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Abstract: This paper presents a novel approach to distinguishing driving styles with respect to
their energy efficiency. A distinct property of our method is that it relies exclusively on the global
positioning system (GPS) logs of drivers. This setting is highly relevant in practice as these data
can easily be acquired. Relying on positional data alone means that all features derived from them
will be correlated, so we strive to find a single quantity that allows us to perform the driving style
analysis. To this end we consider a robust variation of the so-called "jerk" of a movement. We give a
detailed analysis that shows how the feature relates to a useful model of energy consumption when
driving cars. We show that our feature of choice outperforms other more commonly used jerk-based
formulations for automated processing. Furthermore, we discuss the handling of noisy, inconsistent,
and incomplete data, as this is a notorious problem when dealing with real-world GPS logs. Our
solving strategy relies on an agglomerative hierarchical clustering combined with an L-term heuristic
to determine the relevant number of clusters. It can easily be implemented and delivers a quick
performance, even on very large, real-world datasets. We analyse the clustering procedure, making
use of established quality criteria. Experiments show that our approach is robust against noise and
able to discern different driving styles.

Keywords: clustering; energy efficiency; driving style analysis; jerk-based feature; GPS data

1. Introduction

Driving style has a significant impact on the fuel consumption of a car. Intelligent
hybrid cars can adapt to the driving style of the conductor to maximise their mileage. These
optimisations could be manifold, and range from an efficient assistance of the electric engine
to suggestions on energy-optimal routes [1,2]. In this work, we aim to provide a significant
step towards integrating driving style as an additional constraint into this objective. We
analyse driving style with respect to energy efficiency and provide an automated way to
classify it. This results in a purely data-driven approach that robustly models driving styles
concerning varying external environment factors that may have an impact on them, namely
current traffic and weather conditions. In a sense, our proposed model efficiently judges
the energy consumption pattern of a driver operating a car in a specific environmental
condition, provided that it has already learnt the similar driver behaviours in terms of
unseen log samples. This is indeed an advantage, as a unique optimal model can cover
a wide range of environmental variations instead of having many tailored-made models
at hand.

To allow the broad applicability of our method, we rely on data that can easily be
obtained in any vehicle, namely global positioning system (GPS) data logs. Such setups
are attractive due to their relatively low cost and the already-abundant availability of
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GPS-enabled devices. However, these benefits come at a certain price. Insufficient accuracy
yields noisy samples. Hardware failures may result in a partial or total loss of data.
Furthermore, classifying the driving style without environmental information is a quite
challenging task. Driving at a constant 120 km h−1 on a large motorway over lowland is
surely an energy-efficient way to travel, but this may become less energy efficient when
the motorway passes over rolling hills. Traffic jams on motorways lead to a stop-and-go
motion in traffic, which is visible in the logs by frequent small variations in the acceleration
and velocity, strongly resembling noise. However, the exact cause of such variations cannot
always be deduced with absolute certainty. The driver may be looking for a free spot for
parking, or their car may simply have broken down. An accurate and robust model must
be able to handle these difficulties. As an advantage, we can equip our data-driven model
with suitable data to validate all such conditions.

Let us also emphasis on the scaleability of our proposed method, specifically in the
transportation context. Here, the collection of data in terms of videos and pictures, etc.,
becomes critical as a car is driven across different countries. In this case, affordable GPS
hardware is the only required infrastructure for our method to collect a huge amount of
logs which are independent of the driving location, with almost no law constraints needing
to be enforced on the collected data. In this way, an abstract birds-eye view can be provided
to the management layer when it comes to optimizing the transportation costs in terms of
fuel [3].

Fortunately, notable advances in modelling and understanding driver behaviour have
been made in recent years; however, these are mainly useful in the area of traffic safety
engineering. We refer to [4–8] among the vast amount of literature in this highly active
field of research. Although the objective in this field is completely different from that in our
case, let us still review some works in more detail, so that we can identify—at a technical
level—some aspects related to our approach.

In [4,8], the authors suggest the usage of sensors and simulators to identify driver
movements and to predict their behaviour in the forthcoming seconds. These predictions
can, for example, be used to prevent collisions. Both works take a probabilistic approach
by analysing dynamic and hidden Markov models. The findings presented in [7,9] clas-
sify drivers according to their imminent risk to traffic. This classification is obtained by
comparing characteristic features of a given driver with information gathered from other
vehicles in the vicinity; while the authors of [9] use statistical measures, the authors of [7]
combine a clustering algorithm with complex neuroscale and Bayesian factor analyses.
Similar research is performed in [10], where cars are analysed for potentially dangerous
behaviour. However, the focus of the latter work is more on the communication protocols
between the traffic participants and not on their classification. All these approaches have
commonalities in that they collect significant amounts of data from a heterogeneous pool of
sources, and that they are designed to analyse the conductor during driving. Many works
have also tried to model the conductor themself by analysing their reactions in various
settings—see [11,12]. The authors of the latter work use a car with specialised sensors to
measure various information about the drivers. These include the position and velocity
of the car as well as the operational patterns of the gas and brake pedals. The analysis is
performed by means of Gaussian mixture and optimal velocity models. In contrast to the
first cited references, these latter works process the data only after collecting it.

Let us now turn to the use of GPS data. Modern tracking devices, such as navigation
systems, cell phones, or smartwatches, offer huge amounts of information that may be
processed to distinguish driving styles. We now consider a few approaches based on the
positional information collected by the tracking devices, which are used to analyse some
aspects of driving, comprising a new and emerging field of work. The authors of [3] show
that the transportation patterns of coal trucks is highly dependent on the daily routines
of the drivers, which influences the effectiveness of travel time. This was revealed by
studying the average speed of the trucks, as obtained based on their GPS logs during day
and night on a field survey. Here, it is shown that transportation in the morning can be
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more optimal than that at night. In addition, optimization scenarios are implemented by
reducing the number of stopping time during trips, changing sleep and rest patterns, and
adjusting workloads to reduce driver fatigue. However, this analysis of GPS logs does not
consider driving style of conductors in higher detail. In [13], the authors aim to identify
reckless taxi drivers by analysing the velocity of their cabs and the regions that they pass
through. The authors of [14] have similar goals, but limit themselves to analysing the routes
taken. Here, a taxi driver becomes suspicious when their route deviates strongly from
those taken by the majority of their colleagues. The authors of [15] propose an investigation
of the behaviour of drivers within a restricted area by considering three anomalies: an
abrupt change in acceleration or deceleration, lane changes, and excessive speed. In this
way, they were capable of classifying drivers as either careful, distracted, dangerous, or
very dangerous. In [16], a limited set of statistical-based features—making use of jerk,
steering wheel gradient, etc.—are extracted and ranked for each driver using the Boruta
package [17] to perform identity recognition of the drivers. In all the above settings, the
missing environmental data can, to a certain extent, be compensated by increasing the
amount of positional information. Furthermore, offline processing of the data allows
researchers to use more powerful hardware than that available inside a car.

Presently, and based on advancements in the machine learning field, modern vehi-
cles are often supplied with the necessary driver monitoring systems for the purpose of
providing further safety. Though such monitoring systems are not installed on many road-
worthy vehicles that are still driven on roads, a huge amount of their trajectory data can
be processed by the commodity hardware owned by drivers, via smart phone [18]. These
collected data can be further investigated with adequate machine learning approaches
to bring further safety to the road traffic, see [19] for a survey. As an example, we refer
to [20] for an investigation of a sliding-window-based approach on collected logs by the
accelerometer, linear acceleration, magnetometer, and gyroscope sensors of a cell phone.
Here, it is reported that a random forest approach [21] performs best to classify drivers
compared with support vector machine [22] and Bayesian network [23] approaches, as the
window size increases over the gyroscope and accelerometer sensors.

Our contribution. We propose a novel method for the analysis of energy-efficient
driving styles via GPS data collected by drivers. Similarly to the aforementioned studies
concerned with traffic safety, we discern different driving styles, but we focus on energy
efficiency. We delineate why our approach is well suited for this aim by providing a purely
data-driven model with respect to the considered feature. Our computational approach
resembles the approaches taken in the referenced studies which were concerned with GPS
data. Our analysis is based on a set of GPS logs collected during driving. The processing of
the data is performed in an offline post-processing step. Thus, one of our contributions is
to carry over some ideas from traffic safety engineering and related areas to a novel field
of application. Furthermore, we propose some dedicated techniques in order to meet the
requirements of our setting, and provide a reliable solution in discerning energy-efficient
driving styles.

Our ultimate goal is to classify drivers solely based on positional information, because
this is relevant for the potential industrial applications of our approach. Let us stress that the
use of GPS logs alone is therefore an important issue, and this also distinguishes our work
from others that mark the current state of the art in the technically related, above-mentioned
literature. Despite a high amount of noise in the existing real-world dataset [24] that we
employed for demonstrating our method, we still obtain robust results. Our clustering
algorithm employs an improved formulation of the jerk quantity introduced in [25], which
those authors used for the analysis of driver’s behaviour for traffic safety purposes.

Let us also stress that the sole use of positional information implies that it does not
make much sense to employ a variety of features based on these data, as these will all be
naturally correlated (see [26] for further details). With only the GPS data at hand, it is thus
of primary interest to identify one reliable and robust feature to work with. Moreover, this
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feature should be meaningful by relating to the energy efficiency of driving styles. One of
the contributions of our paper is to provide this by means of a novel jerk-based feature.

As an advantage of our study, our approach has minimum amount of dependency on
data, in a sense that the method does not require a huge amount of training data to judge
the driver profile. Our formulated jerk-based feature requires only a finite and limited set
of temporal information to label on a driver’s style in a given environment.

In combination with an agglomerative hierarchical clustering algorithm, we achieve a
reliable classification result with reasonable computational effort. Furthermore, we propose
a strategy to determine a reasonable amount of clusters. Experimental results show that
our approach is more robust than a straightforward adaptation of previous approaches.

Our proposed approach can be effectively adopted within the scope of the car insur-
ance industry. In [27], a precise GPS positioning system was developed to aid traffic police
and insurance personnel in remotely identifying driver behaviour while reviewing the
events of an accident. The obtained results in [28] based on GPS logs show that males
have riskier driving patterns than females. These gender differences and their impact on
driving patterns result in different accident rates. This was discussed under the “no-gender”
discrimination regulation and within the context of a pay-as-you-drive insurance scheme
in [28].

In this paper, which is our significant extension to the short introduction we presented
as a conference paper [29], we proceed as follows. First, we present a detailed discussion
of modelling, informing the reader of our motivation in selecting the jerk as a meaningful
feature for our application. Furthermore, we present some comparisons with their related
possible feature choices. This is followed by a presentation of our clustering method for
classifying drivers, which we analyse in this work in much higher detail than in [29] with
respect to various quality indicators. In the final section, we discuss the application of
our method using a real-world dataset [24], to demonstrate the viability of our approach.
The paper is finished by a summary and our conclusions.

2. Motivation: On Energy Efficiency and Jerk

Let us now outline our motivation for selecting the jerk as the underlying feature of
our investigation. We comment on two important aspects in pattern recognition—physical
significance of the feature; useful invariances for our application.

2.1. Basic Physical Considerations

For modelling, we consider the movement of a car during a fixed time frame, which
we parametrise via the time t ∈ [0, T]. For simplicity of notation, we assume that the car
performs a 1D movement along a straight, horizontal path, S, in this time frame. We denote
by s0 and sT the starting point and the end point of S, respectively, and we denote the length
of the path with d. Concerning the time-dependent position of the car along S, we make use
of a corresponding function, x(t). We denote the velocity of the car by v = ẋ := ẋ(t) = v(t)
and the acceleration of the car by a = ẍ = v̇. We assume for simplicity that the mass, mc, of
the car is a constant over the considered time frame (neglecting, e.g., the mass loss due to
consumed fuel). Another fundamental yet not-too-obvious assumption for our modelling is
that the driver aims to travel the distance, d, of the path, S, during the considered time frame
over the time interval, [0, T]. This underlying assumption is required because, otherwise,
one may realise a fuel-saving driving style by performing a full break and shutting off the
car. Let us note that this underlying assumption is in accordance to the content of the given
data after our preprocessing, because GPS logs of cars standing still will be discarded.

Let us now assert that, in the engine, fuel is transformed into mechanical work, W.
In order to obtain a measure for fuel consumption (denoted by fc), the transformation
process has to be related to consumption over the considered time frame—or, equivalently,
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to the distance, d, passed during the time frame. To this end, we opt to measure fc via the
generated mechanical work over distance, d, and assume the following proportionality law:

fc ∼ W
d

or fc = p
W
d

(1)

where the proportionality constant, p, is given by the combustion efficiency of the engine.
Let us note that, in terms of physical measurement units, we have the following by

[d] = m:

[fc] =

[
W
d

]
= kg m/s2 = N (2)

that means that fuel consumption is proportional to the force, F, with [F] = N needed to
move the car along S.

Now, by considering Newton’s second law, we have the following for the 1D move-
ment of the car:

W = F · d ⇔ W
d

= F = mc · ā (3)

where ā is the acceleration needed over [0, T] in order to move the car from s0 to sT over
distance, d, along S. As a consequence of (1)–(3), we obtain

fc ∼ ā or fc = p ·mc · ā (4)

Let us now consider the situation that the car enters S with a certain velocity v̄ > 0.
Then, by basic physical principles, the kinetic energy, E = 1

2 mv̄2, corresponds to the work,
W, stored in the movement.

In an ideal, frictionless environment, the car moves on with constant speed, v̄, and there
is no need to install an additional acceleration to hold v̄ as would be desired by a driver in
order to travel along S during the considered time frame. It is clear that, in reality, where,
e.g., friction is encountered, a certain acceleration is needed to allow the driver to travel the
distance, d, along S, during [0, T]. Since fc ∼ ā, this also means that a certain amount of
fuel has to be used up.

The the question arises: how can this acceleration be applied over [0, T] in the most
fuel-efficient manner? One may imagine here, e.g., that it could be beneficial to accelerate
very strongly at the beginning over [0, ε], 0 < ε � 1, and to let the car roll over the
remaining time frame, [ε, T], to arrive then at time, T, at point sT . Let us note in this context
that the acceleration, ā, just gives a total value over [0, T], and does not reveal how this total
value has to be realised.

In order to identify the most fuel-efficient way to accelerate, it is obvious by fc ∼ ā
that we have to minimise the total required acceleration, ā. To this end, we now consider
the main forces acting on the car. We propose that frictional forces and aerodynamic resistance
are the main sources of fuel consumption. Since forces are acting (by fundamental physical
principles) in an additive and independent way on the car, we may discuss them separately.

First, however, we first have another look at the basic mechanism behind fuel con-
sumption itself. We consider (1) again, and formulate the fuel consumption using the total
transformed fuel over the considered time frame. For the computation, we make explicit
that, by taking the absolute of W, braking does not generate fuel:

fc ∼
∫ T

0
|W(t)| dt W=F·d∼

∫ T

0
|a(t)| dt =

∫ T

0
|ẍ(t)| dt (5)

To minimise fuel consumption during the transformation process to mechanical work,
it is therefore optimal to uphold a constant velocity, since the minimiser of the above
expression is obtained for (ẍ = 0)⇔ (v = constant).

Let us turn to frictional forces, Ff riction = η · Fn, where η is the friction coefficient
and Fn = mcg is the normal force described by the constant mass of the car, mc, and the
gravitational constant, g. In this context, let us note that we indirectly assume that the
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car moves approximately horizontally. Assuming that η is constant over our time frame,
this means that, to negate the frictional forces, implies that a constant acceleration, a, is
upheld—compare (3).

Turning to the aerodynamic resistance of a car, this may be modelled by a force,
Fair ∼ v2 = ẋ2. In order to minimise the required acceleration, negating aerodynamic
resistance, we thus have to find the minimiser of

min
x

∫ T

0
(ẋ(t))2 dt (6)

which is subject to the boundary conditions x(0) = s0 and x(T) = sT . The corresponding
optimality condition reads as 2v̇ = 0. Therefore, it is optimal with regards to fuel consump-
tion to uphold a constant velocity in order to negate the aerodynamic resistance. This can
be realised by a constant acceleration added to the one we found to be required to negate
frictional forces.

As a consequence of our investigation, it is optimal to negate the fuel-consuming
forces by a constant acceleration, thereby maintaining a constant velocity of the car. Since
a constant acceleration implies ȧ = 0; one may detect instances of potential fuel-wasting
driving by evaluating ȧ = v̈, and the driving style appears to be energy-efficient if |v̈s.|
is kept low by a driver. This result is in accordance with the idea that drivers aiming
to maintain an energy-efficient driving style usually perform smooth accelerations and
braking, whereas fast, energy-inefficient drivers tend to have a more abrupt driving style.
Furthermore, dense urban traffic with the typical changes in acceleration and deceleration—
which is notorious for leading to high fuel consumption—is represented by strong instances
of |v̈s.|.

2.2. Invariances

As discussed, the quantity v̈ = ȧ describes the variation of the acceleration of a
car. However, the positional GPS data gathered in our database allows us to formulate
quantities that offer certain invariances. Our analysis should not depend on an absolute
positioning and yield the same findings whether we analyse cars in Europe or in Asia. Such
an invariance can be introduced by taking the derivatives of the movement. The velocity is
independent of the exact location of a car. Furthermore, the acceleration of a car driving
smoothly with 130 km h−1 is similar to a car driving with 50 km h−1. If the environmental
circumstances are adequate, then both drivers should have the same classification.

This observation motivates the usage of a feature with a sufficiently large set of
invariances. The quantity v̈ is invariant under affine transformations of the velocity and
offers these benefits also.

2.3. Formalisation

We conclude our motivation by observing that the quantity v̈ is well known in physics
as jerk. For convenience, we formalise this observation at hand of the following definition.

Definition 1 (Jerk function). The jerk j(t) describes the third-order derivative of the position x(t)
with respect to time: j(t) := d3

dt3 x(t).

Let us note that we refer here to jerk in terms of the derivative of a position x since our
input data is given by positions.

We also remark that in [25], the authors use already the jerk function to classify
drivers with respect to their aggressiveness, however, as we have shown, the jerk is also a
reasonable physical quantity related to energy consumption during driving.

3. Driving Style Analysis by GPS Data

Relying exclusively on GPS data, as provided by navigation systems and tracking
devices, comes with a certain number of hurdles that need to be overcome. Our goal is to
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classify drivers with respect to their driving style. Currently, this analysis is performed
offline. We first collect the data and store it in a database. The processing and classification
is performed afterwards. To this end, we measure the drivers’ spatio-temporal positioning.

Definition 2 below gives us a formal framework to work in. Positional data of the cars
comes in the form of coordinate pairs—(xi, yi) ∈ R2. Each pair is accompanied by a label
containing the time stamp, ti, when the position has been recorded. This set of discrete
samples gives us a complete description of the movement of a car in space and time. Yet,
our focus lies on the analysis of moving cars. Therefore, we use a more specific structure to
represent the displacement of a vehicle.

Definition 2 (Time frame; Movement pattern). We define a time frame of size ` a sorted vector
T ∈ R` containing ` individual time stamps in a non-decreasing order. We call the movement
pattern of size ` a pair, {T, P}, consisting of a time frame, T, of size ` with the corresponding
positional data P := {(xi, yi)| i = 1, . . . , `}—if the car is not standing still during any moment
within the complete time frame.

Thus, we speak of a movement pattern if the car does not stop during a considered
time interval. We elaborate a method to discard the idling objects from our dataset in the
next section.

3.1. Data Preprocessing

In order to apply our method, we need to preprocess the given dataset of GPS logs.
First of all, we discard corrupted or meaningless data. After the preprocessing, our data
should only consist of movement patterns, as defined in Definition 2. To this end, we
remove all logs for which the following conditions hold:

1. All GPS logs having the same longitude and latitude values as well as the same
sampled time as their adjacent logs. These logs represent repeated GPS values being
sampled at least twice due to hardware failure.

2. All GPS logs with same longitude and latitude and having different sampled time
compared with their adjacent GPS logs. These GPS logs represent a car standing still.

Preprocessing is necessary to ensure reasonable findings. However, it also introduces
holes in the displacement history of the analysed car. Certain records are contiguous over
long time intervals, whereas others might only run for a few seconds before a gap occurs.
Our forthcoming analysis is based on statistical measures of the movement pattern. To allow
a meaningful and unbiased comparison, we additionally drop movement patterns that are
too short and break down those that are too long into several smaller ones. In this work, we
discard all movements patterns with less than 10 samples and split them if they exceed a
length of 24. The motivation behind the chosen limits was to apply our standard-deviation-
based proposed feature on a small window of GPS logs. Taking on a large number of GPS
logs—namely, much more than 24—into account might result in the wrong results. This
can be clearly explained by an example of a driver who completes a mix of slow and harsh
driving styles. These styles may cancel each other out in a long trajectory, as our feature is
constructed based on standard deviation as a quantity, expressing how much the members
of a group differ from the mean value of the group. After the preprocessing, we obtained
about 3225 movement patterns from the real-world dataset [24].

3.2. New Modelling and Algorithmic Adaptations

Let us implement our underlying considerations about jerk in the context of a typical
example of GPS data.

As discussed, important physical quantities in the description of the behaviour of
drivers are the position, velocity, and acceleration of their car. Figure 1 depicts an example
of velocity, acceleration, and jerk obtained from a movement pattern of a calm driver,
a racy driver, and one containing a noisy log. Even though a distinction among the three
shown patterns could be deduced from the velocity and acceleration alone, the jerk has
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the benefit of magnifying large, abrupt changes in the acceleration more than smaller ones;
therefore, the noise detection is significantly simplified. This can clearly be observed in
the noisy movement pattern shown in Figure 1. The previous arguments, together with
our physical considerations, constitute the principal motivations to use the jerk as starting
point in our work. Our exponentially based feature proposed in (7) takes advantage of the
elaborated properties.

Velocity[ms-1] Acceleration[ms-2] Jerk[ms-3]
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Figure 1. Velocity, acceleration, and jerk patterns corresponding to a calm and a racy driver in
contrast to the same quantities of a movement pattern containing noisy GPS logs. Note that the
y-axis in each plot has a completely different range. Either the acceleration or the jerk pattern could
efficiently distinguish the calm driver from the racy driver. In case of the noisy movement pattern,
either the acceleration or the jerk pattern could efficiently reveal the existence of a noisy GPS log. Our
proposed exponentially based feature ω, cf. (7), shows high robustness with regard to noise. This
helps to entirely accommodate noisy movement patterns in a separate cluster.

Modelling Details

Our proposed method seeks to classify driving style using an alternative formulation
which also considers the jerk. We suggest the use of a clustering strategy exclusively based
on the following feature:

ω({T, P}) := exp

− 1√
σ
(

j{T,P}

)
 (7)

Here, j{T,P} is the array of jerk values for each position in the movement pattern {T, P}.
These are computed by means of standard finite difference schemes.

The function σ denotes the standard deviation. The motivation for proposing this
feature is as follows. The exponential part of (7) discriminates those movement patterns
with a very high fluctuation rate around their mean jerk values. They occur due to the
existence of at least one noisy GPS log inside the movement pattern or a dubious driving
style with a large number of strong accelerations and decelerations. Furthermore, in order
to discern drivers with lower jerk fluctuation rates, we consider the square root of the
standard deviation inside the exponential function. This facilitates the formation of a
smooth elbow in our proposed feature ω, see Figure 2.

In our experiments, the modified jerk feature yielded the most intuitive and reliable
clustering results. Small feature values correspond to those movement patterns representing
drivers with fewer accelerations and decelerations in their driving patterns. An energy-
saving driving style can therefore be identified by small feature values, whereas more racy
drivers will usually exhibit larger feature values.
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Proposed	method	by	Murphey,	Y.L.	et	al.	(2009)
ω
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Figure 2. The sorted values of mean, standard deviation, the feature proposed by [25], and our
proposed feature for all preprocessed movement patterns from [24]. The approach from [25] only
yields two distinct classes and cannot detect noise. On the other hand, the curve representing
the mean is almost flat, meaning it is very difficult to distinguish different clusters. The standard
deviation depicts a similar behaviour to that of our proposed feature, but bears a less stable behaviour
towards the end. Our feature yields a curve with a clear monotonic increase and a notable elbow
at the end. Thus, we obtain the same segregation ability as the standard deviation but a clearer
threshold for noise detection, which is given by the samples located in the elbow.

Within the context of driving style analysis—that boils down to unsupervised move-
ment pattern clustering—one major obstacle is the varying size of the movement patterns
recorded as GPS logs. Consequently, clustering of the movement patterns is impossible
until they are all brought to a fixed-dimensional space or an efficient similarity measure
is defined among them for the purpose of their comparisons [30]. Our proposed compact
feature (7) resolves this length inconsistency problem and provides a meaningful semantic
representation of the movement patterns with varying lengths. More precisely, (7) re-
duces the movement pattern dimensions from the range of [10, 42], as already discussed in
Section 3.1, to only one dimension, represented as ω, that later is used by an agglomerative
clustering approach to label driver styles—as we will show in Section 4.

Algorithmic Details

Two classic and well-studied approaches to classify data are partitional and hierarchi-
cal clustering methods. The latter have the advantage to yield a complete-scale evolution
for all possible numbers of clusters. Since the optimal number of clusters is hard to predict,
we opt for a flexible approach using an agglomerative clustering method. Such a method
starts by taking singleton clusters at the bottom level and continues merging two clusters
at a time to build a bottom–up hierarchy of clusters.

We employ Ward’s criterion for the merging strategy [31,32]. It makes use of the
standard k-means squared error (SSE) to determine the distance between two clusters.
For any two clusters, Ca and Cb, Ward’s criterion is calculated by measuring the increase
in the value of the SSE for the clustering obtained by merging them into a single cluster—
Ca ∪ Cb. The characteristic number of Ward’s criterion is defined as follows:

|Ca||Cb|
|Ca|+ |Cb|

`

∑
ν=1

k

∑
η=1

(
caν − cbη

)2
(8)

where the cluster Cx has the individual components cxν. The cardinality of a cluster is
denoted by |Cx|.
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We iteratively merge clusters in a bottom–up fashion. At the bottom level, each
computed feature point is considered. Then, at each new level, we merge the pair of
clusters that minimises (8). The algorithmic details of the agglomerative hierarchical
clustering are also given in Algorithm 1.

Algorithm 1: Agglomerative hierarchical clustering of movement patterns
Data: A set of movement patterns.
Result: A clustering of the input movement patterns.

1 Compute the feature value ω from (7) for each movement pattern.
2 Place each feature value in its own cluster.
3 repeat
4 Find pair of clusters that minimises (8).
5 Merge this pair into a single cluster.
6 until a single cluster is left
7 return the smallest number of clusters, that yielded a decrease in (9) below a

threshold T.

The optimal number of clusters is obtained through an L-curve heuristic [33,34]. We
compare the number of clusters against the within-cluster sum of squares (WCSS) and
consider the smallest number of clusters that yields a decrease in the WCSS below a given
threshold. The WCSS is given by:

M

∑
a=1

∑
x∈Ca

‖x− ca‖2
2 (9)

where M is the total number of clusters and ca is the centroid of cluster Ca.
In our WCSS-based experiments, the optimal number of clusters was usually found

to be four. In what follows, the silhouette index SIi (10) is computed for members of each
four established clusters:

SIi =
bi − ai

max(ai, bi)
(10)

Here, ai is the mean distance between any cluster member ωi to all other members in
same cluster and bi is the mean distance among the cluster member ωi and all other members
in next nearest cluster. The computed SIi corresponding to ωi takes negative or positive
values in range of [−1,+1] as being mostly dissimilar or similar to other members in same
cluster. Well established clusters require silhouette indices to be positive over their members.

Our best clustering result is analysed with respect to its labelling in Figure 3b. The neg-
ative silhouette indices inside the 4th cluster represent the compactly accommodated noisy
ω values. This observation validates our approach for identifying the noisy values. In addi-
tion, only a few members in the 2nd cluster are wrongly located making the final clustering
result meaningful.

Let us emphasise that an alternative strategy would also be possible with the k-means
algorithm. However, k-means needs to be restarted for each new amount of clusters and
thus adds a significant computational burden if the number of clusters is not predeter-
mined exactly.
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Figure 3. The silhouette indices of a clustering setup establishing (a) three, (b) four, and (c) five
distinct groups of ω values of the central area drivers in Beijing. Inside each cluster, the more positive
a silhouette index of a feature, the more similar is the feature to its group mates, which indicates
a good clustering. (a) Here, the number of clusters is considered to be three. In this case, a group
of drivers in the 2nd cluster is probably not optimally labelled. It is not possible to decide whether
they belong to average-fuel-consuming drivers or to noisy patterns. Only the energy-saving drivers
could be clearly located in the 1st cluster. (b) A minimal number of drivers with a negative silhouette
index is found with 4 clusters. This clustering seems to have the best labelling. Noisy driver patterns
are likely to be found in the 4th cluster. All energy-saving drivers are located in the 1st cluster and
average-fuel-consuming drivers expand across two classes in the 2nd and 3rd cluster, respectively.
(c) By increasing the number of clusters to five, drivers with negative silhouette indices appear even
in the 1st cluster with small ω values. This depicts a clustering result which may not be considered as
optimal, since almost all clusters accommodate dissimilar drivers inside them.

4. Experimental Results and Validation

In order to investigate the efficiency of our proposed feature, we consider a database
with GPS logs from two distinct parts of Beijing city [24]. The whole database contains
the trajectories of more than 10,000 taxis collected during the period of 2–8 February 2008.
In total there are more than 17 million GPS logs that cover a total distance of around 9 million
kilometres. Since the dataset corresponds to various taxi drivers, we expect to find many
different driving styles in this dataset. The regions that we consider contain a vast area
of Beijing city centre and a freeway running from east to west. We preprocess the logs as
described in Section 3.1 and correspondingly obtain 3225 patterns for the city centre and
106 movement patterns for the freeway. All our feature values are computed according to (7).

Next, we evaluate our proposed approach by applying the agglomerative clustering
detailed in Algorithm 1. The distribution of all feature values among the different clusters
is visualised in Figure 4. As we can see, the feature values from the first cluster and the
fourth cluster are clearly different from those in the second and third cluster. This confirms
our expectations. The first cluster contains the energy-saving drivers, whereas the fourth
cluster is supposed to contain noise as well as the high-fuel-consuming drivers. Finally,
the majority of the drivers lies within the bounds of the second and third cluster and present
drivers with average fuel consumption.
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Figure 4. A whisker plot showing the distribution of the feature values among the different clusters
for our two experimental setups. The box marks the boundaries of the first and third quartiles, while
the bars indicate the full extent of the feature values in that cluster. The horizontal line indicates
the median. As we can see, the first cluster and—on the other hand—the second and third cluster
are well separated in terms of feature values. There is a continuous overlap from the second to the
third cluster. These two clusters represent the majority of the drivers with an average-fuel-consuming
driving style, with a tendency towards being more (cluster 2) or less (cluster 3) energy efficient. The
first cluster represents the energy-saving drivers and the last cluster represents the drivers with high
fuel consumption, also containing noisy driver patterns. Thereby, the lower the feature values are,
the more energy saving the corresponding driving style is.

4.1. Findings for Beijing City Centre Area

The first, second, and third clusters are totally noise-free and could be adopted as an
accurate driver’s behavioural model. The within-cluster sum of squares (WCSS) index
does not show any remarkable amount of reduction by adding a fifth cluster or more.
Hence, according to our L-term heuristic, we should set the final number of clusters to four.
The noisy patterns are located fully in the fourth cluster.

Let us stress that our algorithmic proceeding that results in setting the number of
clusters to four is confirmed in an independent way by evaluating the silhouette indices as
shown in Figure 3. This is exemplarily shown here for the data of the Beijing city centre
area, but also holds for the other analysed data.

4.2. Findings for the Freeway Area

The first and second clusters are noise free. The L-term strategy suggests the use of four
clusters in this case. Since we only have very few feature values in this area, our algorithm
does not yield a cluster solely containing noise. However, the fourth cluster partially
contains the noisy movement patterns. Such a cluster was present for the Beijing centre
area, where the fourth cluster was filled with corrupted patterns only. This observation also
shows that our classification algorithm benefits from having an extremely large amount
of samples. This is a realistic scenario in an industrial application where large amounts of
data can be collected, e.g., via navigation systems. The more samples we can process, the
more clearly we can distinguish noise and classify individual drivers.

Summary on Comparison with Other Possible Approaches

We compare the efficiency of our proposed feature against the work proposed in [25]
by applying both of them on GPS logs of Beijing city centre provided in [24]. In addition,
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we visualize our proposed feature applied on GPS logs obtained from the Beijing city
centre to other commonly used feature choices. The findings are visualised in Figure 2.
We compare our suggested feature against the mean value and standard deviation as well
as the jerk-based feature from [25]. The approach from [25] (proposed for the purpose of
analysing driver behaviour, not for energy efficiency) yields clear-cut results. It segregates
our drivers into two categories, namely defensive and aggressive drivers—by the context
of the work in [25]. For this classification, we used the parameter suggestions from [25].
We selected a window size of 10 s and set the parameters normthreshold and aggthreshold to
0.5 and 1, respectively. This method yields a very clear threshold that discerns the two
classes of drivers. However, it is unable to detect noisy data. If we consider the average
value and standard deviation as features, then we are able to detect the corrupted data, but
a discrimination of the remaining drivers becomes difficult. All the feature values that we
compare against our proposed feature are very close to each other. Finally, our proposed
feature yields a larger range of values as well as a clear jump at the end of the curve. Thus,
we are in a position to distinguish different driving styles as well as filter out noisy patterns.

5. Summary and Conclusions

In this paper, we show that it is possible to discern different driving style patterns
with respect to their energy consumption from their GPS logs alone. To this end, we
use a dedicated variation of the jerk feature and combine it with a hierarchical clustering
approach.

Our model is quite simple but still capable of classifying drivers into different cat-
egories and filtering out noisy data logs. Let us note again that the use of just the GPS
logs may potentially be highly relevant for industrial use of our results in the context of
navigation systems.

In the future, we aim to combine the driver model information with other optimisation
tools concerned with energy-efficient routing and motor control in order to improve the
energy efficiency of hybrid cars.
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