
Citation: Bistrian, D.A. High-Fidelity

Digital Twin Data Models by

Randomized Dynamic Mode

Decomposition and Deep Learning

with Applications in Fluid Dynamics.

Modelling 2022, 3, 314–332. https://

doi.org/10.3390/modelling3030020

Academic Editor: Miguel A. Bessa,

Günther Meschke, Jithender J.

Timothy

Received: 09 June 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

High-Fidelity Digital Twin Data Models by Randomized
Dynamic Mode Decomposition and Deep Learning with
Applications in Fluid Dynamics
Diana A. Bistrian

Department of Electrical Engineering and Industrial Informatics, University Politehnica Timisoara,
300006 Timisoara, Romania; diana.bistrian@fih.upt.ro

Abstract: The purpose of this paper is the identification of high-fidelity digital twin data models
from numerical code outputs by non-intrusive techniques (i.e., not requiring Galerkin projection of
the governing equations onto the reduced modes basis). In this paper the author defines the concept
of the digital twin data model (DTM) as a model of reduced complexity that has the main feature
of mirroring the original process behavior. The significant advantage of a DTM is to reproduce the
dynamics with high accuracy and reduced costs in CPU time and hardware for settings difficult to
explore because of the complexity of the dynamics over time. This paper introduces a new framework
for creating efficient digital twin data models by combining two state-of-the-art tools: randomized
dynamic mode decomposition and deep learning artificial intelligence. It is shown that the outputs
are consistent with the original source data with the advantage of reduced complexity. The DTMs are
investigated in the numerical simulation of three shock wave phenomena with increasing complexity.
The author performs a thorough assessment of the performance of the new digital twin data models
in terms of numerical accuracy and computational efficiency.

Keywords: digital twin data model; randomized dynamic mode decomposition; shock wave
phenomena; deep learning

1. Introduction

A reliable approximation of complex flow dynamics can be constructed by reduced
order models (ROM). In order to reveal underlying physical processes in an appropriate
way, a dynamic analysis should be made upon the original process. For this purpose, modal
decomposition techniques are superior to other techniques for the construction of reduced
order models. For example, finite element methods (FEM) [1], variational methods [2],
or domain decomposition methods [3] create spatial models that are defined using the
physical coordinates and they provide a global view of the physical dynamics with a certain
error threshold. Using the modal decomposition, the temporal behaviour is linked to the
domain of modal frequencies, resulting in several advantages, e.g., access to the modal
contribution of each mode, the identification of the dominant frequencies, a reduced order
model with an increased fidelity, and significant numerical speed-up.

Among several modal decomposition methods, Proper Orthogonal Decomposition
(POD) [3–9] and Dynamic Mode Decomposition (DMD) [10–16] have been widely applied
in recent years, in different applications. The POD and its variants are also known as
Karhunen–Loeve decomposition in signal processing, empirical orthogonal functions in
atmospheric science, or principal component analysis in statistics. The main feature of
POD is that it works properly even with non-linear systems, in which the energetics can be
hierarchically ranged and characterised by a number of modes in consecutive order. The
truncation of the POD modes leads to errors between the true dynamic and the reduced
order model dynamic [17,18].
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Rooted in the Koopman mode theory [19], a recent decomposition technique, namely
Dynamic Mode Decomposition (DMD) [10,11,20], has the significant advantage of linking
a spatial structure (coherent structure) to a single oscillating frequency and growing/decay
rate. Therefore, DMD is promising, especially for hydrodynamic research such as flow field
analysis.

Since the first application of the Koopman theory for the purposes of reduced order
modelling, by Igor Mezić [10], a considerable amount of work has focused on improving
the method of dynamic mode decomposition. Several modal decomposition techniques
derived from DMD have been released in the recent years: optimised DMD [21], exact
DMD [22], sparsity promoting DMD [23], multiresolution DMD [24,25], extended DMD [26],
recursive DMD [27], DMD with control [28], DMD coupled with POD [29], randomized
DMD [30], adaptive randomized DMD [31,32], higher order dynamic mode decomposi-
tion [33], bilinear dynamic mode decomposition [34], and dynamic mode decomposition
with core sketch [35]. Mezić [36] provided the first result on the convergence rate under
sample size increase in the case of finite-section approximation and introduced a discussion
on the choice of observables in the context of finite-section approximations.

A comparison of DMD vs. POD for model reduction was illustrated in the author’s
previous paper [18], for the study of shallow water equations model. The intrusive model
order reduction was derived by combining the POD and the Galerkin projection meth-
ods [18]. The disadvantage of this method is that it lacks stability and therefore it requires
stabilisation techniques such as those described in [37–40]. Generally, DMD does not
produce orthogonal modes, therefore ROMs produced via DMD require a closure mod-
elling consisting of additional regularisation techniques [41–43] especially when applying
Galerkin or Petrov–Galerkin projection based techniques. Modelling fluid dynamics data
is even more difficult when one handles discrete or so called non-intrusive data, especially
when there is no mathematical model associated with the data.

This paper introduces the concept of the digital twin data model (DTM) as a model of
reduced complexity that has the main feature of mirroring the original process behavior.
The significant advantage of a DTM is to reproduce the dynamics with high accuracy and
reduced costs in CPU time and hardware, even for settings difficult to explore because of
the rapidly changing dynamics over time.

Among the latest developments for data modelling, one may notice two mathematical
methods: the randomized dynamic mode decomposition, first introduced by the author
and her co-worker in [31] and a broad widely used deep learning artificial intelligence. A
fusion between these two methods is presented in the following article to produce a rather
new framework for creating efficient digital twin data models from non-intrusive data.
The new technique is presented in detail and its performances are investigated using the
case of three shock wave phenomena with increasing complexity. The undergoing results
are discussed in a thorough assessment of the new digital twin data models using specific
criteria such as numerical accuracy and computational efficiency.

The remainder of the article is organised as follows. In Section 2 the test problem
consisting of the nonlinear viscous Burgers equation model is presented. Section 3 re-
calls the principles governing the dynamic mode decomposition method. The thorough
description of the randomized dynamic mode decomposition algorithm is presented in
Section 4. Section 5 outlines the technique of fast digital twin data model identification
using deep learning nonlinear autoregressive estimators. Section 6 presents the numerical
results together with a computational efficiency study. A summary and conclusions are
drawn in the final Section 7.
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2. Shock Wave Phenomena: Full-Order Model of Nonlinear Viscous Burgers Equation

The non-intrusive experimental data are provided by the simulation of the nonlinear
viscous Burgers equation model [44,45]: ∂

∂t u(x, t) + ∂
∂x

(
u(x,t)2

2

)
= ν ∂2

∂x2 u(x, t), x ∈ [0, L], t ∈ [0, T],

u(x, 0) = u0(x),
(1)

where u(x, t) is the unknown function of time t, ν = 1/Re is the viscosity term, and Re is the
Reynolds number. The discontinuous initial condition of the following form is considered:

u0(x) =
{

uL, x ≤ 0,
uR, x > 0.

(2)

This setting yields a shock wave phenomenon. The nonlinear evolution governed by
the Burgers equation is obtained with the help of the Cole–Hopf transformation [46]. The
Cole–Hopf transformation is defined by the following relation:

u = −2ν
1
ϕ

∂ϕ

∂x
. (3)

Through an analytical handling we find that

∂u
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2ν
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Substituting these expressions into (1) it follows that

∂ϕ

∂x

(
∂ϕ

∂t
− ν

∂2 ϕ

∂x2

)
= ϕ

(
∂2 ϕ

∂x∂t
− ν

∂3 ϕ

∂x3

)
= ϕ

∂

∂x

(
∂ϕ

∂t
− ν

∂2 ϕ

∂x2

)
. (6)

Relations (6) indicate that, if ϕ solves the heat equation, then u(x, t) given by the
Cole–Hopf transformation (3) solves the viscous Burgers Equation (1). Thus the viscous
Burgers Equation (1) is reduced to the following one

∂ϕ
∂t − ν

∂2 ϕ

∂x2 = 0, x ∈ R, t > 0, ν > 0,

ϕ(x, 0) = ϕ0(x) = e−
∫ x

0
u0(ξ)

2ν dξ , x ∈ R.
(7)

Taking the Fourier transform with respect to x for both the heat equation and the
initial condition (7) the analytic solution is obtained in the following form:

ϕ(x, t) =
1

2
√

πνt

∞∫
−∞

ϕ0(ξ) e−
(x−ξ)2

4νt dξ. (8)

From the Cole–Hopf transformation (3) the analytic solution to the problem (1) is
returned in the following form:

u(x, t) =

∫ ∞
−∞

x−ξ
t ϕ0(ξ)e−

(x−ξ)2
4νt dξ∫ ∞

−∞ ϕ0(ξ)e−
(x−ξ)2

4νt dξ

. (9)
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The constants used for the test model are:

L = 2, T = 3, uL = 0.1, uR = 0.5.

The training data comprises of
Nt + 1 = 301 total number of snapshots taken in time at regularly spaced time intervals

∆t = 0.01,
Nx = 101 number of spatial measurements per time snapshot.
Three solution types will be discussed in this paper, corresponding to Reynolds

numbers of Re = 102, Re = 103, and Re = 104, respectively (see Figure 1). The model
solution exhibits some oscillations for all three experiments. The unphysical oscillation
originates due to high Reynolds numbers. It is worth noticing that, when the Reynolds
number increases, the numerical solution exhibits more oscillations, so that the fluid
dynamics become more and more complex.

Figure 1. Dynamics of shock wave phenomena as the exact solution of viscous Burgers equation
model at Re = 102, Re = 103, and Re = 104, respectively.

The aim of this paper is to identify a reduced order model of the nonlinear viscous
Burgers equation model to approximate, as faithfully as possible, the true solution and to
create a digital twin data model of low complexity for the three shock wave phenomena,
respectively. An efficient numerical technique is provided in the following sections.

3. Reduced Order Modeling Based on Dynamic Mode Decomposition

The data ui(t, x) = u(ti, x), ti = i∆t, i = 0, ..., Nt are collected at the constant sampling
time ∆t, x representing the spatial coordinate.

A data matrix whose columns represent the individual data samples, called the snapshot
matrix, is constructed in the following manner:

V =
[

u0 u1 ... uNt

]
∈ RNx×(Nt+1). (10)

Each column ui is a vector with Nx components, representing the numerical measure-
ments.

Following the Koopman decomposition assumption [19], we consider that a propaga-
tor matrix A exists that maps every column vector onto the next one:{

u0, u1 = Au0, u2 = Au1 = A2u0, . .., uNt = AuNt−1 = ANt u0

}
. (11)

In the next computational step, a matrix V0 is formed with the first Nt columns and
the matrix V1 contains the last Nt columns of V:

V0 =
[

u0 u1 ... uNt−1
]
∈ RNx×Nt , V1 =

[
u1 u2 ... uNt

]
∈ RNx×Nt . (12)
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For a sufficiently long sequence of the snapshots, let us suppose that the last snapshot
uNt can be written as a linear combination of previous Nt vectors, such that

uNt = c0u0 + c1u1 + ... + cNt−1uNt−1 +R, (13)

in which ci ∈ R, i = 0,..., Nt − 1 and R is the residual vector. The following relations are
assembled:

{u1, u2, ...uNt} = A{u0, u1, ...uNt−1} = {u1, u2, ..., V0c}+R, (14)

where c =
(

c0 c1 ... cNt−1
)T is the unknown column vector.

In matrix notation form, Equation (14) reads

AV0 = V0S +R, S =


0 ... 0 c0
1 0 c1
...

...
...

...
0 . . . 1 cNt−1

, (15)

where S is the companion matrix.
Relation (15) is true when the residual

R = uNt −V0c, (16)

is minimised when c is chosen such thatR is orthogonal to span{u0, ..., uNt−1}.
The goal of DMD algorithm is to solve the eigenvalue problem of the companion

matrix S
V1 = AV0 = V0S +R, (17)

where S approximates the eigenvalues of A when ‖R‖2 → 0, which is equivalent to
solving the minimisation problem

Minimize
S

R = ‖V1 −V0S‖2. (18)

In the author’s previous work [18], the solution to the minimisation problem (18) is
estimated by multiplying V1 by the Moore–Penrose pseudoinverse [47] of V0:

S = (V0)
+V1. (19)

As it was previously pointed out in [18], the Moore–Penrose pseudoinverse approach
might not be feasible when dealing with high dimensional data.

Following Schmid [48], who was the first to introduce the DMD as a numerical tool
to compute the Koopman modes, we have developed an alternate algorithm based on
Singular Value Decomposition (SVD) of snapshot matrix V0. This approach is helpful
especially when the matrix V0 is rank deficient (Nx>Nt). In the following, this technique
will de described.

First, a singular value decomposition of V0 is identified:

V0 = UΣWH , (20)

where U contains the proper orthogonal modes of V0, Σ is a square diagonal matrix
containing the singular values of V0 and WH is the conjugate transpose of W.

The eigenvectors of S form a basis for the span of A, therefore, every column vector is
as a linear combination of the eigenvectors

ui =
Nt

∑
j=1
Ai−1 ãjφj ⇔ ui =

Nt

∑
j=1

ãjλ
i−1
j φj, i = 1, ..., Nt. (21)
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As a consequence of (21), the data snapshots at every time step {t1,...,tNt} are a linear
combination of DMD modes according to

V1 =
[

u1 u2 ... uNt

]
=

=
[

φ1 φ2 ... φNt

]


ã1
ã2

...
ãNt





1 λ1
1 λ2

1 . . . λNt−1
1

1 λ1
2 λ2

2 . . . λNt−1
2

1
...

...
...

...
...

...
...

...
...

1 λ1
Nt

λ2
Nt

. . . λNt−1
Nt


, (22)

where the right eigenvectors of S , φj ∈ C are dynamic shape (or Koopman) modes, the
eigenvalues of S , λj are called Ritz values [49], and the coefficients ãj ∈ C are denoted as

amplitudes or Koopman eigenfunctions. Each Ritz value λj = e(σj+iωj)∆t is associated with
the growth rate σj and the frequency ωj.

The superposition of all Koopman modes, weighted by their amplitudes and frequen-
cies, approximates the entire data sequence, but there are also modes that have a weak
contribution; therefore these modes can be eliminated. The goal of the algorithm is to
produce the ROM involving only the most significant modes, having a strong contribution
to the data representation, which are called in the following the leading modes.

The data snapshots at every time step {t1,...,tNt} are represented as a linear combina-
tion of the leading modes according to the following relation:

uDMD(ti, x) =
NDMD

∑
j=1

ãjφj(x)λi−1
j , i ∈ {1, ..., Nt}, ti ∈ {t1, ..., tNt}, (23)

where NDMD represents the number of leading modes involved in reconstruction of data
snapshots.

One advantage of DMD is that each mode is associated with a pulsation, a growth
rate, and each mode oscillates at a single frequency, as seen from (23). Representation
(23) is suitable when one wants to isolate a mode with a certain frequency, to identify a
maximum or a minimum amplitude, and for hydrodynamic stability analysis also. In the
seminal article [36], Mezić provides a characterisation of Koopman modes in the Banach
space using Generalised Laplace Analysis.

For the purpose of model order reduction, in the present paper the following form is
utilised:

uDMD(ti, x) =
NDMD

∑
j=1

aj(ti)φj(x), ti ∈ {t1, ..., tNt}, (24)

where φj ∈ C are dynamic leading modes and aj(ti) = ãjλ
i−1
j , i ∈ {1, ..., Nt}, j ∈

{1, ..., NDMD} are modal amplitudes.
It is worth noticing that the NDMD leading modes involved in ROM representation (24)

are not the first NDMD modes from representation (22). The leading modes represent a
subset of DMD modes that will be selected from all computed DMD modes via numerical
algorithm presented in the next section.

4. Offline Stage: Randomized Dynamic Mode Decomposition

The process of calculating a reduced order model consists of two steps. In the first step
the spatial components of the model are calculated. These are the so-called modes. These
functions do not depend on time but only on the spatial component, which is why this
stage is called the offline stage. Moreover, the calculation step of the modes is performed
only once. The model is not complete without the temporal component, i.e., the temporal
coefficients of the reduced order model. These are calculated in the second step, when
the mathematical model has to be integrated over time. Furthermore, if desired, one can
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calculate the dynamics of the reduced order model at a given point in time. That is why
this second step is called the online stage, which can be performed whenever one wants to
simulate the behaviour of the initial process.

The modes’ selection plays a central role in model reduction and also constitutes the
source of many discussions among modal decomposition practitioners [21,23,50,51]. Several
procedures for selecting the most influential modes in dynamic mode decomposition can
be found in the author’s previous papers [15,18,52]. The procedure of randomisation of
data prior to singular value decomposition (SVD) was first introduced in [30] for image
processing and in [31] with application to fluid dynamics. The DMD algorithm was
combined with a randomized SVD function, aiming to improve the accuracy of the reduced
order linear model and to reduce the CPU time. The major advantage of this method is that
it does not require an additional selection algorithm of the DMD modes. The randomized
DMD produces a reduced order subspace of Ritz values, having the same dimension as the
rank of randomized SVD function, where the leading modes reside. Recently, the author
successfully applied the technique of adaptive randomized DMD in epidemiology [53,54].

The objective of the DMD-based ROM is to represent, as accurately as possible, a high
fidelity solution using the dynamics given by the DMD modes. It is then natural to seek the
leading DMD modes and their temporal eigenfunctions that minimise the error between
the raw data and the reduced order model:

EDMD = 〈‖u(x, t)− uDMD(x, t)‖2〉T , (25)

where 〈·〉T is a time average operator over [t1, T] and ‖ · ‖2 is the L2-norm of RNx . In this
paper, 〈·〉T corresponds to the arithmetic time-average on Nt equally spaced elements of
the interval [t1, T]:

〈 f (t)〉T =
1

Nt

Nt

∑
i=1

f (ti), ti ∈ {t1, t2, ..., tNt = T}. (26)

Determination of the optimal rank of the ROM, of the leading modes, and associated
temporal coefficients then amounts to finding the solution to the following optimisation problem:

Find
φj ,aj

uDMD(ti, x) =
NDMD

∑
j=1

aj(ti)φj(x), ti ∈ {t1, ..., tNt},

Subject to NDMD = arg min{EDMD}, NDMD ∈ N, NDMD ≥ 2,
(27)

where EDMD is the error of the low-rank model defined by Equation (25).
This paper presents an improved version of randomized dynamic mode decompo-

sition introduced in [31], augmented with the modern tool of deep learning artificial
intelligence. In the following, Algorithm 1 describes the randomized dynamic mode de-
composition. Algorithm 2 describes the routine used to produce the randomized singular
value decomposition.
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Algorithm 1: Randomized Dynamic Mode Decomposition

Initial data: V0 ∈ RNx×Nt , V1 ∈ RNx×Nt , integer target rank k ≥ 2 and k < Nt.
1. For k = 2 to Nt − 1.
2. Produce the randomized singular value decomposition of rank k

[U, Σ, W] = k-RSVD(V0, k),
where U contains the proper orthogonal modes of V0 and Σ contains
the singular values. The RSVD function is described in continuation of
this algorithm.

3. Solve the minimisation problem (18).
4. Compute dynamic modes solving the eigenvalue problem SX = XΛ and

obtain dynamic modes as Φ = UX. The diagonal entries of Λ represent the
eigenvalues λ.

5. Project dynamic modes onto the first snapshot to calculate the vector

containing dynamic modes amplitudes Ampl =
(
aj
)rank(Λ)

j=1 .

6. The DMD model of rank k is given by the product

VDMD = Φ · diag(Ampl) ·Van, (28)

where the Vandermonde matrix is

Van =


1 λ1

1 λ2
1 . . . λNt−1

1
1 λ1

2 λ2
2 . . . λNt−1

2

1
...

...
...

...
. . . . . . . . . . . . . . .
1 λ1

k λ2
k . . . λNt−1

k

.

7. Solve the optimisation problem (27) and obtain the optimal low rank k and
associated VDMD.
Output: k, VDMD.

The following routine is used to produce the randomized singular value decomposition.

Algorithm 2: Randomized Singular Value Decomposition of Rank k (k-RSVD)

Initial data: V0 ∈ RNx×Nt , integer target rank k ≥ 2 and k < Nt.
1. Generate random test matrix M = rand(Nt, r), r = min(Nt, 2k).
2. Compute sampling matrix by multiplication of snapshot matrix with random

matrix Q = V0M.
3. Orthonormalisation of sampling matrix via Gram–Schmidt orthonormal

method Q← GramSchmidt(Q).
4. Projection of snapshot matrix to smaller space V = QHV0, where H denotes

the conjugate transpose.
5. Produce the economy-size singular value decomposition of low-dimensional

snapshot matrix [T, Σ, W] = SVD(V).
6. Compute the right singular vectors U = QT.

Output: Procedure returns U ∈ RNx×k, Σ ∈ Rk×k, W ∈ RNt×k.

An intuitive understanding of k-RSVD is illustrated in Figure 2. By using the random-
ized singular value decomposition (RSVD) technique the problem dimension is reduced.
Thus, a computationally expensive algorithm is avoided.
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Intuitive Understanding of k-RSVD

2.

1.

3.

V0

=

PQH

WHP
SVD(P)

T  

4. Q U

=

T

=

V0 M Q

k<min(Nx,Nt)

Figure 2. An intuitive understanding of k-RSVD.

5. Online Stage: Fast Digital Twin Data Model Identification Using Deep Learning
Nonlinear Autoregressive Estimators

The algorithm previously described allows the identification of the leading dynamic
modes and their associated temporal coefficients in discrete form. The goal in this section is
the identification of the reduced order digital twin data model (DTM) in continuous form:

uROM
DTM(t, x) =

NDMD

∑
j=1

âj(t)φj(x), t ∈ [0, T], (29)

where φj, j = 1, ..., NDMD are the DMD modes and âj(t), j = 1, ..., NDMD represent the
temporal coefficients of the DTM.

Nonlinear AutoRegressive models with eXogenous inputs (NLARX) represent a novel
approach in the field of nonlinear system identification [55–57]. Since the emergence of
artificial neural networks as numerical tools, NLARX models have been used for various
purposes, ranging from simulation [58], to nonlinear predictive control [59] or higher order
nonlinear optimisation problems [60–63].

In this paper the application of NLARX models is investigated to a high-fidelity
approximation of temporal coefficients of the DMD-ROM model (29). Let a(t) be the
system input represented by the DMD computed amplitudes at discrete time instances
t ∈ {t1, ..., tNt} and â(t) be the output.

The formulation of the NLARX model is described in the following manner:

â(t) = f [â(t− 1), ..., â(t− na), a(t− nk), ..., a(t− nk − nb + 1)] + e(t), (30)

where the na is the integer number of past output terms, nb is the number of past input
terms used to predict the current output, nk is the pure input delay, f is a nonlinear function
implemented by an artificial neural network and e(t) represents the modeling error. The
NLARX model output represents a function of regressors that are transformations of past
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inputs and past outputs. This function is consisting from a linear block and a nonlinear
block. The model output is the sum of the outputs of the two blocks.

The NLARX training model can be cast as a non-linear unconstrained optimisation
problem of the following form:

θ(na, nb, nk) = arg min
1

2Nt

Nt

∑
i=1
‖a(ti)− â(ti)‖2, (31)

where the training set consists of the measured input a(t), â(t) is the NLARX output, ‖ · ‖2
is the L2 norm, and θ(na, nb, nk) represents the parameter vector of the nonlinear function
f .

One of the most important aspects of an application of a NLARX network is a proper
selection of inputs, input delays, and output delays. The presented algorithm modifies the
network parameters θ(na, nb, nk) over the complete trajectory to achieve the minimal value
of (31). The nonlinear estimator f is implemented in the form of a cascade forward neural
network with 10 hidden layer sizes; see Figure 3.

Cascade-Forward Neural Network

Figure 3. The cascade forward neural network with 10 hidden layer sizes, used as nonlinear estimator
for the NLARX models.

In the next section, the numerical results will be detailed.

6. Numerical Results: Computational Efficiency of the Algorithm

In the following, the numerical results are presented. The viscous Burgers equation
models (1) and (2) were used to generate three shock wave phenomena with increasing
complexity. The optimal rank of the reduced DMD model is obtained as the unique
solution to the optimisation problem (27), which has been solved by a simulated annealing
algorithm [64,65].

A major advantage that comes from the application of a randomized DMD algorithm
is that it leads to the optimal low rank NDMD and associated DMD subspace where the
most influential DMD modes are identified.

The correlation coefficient defined below is used as additional metric to validate the
quality of the low-rank DMD model:

CDMD =
〈‖u(x, t) · uDMD(x, t)‖2〉T

2〈∥∥∥u(x, t)H · u(x, t)
∥∥∥

2

〉
T

〈∥∥∥uDMD(x, t)H · uDMD(x, t)
∥∥∥

2

〉
T

, (32)

where u(t, x) means the numerical data, uDMD(t, x) represent the computed solution by
means of the reduced order DMD model, (·) represents the Hermitian inner product, H
denotes the conjugate transpose, and 〈·〉T is the norm defined by Equation (26).
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Figures 4–6 present the process of evaluation of DMD model target rank. The error
and the correlation coefficient computed as a function of retained number of dynamic
modes are presented, respectively, in the cases Re = 102, Re = 103, and Re = 104, for up
to 300 modes. It is obvious that increasing the number of modes leads neither to error
reduction nor to improved correlation. On the contrary, working with too many modes
can worsen the performance of the reduced order model. The algorithm proposed in this
article achieves two remarkable things. The algorithm determines the minimum number
of modes (or the order of DMD subspace) required for the low-order model to have the
required performances, i.e., minimum error and maximum correlation with the initial data,
respectively. At the same time, the algorithm selects the modes that have the maximum
influence and that will contribute to the calculation of the reduced order model.

Figure 4. The case Re = 102: (a) The relative error computed as a function of retained number
of dynamic modes, (b) The correlation coefficient computed as a function of retained number of
dynamic modes. NDMD = 15 leading modes have been selected.

Figure 5. The case Re = 103: (a) The relative error computed as a function of retained number
of dynamic modes, (b) The correlation coefficient computed as a function of retained number of
dynamic modes. NDMD = 20 leading modes have been selected.
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Figure 6. The case Re = 104: (a) The relative error computed as a function of retained number
of dynamic modes, (b) The correlation coefficient computed as a function of retained number of
dynamic modes. NDMD = 20 leading modes have been selected.

Table 1 presents the order of DMD subspace obtained in the three test cases, next to
the error defined by Equation (25) and the correlation coefficient defined by Equation (32).

Table 1. Comparison of the numerical results returned by the randomized dynamic mode decompo-
sition algorithm. A total of 300 data snapshots have been processed.

Test Case Model Rank Error Correlation Coefficient

Re = 102 NDMD = 15 EDMD = 3.1984× 10−7 CDMD = 1.0000
Re = 103 NDMD = 20 EDMD = 4.4247× 10−7 CDMD = 1.0000
Re = 104 NDMD = 20 EDMD = 5.4416× 10−8 CDMD = 1.0000

The algorithm introduced in this paper confers the best correlation coefficient to the
DMD model (see Table 1); thus, a digital twin data model was identified. The DMD leading
modes are illustrated in Figures 7–9, next to the representation of the modal growth rates
and the associated frequencies of the eigenvectors of the Koopman matrix S for the three
test cases, respectively.

The coefficients âj(t), j = 1, ..., NDMD of the reduced order model (29) have been
estimated for the entire time window by considering the DMD computed coefficients as
inputs of the NLARX model (30). The numbers of the input terms, output terms and the
value of delay are presented in Tables 2–4, for the three test cases, respectively.

Figure 7. The case Re = 102: (a) The DMD leading modes, (b) Growth rates and associated frequencies
(σ, ω) of the eigenvectors of the Koopman matrix S .
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Figure 8. The case Re = 103: (a) The DMD leading modes, (b) Growth rates and associated frequencies
(σ, ω) of the eigenvectors of the Koopman matrix S .

Figure 9. The case Re = 104: (a) The DMD leading modes, (b) Growth rates and associated frequencies
(σ, ω) of the eigenvectors of the Koopman matrix S .

The following metrics have been used to perform a qualitative analysis of the digital
twin data models (DTMs):

EDTM =
〈∥∥∥u(x, t)− uROM

DTM(x, t)
∥∥∥

2

〉
T

, (33)

CDTM =

〈∥∥u(x, t) · uROM
DTM(x, t)

∥∥
2

〉
T

2〈∥∥∥u(x, t)H · u(x, t)
∥∥∥

2

〉
T

〈∥∥∥uROM
DTM(x, t)H · uROM

DTM(x, t)
∥∥∥

2

〉
T

, (34)

where EDTM measures the error of the digital twin data model, CDTM is the correlation
coefficient of the digital twin data model, u(t, x) means the numerical data, uROM

DTM(t, x)
represent the computed solution by means of the DMD-ROM model, (·) represents the
Hermitian inner product, H denotes the conjugate transpose, and 〈·〉T is the norm defined
by Equation (26).

The very good correlation coefficients and the low values of errors presented in
Tables 2–4 confirm the computational efficiency of the digital twin data models.

Table 2. Initial data for NLARX estimator of temporal coefficients, case of Re = 102, NDMD = 15.

Index Outputs, Inputs, Delay DTM Error and Correlation Coefficient

j = 1, 3–12, 14 na = 1, nb = 2, nk = 1 EDTM = 8.0806× 10−4

j = 2 na = 2, nb = 2, nk = 2 CDTM = 1.0000
j = 13, 15 na = 1, nb = 1, nk = 1



Modelling 2022, 3 327

Table 3. Initial data for NLARX estimator of temporal coefficients, case of Re = 103, NDMD = 20.

Index Outputs, Inputs, Delay DTM Error and Correlation Coefficient

j = 1, 4, 10–12 na = 2, nb = 1, nk = 1 EDTM = 1.3080× 10−4

j = 2, 3, 13 na = 1, nb = 1, nk = 2 CDTM = 1.0000
j = 5–9 na = 1, nb = 1, nk = 5

j = 14–19 na = 2, nb = 1, nk = 2
j = 20 na = 1, nb = 1, nk = 1

Table 4. Initial data for NLARX estimator of temporal coefficients, case of Re = 104, NDMD = 20.

Index Outputs, Inputs, Delay DTM Error and Correlation Coefficient

j = 1, 3, 4, 7 na = 1, nb = 3, nk = 2 EDTM = 1.4000× 10−4

j = 2, 5, 6, 8, 16–20 na = 1, nb = 2, nk = 2 CDTM = 1.0000
j = 9–15 na = 1, nb = 1, nk = 1

Solutions of the digital twin data models are illustrated in Figures 10–12 for the three
test cases, respectively.

a. b.

Figure 10. Solution of the digital twin data model in the case of experiment Re = 102: (a) 3D view;
(b) Projection view of the shock wave.

a. b.

Figure 11. Solution of the digital twin data model in the case of experiment Re = 103: (a) 3D view;
(b) Projection view of the shock wave.
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a. b.

Figure 12. Solution of the digital twin data model in the case of experiment Re = 104: (a) 3D view;
(b) Projection view of the shock wave.

The CPU time required in the offline-online stage is presented in Figure 13, for the
three test cases.

The randomisation of input data has been leveraged to accelerate the computations.
The required offline CPU time does not exceed two seconds and does not present large
variations depending on the case study. The online CPU time falls between 8 and 17 s,
depending on the index of the temporal coefficient which is estimated along the entire
time window. It is obvious that the NLARX estimator requires more time to estimate the
temporal behaviour in the case of very high Reynolds number.

Figure 13. The CPU time required in the offline-online stage, for the three test cases.

Figures 14–16 illustrate the validation for the first temporal coefficient, as simulated
response of the optimal NLARX estimator, in the case of the three experiments, respectively.
The dots represent the discrete data for the training of the neural network, while the line
represents the continuous model of the temporal coefficient determined by the NLARX
model network.
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a. b.

Figure 14. The validation for the first temporal coefficient, as simulated response of the optimal
NLARX estimator, in the case of experiment Re = 102.

a. b.

Figure 15. The validation for the first temporal coefficient, as simulated response of the optimal
NLARX estimator, in the case of experiment Re = 103.

a. b.

Figure 16. The validation for the first temporal coefficient, as simulated response of the optimal
NLARX estimator, in the case of experiment Re = 104.

7. Conclusions

The present investigation has focused on the identification of high-fidelity digital twin
data models from numerical code outputs by non-intrusive techniques (i.e., not requiring
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Galerkin projection of the governing equations onto the reduced modes basis). In this paper
the author defined the concept of the digital twin data model (DTM) as a model of reduced
complexity that has the main feature of mirroring the original process behaviour.

A new algorithm was developend that utilises a variant of the adaptive random-
ized dynamic mode decomposition introduced in [31] to obtain a reduced basis in the
offline stage, combined with neural network based nonlinear autoregressive estimators
in the online stage. The major advantages of the algorithm proposed in this work are the
following:

• This method overcomes the inconveniences of developing and implementing a mode
selection criterion associated with dynamic mode decomposition. The proposed
technique does not require an additional selection algorithm of the DMD modes.
The rank of the model, the leading modes, and the temporal coefficients have been
determined by coupling the randomized dynamic mode decomposition with an
optimisation problem whose constraint consists in the smallest error of digital twin
model. A fast and accurate algorithm was produced, which provided the lowest rank
for the model and the leading modes with the most significant contribution.

• A significant reduction of the offline-online CPU time was achieved, which confirms
the feasibility of the algorithm.

• Combining the randomized DMD with deep learning artificial intelligence, a digital
twin data model for estimating the flow behaviour in the real-time window was
derived. The DTM has been investigated in the numerical simulation of three shock
wave phenomena with increasing complexity, with Reynolds number varying from
102 to 104. It was demonstrated that the significant advantage of DTM is to map the
dynamics with high accuracy and reduced costs in CPU time and hardware, even to
settings difficult to explore because of the rapidly changing dynamics over time (e.g.,
high Reynolds numbers).

• The procedure of online estimation of the DTM temporal coefficients by employing
deep learning nonlinear autoregressive estimators led to a fast and accurate identifi-
cation of the digital twin data models. The computational efficiency of the proposed
algorithm was thoroughly investigated, and a qualitative analysis of the DTM was
provided in the three shock wave experiments.

There are a number of interesting directions that arise from this work. First, it will be
a natural extension to apply the proposed algorithm to high-dimensional data originating
from fluid dynamics and atmospheric measurements. The methodology presented here
offers the main advantage of deriving faithful digital twin data models capable of providing
a variety of information describing the real-time behaviour of the flow field. A future exten-
sion of this research will address an efficient numerical approach for modal decomposition
of swirling flows, where the full mathematical model implies more sophisticated relations
at domain boundaries that must be satisfied by the digital twin data model also.
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