their experience, the model build for the winter period will probably not work for
summer.

Table 1 lists the size of individual datasets. All sets have five inputs and one target.
All numbers are normalized to 〈0, 1〉.

Table 1. Overview of datasets’ sizes.

Task Train Set Test Set Task Train Set Test Set

sparse CO 1224 6120 CO i1-5 1469 5875
sparse NO2 1233 6160 NO2 i1-5 1479 5914
sparse NOx 1233 6163 NOx i1-5 1480 5916
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5. Results
5.1. Experimental Setup

Models applied to sensor data include the above described RN, support vector regres-
sion (SVR), and DNN.

RN were used with Gaussian, product and sum kernels. Kernels were evolved using
the GA described in Section 3.3. The set of available sub-kernels contained Gaussian,
Multiquadric, Inverse-Multiquadric, and Sigmoid functions. The population size of GA
was set up to 20 and a stop criterion to 300 generations. Elite with 2 individuals was used.
Ten-fold cross validation was utilized for fitness.

SVR were trained using the Scikit-learn package [23]. We used SVR with linear, RBF,
polynomial and sigmoid kernels [24]. Hyper-parameters were tuned by extensive grid
search (10,000 different pairs of regularization parameter and kernel parameter).

Finally, the DNN were trained by RMSProp [37] for 500 epochs. The network archi-
tecture was found by the ES evolutionary algorithm described in Section 3.5. The ES was
run with n = 10 and m = 30 for 100 generations. During the fitness evaluation, a five-fold
cross validation was used.

Resulting errors are computed on the training and testing sets as mean square error
multiplied by the factor of 100. Each experiment was run 10 times, evaluating average
errors and their standard deviations.

5.2. Experimental Results

See Tables 2–9 and Figure 1 for results of the first and second experiment, respectively.
The first task contains four training values per day, the rest of measurements is left as

a test set. Errors for RN with evolved Gaussian kernels, product and sum kernels are listed
in Table 2. Note that product kernels perform the best on training data and under cross
validation scenario, while they have results on the test data comparable to other kernels.

Table 3 lists training and testing errors on the first task for RN with product ker-
nels, SVR with linear, RBF, polynomial, and sigmoid kernels, and DNN. Product kernels
performed best both in terms of training and testing errors.

Figure 1 shows model performance on five splits on training and testing data. It
can be seen that some periods are more suitable for training and general prediction than
the others.

The second task is the more difficult one. The meassurements are split into five parts.
Each time, one part represents a training data, the rest the test set. So, the predictions are
made for seasons that were not included in the training data.

Tables 4 and 5 contain the resulting errors for RN with Gaussian and product kernels,
respectively. The situation is the same as in the first experiment. Considering training
errors, product kernels achieved lower errors in 10 cases from 15. In case of testing errors,
products were winners only in seven cases. However, taking into account minimal values,
the product kernels are best in all runs except one in case of training errors and except
three in case of test errors. That means it is still possible to improve the search for product
kernel. Note that the evolved product kernels are mainly composed of Gaussian and
Inverse-Multiquadric functions.

The comparison of RN to SVR on the second task is listed in Tables 6 and 7. In terms
of training errors, the RN with product kernels performed best (in nine cases), in terms of
testing errors the RN with Gaussian kernels performed best (in seven cases). In general,
RN gives better results than SVR.
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Table 2. Task 1: Experiment on sparse measurements with RNs. Average errors and standard
deviations are listed for networks with Gaussian, Product and Sum kernel. The lowest errors
are highlighted.

Cross validation Errors

Gaussian Kernel Product Kernels Sum Kernels

Task Eavg stddev Eavg stddev Eavg stddev

CO 0.152 0.000 0.148 0.002 0.152 0.003
NO2 0.429 0.003 0.407 0.009 0.434 0.012
NOx 0.227 0.000 0.207 0.006 0.229 0.005

Training Errors

Gaussian Kernel Product Kernels Sum Kernels

Task Eavg stddev Eavg stddev Eavg stddev

CO 0.132 0.002 0.123 0.005 0.128 0.010
NO2 0.308 0.002 0.277 0.025 0.312 0.003
NOx 0.139 0.001 0.135 0.011 0.139 0.002

Testing Errors

Gaussian Kernel Product Kernels Sum Kernels

Task Eavg stddev Eavg stddev Eavg stddev

CO 0.136 0.001 0.134 0.002 0.138 0.006
NO2 0.334 0.002 0.343 0.011 0.338 0.004
NOx 0.158 0.001 0.158 0.008 0.160 0.005

Table 3. Task 1: Comparison of RNs, SVR, and DNN. Average error values are listed. The lowest
errors are highlighted.

Training Errors

RN
Product

SVR
Linear SVR RBF SVR Poly SVR

Sigmoid DNN

CO 0.123 0.229 0.184 0.189 1.496 0.128
NO2 0.277 0.475 0.363 0.506 2.036 0.342
NOx 0.135 0.531 0.253 1.235 1.989 0.161

Testing Errors

RN
Product

SVR
Linear SVR RBF SVR Poly SVR

Sigmoid DNN

CO 0.134 0.230 0.192 0.192 1.480 0.148
NO2 0.343 0.502 0.390 0.532 1.997 0.376
NOx 0.158 0.519 0.255 1.196 1.961 0.175

Finally, Tables 8 and 9 show a comparison of RN with product kernels and DNN on
the second task. Product kernels performed better in the case of training error (in 12 cases),
while DNN are better in the case of testing error (in 10 cases). The DNN showed a better
generalization ability, while RN with product kernels are more prone to overfitting.

Since the dataset used is quite small, the evolved DNN had typically only one hidden
layer consisting of 70 ReLU units, using dropout rate 0.3.
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Table 4. Task 2: Comparison of training errors for RN trained on single epochs. Average values,
standard deviations, minimum and maximum values are listed. The lower average and minimum
errors are highlighted.

Training Errors

Gaussian Kernel Product Kernels

Task Eavg stddev min max Eavg stddev min max

CO-i1 0.050 0.000 0.050 0.050 0.051 0.002 0.049 0.055
CO-i2 0.049 0.000 0.049 0.049 0.046 0.002 0.043 0.050
CO-i3 0.054 0.000 0.053 0.054 0.056 0.003 0.054 0.065
CO-i4 0.333 0.001 0.332 0.334 0.347 0.016 0.325 0.378
CO-i5 0.133 0.000 0.132 0.133 0.097 0.018 0.077 0.142

NO2-i1 0.096 0.002 0.093 0.101 0.100 0.015 0.091 0.141
NO2-i2 0.133 0.001 0.131 0.134 0.122 0.014 0.105 0.148
NO2-i3 0.388 0.001 0.384 0.389 0.314 0.077 0.214 0.434
NO2-i4 0.297 0.002 0.295 0.299 0.287 0.012 0.265 0.307
NO2-i5 0.375 0.001 0.374 0.376 0.389 0.032 0.330 0.435

NOx-i1 0.018 0.000 0.018 0.018 0.017 0.001 0.016 0.020
NOx-i2 0.026 0.000 0.026 0.027 0.025 0.002 0.021 0.028
NOx-i3 0.156 0.001 0.154 0.158 0.152 0.019 0.121 0.184
NOx-i4 0.231 0.002 0.229 0.234 0.230 0.017 0.203 0.258
NOx-i5 0.106 0.023 0.087 0.132 0.095 0.011 0.083 0.122

5 1 10 14

Table 5. Task 2: Comparison of testing errors for RN trained on single epochs. Average values,
standard deviations, minimum and maximum values are listed. The lower average and minimum
errors are highlighted.

Testing Errors

Gaussian Kernel Product Kernels

Task Eavg stddev min max Eavg stddev min max

CO-i1 0.210 0.005 0.205 0.217 0.214 0.020 0.192 0.248
CO-i2 1.134 0.007 1.116 1.142 0.878 0.088 0.709 0.988
CO-i3 0.233 0.009 0.221 0.254 0.228 0.019 0.197 0.267
CO-i4 0.326 0.002 0.323 0.329 0.749 0.512 0.433 1.921
CO-i5 0.296 0.005 0.287 0.301 0.321 0.050 0.204 0.374

NO2-i1 2.151 0.052 2.096 2.267 2.263 0.540 1.189 2.997
NO2-i2 5.260 0.045 5.161 5.319 3.928 1.447 2.661 6.874
NO2-i3 0.718 0.004 0.709 0.721 1.033 0.218 0.764 1.351
NO2-i4 0.735 0.011 0.726 0.757 0.734 0.069 0.669 0.908
NO2-i5 0.678 0.024 0.655 0.735 0.913 0.183 0.709 1.302

NOx-i1 2.515 0.015 2.495 2.538 2.409 0.159 2.093 2.658
NOx-i2 3.113 0.019 3.081 3.139 2.495 0.068 2.416 2.592
NOx-i3 1.105 0.008 1.088 1.114 0.956 0.267 0.730 1.689
NOx-i4 0.952 0.008 0.941 0.970 1.256 0.520 0.774 2.610
NOx-i5 0.730 0.102 0.642 0.850 0.748 0.091 0.544 0.856

8 3 7 12
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Table 6. Task 2: Comparison of average training errors for different models: Regularization Networks
with Gaussian and Product kernels, SVR with RBF, linear, polynomial and sigmoid kernels. Lowest
error for each dataset is highlighted.

Training Errors

RN
Gaussian

RN
Product

SVR
Linear SVR RBF SVR Poly-

nomial
SVR

Sigmoid

CO-i1 0.050 0.051 0.131 0.160 0.120 1.284
CO-i2 0.049 0.046 0.122 0.110 0.122 0.835
CO-i3 0.054 0.056 0.165 0.141 0.123 1.700
CO-i4 0.333 0.347 0.372 0.343 0.352 2.131
CO-i5 0.133 0.097 0.186 0.207 0.204 1.215

NO2-i1 0.096 0.100 0.316 0.305 0.207 0.337
NO2-i2 0.133 0.122 0.366 0.367 0.306 0.386
NO2-i3 0.388 0.314 0.236 0.199 0.196 1.842
NO2-i4 0.297 0.287 0.360 0.312 0.336 3.253
NO2-i5 0.375 0.389 0.201 0.171 0.182 1.656

NOx-i1 0.018 0.017 0.175 0.173 0.174 0.899
NOx-i2 0.026 0.025 0.270 0.209 0.221 1.400
NOx-i3 0.156 0.152 0.471 0.394 0.412 1.513
NOx-i4 0.231 0.230 0.421 0.387 0.381 1.839
NOx-i5 0.106 0.095 0.493 0.471 0.468 2.411

4 9 0 2 0 0

Table 7. Task 2: Comparison of average testing errors for different models: Regularization Networks
with Gaussian and Product kernels, SVR with RBF, linear, polynomial and sigmoid kernels. Lowest
error for each dataset is highlighted.

Testing Errors

RN
Gaussian

RN
Product

SVR
Linear SVR RBF SVR Poly-

nomial
SVR

Sigmoid

CO-i1 0.210 0.214 0.340 0.280 0.285 1.533
CO-i2 1.134 0.878 0.614 0.412 0.621 1.753
CO-i3 0.233 0.228 0.314 0.408 0.377 1.427
CO-i4 0.326 0.749 1.127 0.692 0.535 1.375
CO-i5 0.296 0.321 0.348 0.207 0.198 1.568

NO2-i1 2.151 2.263 2.4643 2.404 2.401 2.636
NO2-i2 5.260 3.928 2.118 2.250 2.409 2.648
NO2-i3 0.718 1.033 1.3083 1.195 1.213 1.984
NO2-i4 0.735 0.734 1.978 2.565 1.912 2.531
NO2-i5 0.678 0.913 1.0773 1.047 0.967 2.129

NOx-i1 2.515 2.409 1.062 1.447 1.202 2.537
NOx-i2 3.113 2.495 2.162 1.838 1.387 2.428
NOx-i3 1.105 0.956 0.594 0.674 0.665 2.705
NOx-i4 0.952 1.256 0.8646 0.903 0.778 2.462
NOx-i5 0.730 0.748 1.6328 0.730 1.446 2.761

7 2 4 3 1 0
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Table 8. Task 2: Comparison of average training errors of RN with Product kernels and DNN.
Average, standard deviation, minimal and maximal values are listed. The lower average value for
each dataset is highlighted.

Training Errors

Product Kernels DNN

Task Eavg stddev min max Eavg stddev min max

CO-i1 0.051 0.002 0.049 0.055 0.059 0.002 0.055 0.064
CO-i2 0.046 0.002 0.043 0.050 0.053 0.003 0.049 0.057
CO-i3 0.056 0.003 0.054 0.065 0.070 0.007 0.063 0.085
CO-i4 0.347 0.016 0.325 0.378 0.343 0.013 0.330 0.365
CO-i5 0.097 0.018 0.077 0.142 0.132 0.005 0.125 0.144

NO2-i1 0.100 0.015 0.091 0.141 0.112 0.004 0.107 0.121
NO2-i2 0.122 0.014 0.105 0.148 0.186 0.013 0.174 0.214
NO2-i3 0.314 0.077 0.214 0.434 0.326 0.009 0.313 0.344
NO2-i4 0.287 0.012 0.265 0.307 0.380 0.011 0.368 0.410
NO2-i5 0.389 0.032 0.330 0.435 0.349 0.017 0.323 0.379

NOx-i1 0.017 0.001 0.016 0.020 0.020 0.001 0.018 0.021
NOx-i2 0.025 0.002 0.021 0.028 0.033 0.002 0.030 0.039
NOx-i3 0.152 0.019 0.121 0.184 0.140 0.014 0.127 0.166
NOx-i4 0.230 0.017 0.203 0.258 0.252 0.015 0.234 0.278
NOx-i5 0.095 0.011 0.083 0.122 0.114 0.009 0.102 0.130

12 3

Table 9. Task 2: Comparison of average testing errors of RN with Product kernels and DNN. Average,
standard deviation, minimal and maximal values are listed. The lower average value for each dataset
is highlighted.

Testing Errors

Product Kernels DNN

Task Eavg stddev min max Eavg stddev min max

CO-i1 0.214 0.020 0.192 0.248 0.229 0.026 0.195 0.267
CO-i2 0.878 0.088 0.709 0.988 0.657 0.024 0.631 0.694
CO-i3 0.228 0.019 0.197 0.267 0.256 0.045 0.199 0.349
CO-i4 0.749 0.512 0.433 1.921 0.526 0.108 0.308 0.701
CO-i5 0.321 0.050 0.204 0.374 0.235 0.025 0.199 0.277

NO2-i1 2.263 0.540 1.189 2.997 1.506 0.217 1.132 1.823
NO2-i2 3.928 1.447 2.661 6.874 1.371 0.048 1.242 1.415
NO2-i3 1.033 0.218 0.764 1.351 0.660 0.078 0.599 0.863
NO2-i4 0.734 0.069 0.669 0.908 0.782 0.043 0.711 0.856
NO2-i5 0.913 0.183 0.709 1.302 0.730 0.111 0.520 0.905

NOx-i1 2.409 0.159 2.093 2.658 2.132 0.086 2.021 2.284
NOx-i2 2.495 0.068 2.416 2.592 1.599 0.077 1.444 1.685
NOx-i3 0.956 0.267 0.730 1.689 1.339 0.242 1.106 1.955
NOx-i4 1.256 0.520 0.774 2.610 1.610 0.164 1.435 2.041
NOx-i5 0.748 0.091 0.544 0.856 0.622 0.075 0.521 0.726

5 10
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Figure 1. Task 2: Example of product kernel model performance on five splits on training and testing data. The rows
correspond to predictions of CO, NO2, and Nox concentrations. The three figures in one row correspond to three different
training/testing splits.

6. Discussion

The goal of this study was to verify the usability of machine learning models in the
area of multi-sensor fusion for air pollution modelling. We have identified several machine
learning methods that have performed well in related areas of data mining and included
several original improvements of those methods from our previous research. The methods
proposed by the authors include:

• regularization networks with product and sum kernels;
• evolution of kernels based on a genetic algorithm;
• evolution of DNN architectures based on evolutionary strategies.

Comparisons to the very popular support vector machine regression models with
Gaussian, polynomial and sigmoid kernels were also performed.

The model performance has been tested on real datasets described and used by
other researchers before. The problem was formulated as a regression task from sensor
measurements of air pollution. To ensure the best behaviour of studied methods, the
extensive search for optimal hyper-parameters is performed by evolutionary optimization
of cross validation error.

The results described above show that all models we have tested provided sound
interpretations of the available data, they were able to perform multi-sensor fusion to
predict the pollutant concentrations.
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The insight into the temporal nature of the data can be obtained from the second
experiment which compared results of models trained on 5 data splits. The first general
observation is that short-term temporal dependencies were not a problem for the models
that were able to reliably predict pollutant concentrations from sensor values. The cross
validation results indicate that a well performing predictive model can be built using only
20 percent of the data. The second observation indicates a seasonal aspect of the data that
is in correspondence with expert estimates. This is demonstrated by the generally poorer
test performance of models trained on the fourth split of the data containing the winter
months only. Thus, for the practical deployment of the models, some ensemble technique
combining models trained on different seasons would be recommended.

When comparing the relative performances of the models, we can generalize the
following outcomes.

The most difficult pollutant to predict is NO2, for which we get the highest errors.
Product kernels, our original model, can outperform standard classical RN models. In

comparison to SVR, product kernels have been able to produce better results in the majority
of the cases.

DNN performed comparatively to product kernels, achieving better generalizations
in certain cases. Namely, on the first task, where values ’in between’ are approximated, the
product kernels are the winners, benefiting from their local character. On the second task,
which is more difficult in general, product kernels performed better in terms of training
errors, but in terms of testing errors, DNN provided better results in most cases. It suggests
that DNN have better generalization capabilities, while product kernels are more prone to
overfitting. Both RN and DNN are vital alternatives for the task of air pollution prediction.

Although our work presented in this paper has been performed on one (relatively
representative) dataset, it demonstrates several general issues that are probably relevant to
the whole application area. There seems to be a relevant problem with missing data which
was not addressed in this work. Since simple mean inputting does not seem to be sufficient,
we recommend employing some more sophisticated methods, such as clustering or semi-
supervised methods. In general, better data preprocessing and cleaning should improve
the results. Next, interesting statistical properties of the data that have been identified,
such as relevant differences between summer and winter concentrations, should be studied
further in accordance with domain experts, which can probably lead to a creation of several
specialized models, or even ensemble methods.
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