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Abstract: The aim of this paper is to assess the significant impact of using quantile analysis in
multiple fields of scientific research . Here, we focus on estimating conditional quantile functions
when the errors follow a GARMA (Generalized Auto-Regressive Moving Average) model. Our
key theoretical contribution involves identifying the Quantile-Regression (QR) coefficients within
the context of GARMA errors. We propose a modified maximum-likelihood estimation method
using an EM algorithm to estimate the target coefficients and derive their statistical properties. The
proposed procedure yields estimators that are strongly consistent and asymptotically normal under
mild conditions. In order to evaluate the performance of the proposed estimators, a simulation
study is conducted employing the minimum bias and Root Mean Square Error (RMSE) criterion.
Furthermore, an empirical application is given to demonstrate the effectiveness of the proposed
methodology in practice.
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1. Introduction

Linear regression is one of the most common and well understood techniques for
modeling the relationship between one or more covariates or predictor variables, X, and
the conditional mean E(Y|X = x) of the response variable Y, given X = x. The conditional
mean minimizes the expected squared error: E(Y|X = x) = argmin

µ
E[(Y − µ)2|X = x]. If

the conditional mean of Y, given x, is linear and expressed as µ(x) = x′β, then β can be
estimated by solving min

β
∑(yi − x′β)2, which is the ordinary least squares solution of the

linear regression model.
However, inference from this model requires that specific assumptions be made about

the distribution of the error (i.e., linearity, homoscedasticity, independence, or normality). In
contrast, quantile regression, as introduced by Koenker and Bassett [1], aims to extend these
ideas to the estimation of conditional quantile function models wherein the quantiles of the
conditional distribution of the response variable are expressed as functions of observed
covariates. For a pair of observed values (x, y) of random vector (X, Y), a quantile
regression has the form qτ(x) = in f {y : P(Y ≤ y|x) ≥ τ}, where τ indicates that the
specific quantile of Y is the smallest value of y denoted by P(Y ≤ y|x) = E(1{Y≤y}|X = x) ,
given without making assumptions about the distribution of the error. In the case of classical
quantile regressions, we can assume that these quantiles of the conditional distribution
have a linear form,

qτ(x) = x′βτ , (1)

where βτ is a parameter vector (a vector of regression coefficients).
For the following, it may be useful to note that this expression can be written in an

equivalent way: Y = x′βτ + ϵτ , with qτ(ϵτ |x) = 0. Condition 1 is similar to that carried
out in the standard linear regression, in which the conditional mean of the variable of
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interest Y is modelled as a linear expression of the explanatory variables X. One difference
is that here we allow the coefficients to differ from quantile to quantile. This provides
additional information not apparent from simple linear regression.

In the parameter estimation problem, the form of the quantile regression function
is known, but it contains unknown parameters, βτ . The most intuitive way to calculate
the standard estimator, β̂τ , consists of ordering these n variables, the quantile of order
τ being provided by the (nτth) observation where [nτ] is the smallest integer greater
than or equal to nτ. However, it is more useful to notice that the popular method for
estimating the unknown parameters, βτ , in a quantile-regression function is by solving the
estimating equation

q̂τ(Y) = min
βτ

∑ ρτ(yi − x′βτ)
2, (2)

where q̂τ(.) is the check function defined by ρτ(u) = u(τ − I(u < 0)) for some τ ∈ (0, 1).
Here, I(.) is an indicator function that takes the value of unity when I(.) is true and zero
otherwise, and here u = yi − x′i βτ . However, this function is not differentiable at zero, and
clear solutions to minimization problems are unobtainable [2,3]. In quantile-regression
methods, linear programming is frequently implemented for parameter estimation.

The Expectation-Maximization (EM) algorithm and the Alternating Least Squares
(ALS) algorithm are both iterative optimization techniques commonly employed in statistical
modeling to estimate parameters iteratively. In quantile regression, aimed at estimating
conditional quantiles of a response variable given covariates, the selection between EM and
ALS relies on several considerations.

Opting for EM in quantile regression over ALS is justified due to its capability
in managing latent variables and accommodating diverse error distributions, and its
alignment with the objectives of quantile regression. Additionally, EM avoids the swapping
effect by updating parameters sequentially rather than alternately, enhancing stability in
estimation. However, it is essential to note that the bias in EM hinges on factors such as
sample size and model assumptions.

Despite potential variations in speed, where the speed of EM varies depending on
the complexity of the model and convergence criteria, EM’s advantages in handling
latent variables and error distributions make it a favorable choice in many quantile-
regression applications.

There are numerous articles about the parameter estimation of quantile-regression
models with the EM algorithm. Tian et al. [4] proposed a new method based on the
Expectation-Maximization algorithm for a linear quantile-regression model with symmetric
Laplace error distribution. Furthermore, Tian et al. [5] used this method for a linear
quantile-regression model with autoregressive errors. Zhou et al. [6] developed the
EM algorithm and GEM algorithm for calculating the quantiles of linear and non-linear
regression models.

All of these results are only for the errors that are modeled by short-memory, time-
series models. However, long-memory models are very important; they are used in various
fields, such us hydrology, chemistry, and economics; see, for example
Hurst [7], Jeffreys [8], Student [9].

The most commonly used long-memory model, which deals with the modeling of
cyclic behavior, is The Generalized Autoregressive Moving Average model (GARMA).
It was proposed by Gray et al. [10] to deal with non-additivity, non-normality, and
heteroscedasticity in real time-series data.

This behavior has attracted considerable attention, prompting extensive research
efforts over recent decades. For instance, Darmawan et al. [11] utilized a GARMA
model to predict COVID-19 data trends in Indonesia, Albarracin et al. [12] analyzed the
structure of GARMA models in practical scenarios, while Huntet al. [13] introduced an
R package, ‘garma’, specifically tailored for fitting and forecasting GARMA models in R
(Version R-4.4.0).
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The foundations of the methods for independent data have now been consolidated,
and some computational commands for the analysis of such data are provided by most of
the available statistical software (e.g., R (Version 4.4.1 R. Ross Ihaka and Robert Gentleman’s
creation in Vienna, Austria)/Python (Version 3.13. Guido van Rossum’s creation, in
Wilmington, DE, USA).

In this paper, we will consider a linear quantile-regression model with Generalized
Autoregressive Moving Average error, defined as follows:

yt = x′tβτ + ϵt, t = 1,2,...,n with qτ(yt|xt) = x′tβτ , (3)

where yt is the t-th observation of the response variable, xt = (xt,1, ..., xt,M)′ is a M × 1
covariate, βτ = (βτ,1, ..., βτ,M)′ is a regression parameter vector, and {ϵt, t ∈ Z} is a
stationary long-memory process generated by the GARMA(p,0) model, as follows:

Φp(L)(1 − 2ηL + L2)dϵt = ξt, (4)

where Φp(L) = 1 −
p
∑

k=1
ϕkLk with Φ = (ϕ1, ..., ϕp)′ is the autoregressive parameter vector,

L is the Backshift operator defined by LXt = Xt−1, (1 − 2ηL + L2)d represent the long-
memory Gegenbauer component, and {ξt, t ∈ Z} is an iid process.

In this work, we aim to estimate the parameters of our models with the EM algorithm
(see [14]) based on the method of Tian et al. [4]. However, we will derive the asymptotic
properties of our estimators.

The outline of this paper is organized as follows: In Section 2, we provide the likelihood
function, and Section 3 deals with the estimation of our parameters by the EM algorithm. In
Section 4, we derive the asymptotic properties of the estimators under some mild conditions.
Some simulation results will be provided in Section 5, and finally a real data example is
provided in Section 6.

2. Estimation Procedure via EM Algorithm

The maximum-likelihood method is a technique that is widely recognized for deriving
estimators. One of the principal reasons for the wide popularity of the maximum-likelihood
method is that the resulting estimator has many interesting properties. However, in some
complicated problems maximum-likelihood estimators are unsuitable or do not exist.
This method estimates the parameters of various statistical models, including quantile-
regression models. In such cases, to estimate the qτ(yt|xt) at model (1), it is natural to
simultaneously estimate the regression coefficients and the GARMA parameters using
quantile regression. Hence, in this section we focuses on the estimation of the parameter
vector of models (3) and (4) by (β′

τ , Φ′, σ)′. It is also worth noting that maximum-likelihood
estimation is related to other optimization techniques. In particular, if we assume a normal
distribution then it is equivalent to the ordinary least squares method. In practice, the
normality assumption of the random error may be abandoned for many reasons, such as
outliers, contaminated data, and heavy-tailed distributions. The Laplace distribution is
a good robust alternative in this case [15]. Yu and Moyeed [16] found that minimizing
the expression (1) is equivalent to maximizing a likelihood function formed by combining
the independently distributed asymmetric Laplace error distribution (see [17]). In this
work, we adopt a similar idea to build a likelihood function; the distribution of the process
{ξt, t ∈ Z} in model (3) is assumed to be a symmetric Laplace distribution with zero
mean, scale parameter σ > 0, and skewness parameter τ ∈ (0, 1). Let ξt ∼ ALD(0, σ, τ),
as follows:

f (ξt) =
τ(1 − τ)

σ
exp
{
−ρτ(

ξt

σ
)

}
, (5)

where ρτ(u) = u(τ − 1[u<0]) is the quantile check function.
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The mean and the variance of this distribution are given by: E(ξt) = σ
1 − 2τ

τ(1 − τ)
and

Var(ξt) = σ2 (1 − 2τ + 2τ2)

(1 − τ)2τ2 . (See [18]).

The Laplace distribution was chosen for the error term in the GARMA model due to
several advantages it offers. Firstly, it offers robustness to outliers. The Laplace distribution,
also referred to as the double-exponential distribution, has heavier tails compared to
the normal distribution. This implies that it is more robust to outliers in the data. In a
GARMA error model, which aims to capture the time-series behavior of a process, having
robustness to outliers is essential for precise estimation and prediction. Secondly, unlike
the normal distribution, the Laplace distribution is symmetric and has the capability to
capture skewness in the data. In time-series analysis, it is common to encounter data
that exhibit asymmetric patterns. By using the Laplace distribution as the error term in
the GARMA model, we align the model’s assumptions with the potential skewness in
the data, thus improving its ability to capture the underlying patterns. Additionally, the
Laplace distribution possesses straightforward mathematical properties that enhance its
computational efficiency. This characteristic can be beneficial when fitting the GARMA
model to extensive datasets or when performing simulations for different scenarios.

Under such circumstance, the maximum-likelihood estimates for the parameters βτ , Φ,
and σ are obtained by maximizing the marginal density, f (yt|βτ , Φ, σ) , which is obtained
by replacing ξt with Φp(L)(1 − 2ηL + L2)d(yt − x′tβτ) in Equation (3), that is,

L(βτ , σ, τ) = (
τ(1 − τ)

σ
)nexp

{
n

∑
t=1

ρτ(
Φp(L)(1 − 2ηL + L2)d(yt − x′tβτ)

σ
)

}
. (6)

The maximization of (4) is equivalent to the maximization of the logarithm of the
likelihood function:

log(L(βτ , σ, τ)) = nlog(
τ(1 − τ)

σ
)−

n

∑
t=1

ρτ(
Φp(L)(1 − 2ηL + L2)d(yt − x′tβτ)

σ
). (7)

Clearly, the objective function has no closed form. Hence, it is not possible the estimate
the quantile-regression coefficients because this objective function is non-convex with
respect to βτ and the differentiation (the function ρτ(.) is not differentiable at 0). Therefore,
to overcome this problem we suggest the use of the property of the asymmetric Laplace,
combining a normal distribution conditional on an exponential distribution, proposed by
Yu and Moyeed [16], as follows:

ξt = θzt + ω
√

σztut, (8)

where ut ∼ N (0, 1), zt ∼ exp( 1
σ ), θ = 1−2τ

τ(1−τ)
and ω2 = 2

τ(1−τ)
.

This proposal should be seen as a ratification to the previous objective function, using
the Gegenbauer polynomials (C(−d)

i (η), i ∈ Z), defined by:

(1 − 2ηL + L2)d =
∞

∑
i=0

C(−d)
i (η)Li. (9)

(See [19]).
Then, under the previous results, Equations (3), (8) and (9) lead to the following

explicit expression:

yt =
∞

∑
i=0

C(−d)
i (η)Liyt − (1 − 2ηL + L2)d(

p

∑
k=1

ϕkLkyt − Φp(L)x′tβτ) + θzt + ω
√

σztut (10)
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Therefore, we can conclude that yt is conditionally normally distributed (see [5]
for more details). Then, the quantile-regression model here is represented as a normal
regression model. The full joint density for y = (y1, ..., yn) is given by:

f (y/z, βτ) =
n

∏
t=1

1√
2πω

√
σzt

exp

{
−
(Φp(L)P(L)(yt − x′tβτ)− θzt)2

2ω2ztσ

}
, (11)

with z = (z1, ..., zn) and P(L) = (1 − 2ηL + L2)d.
The estimators of the unknown quantile-regression parameters, βτ , the scale σ, and

the vector parameters of the GARMA model, Φ, may be obtained by maximizing the
likelihood function:

L(βτ , Φ, σ/y, x, z) =
n

∏
t=1

1√
2πω

√
σzt

exp

{
−
(Φp(L)P(L)(yt − x′tβτ)− θzt)2

2ω2ztσ

}
1
σ

exp(− zt

σ
). (12)

The corresponding log-likelihood function is given by:

log(L(βτ , Φ, σ/y, x, z) = −nlog(
√

2πτω)− 3n
2

log(σ)− 1
2

n

∑
t=1

log(zt)

−
n

∑
t=1

(Φp(L)P(L)(yt − x′tβτ))2

2ω2σ
z−1

t + 2
n

∑
t=1

Φp(L)P(L)(yt − x′tβτ)θ

2ω2σ

−
n

∑
t=1

(
θ2

2ω2σ
+

1
σ
)zt

. (13)

Due to the unobserved variables, zt, the maximum likelihood becomes intractable. In
this case, solving Equation (2) requires an iterative algorithm. The EM algorithm (see [20])
is a broad method of finding the maximum-likelihood estimates of the parameters of a
fundamental distribution from a provided dataset that has missing values. In the next
section, we present the Expectation-Maximization (EM) algorithm, which is derived from
likelihood optimization.

2.1. EM Algorithm

The Expectation-Maximization (EM) algorithm [14] is a commonly utilized method
for finding maximum-likelihood estimates in statistical models that rely on missing data or
unobservable latent variables. A latent variable is a variable that affects our observed data
but in ways that we cannot know directly. The EM algorithm is an iterative approach that
alternates between two modes. The first mode attempts to estimate the missing or hidden
variables; this is known as the estimation-step or E-step. The second mode attempts to
optimize the parameters of the model to provide the best explanation of the data; this is
known as the maximization-step or M-step.

In the model (10), the EM iterations are based on regarding the random variable
(zt = (z1, ..., zn)) as a set of unobserved latent variables or missing values. We seek to
estimate our model by maximizing the complete-data log likelihood, which is then denoted
in Equation (12), log(L(βτ , Φ, σ/y, x, z), where ϑ = (β′

τ , Φ′, σ)′ are the unknown parameter
vectors for which we wish to find the MLE. To apply the EM algorithm for estimation, we
must first find the conditional pdf of the unobserved variable zt , in order to estimate the
missing variables in the dataset. Indeed, since zt, in Equation (8), is assumed to be exp( 1

σ )
and ut ∼ N (0, 1), it can be observed that the conditional distribution of zt , given y, (zt|y)
is given by:
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f (zt/y, x) ⋍
1√
σzt

exp

{
−
(Φp(L)(1 − 2ηL + L2)d(yt − x′tβτ)− θzt)2

2ω2ztσ

}
1
σ

exp(− zt

σ
)

⋍
1√
σ3

z
1
2−1
t exp

{
−
(Φp(L)P(L)(yt − x′tβτ)− θzt)2

2ω2ztσ

}
exp(− zt

σ
)

⋍
1√
σ3

z
1
2−1
t exp

{
−1

2

[
(Φp(L)P(L)(yt − x′tβτ))2z−1

t
ω2σ

+ (
θ2

ω2σ
+

2
w < σ

)zt

]}

∽ GIG

(
1
2

,
(Φp(L)P(L)(yt − x′tβτ))2

ω2σ
, (

θ2

ω2σ
+

2
σ
)

)
,

where GIG is the Generalized Inverse Gaussian distribution, a three parameter distribution
introduced by Good, [21] that has been applied in a variety of fields of statistics. More
recently, Sánchez et al. [22] used the GIG distribution as a mixing distribution to estimate
the parameters of quantile-regression models. Furthermore, note that the r-th moment of
zt ∼ GIG(α, γ, δ) is given by:

E(zr) =
(γ

δ

) r
2 Kα+r(

√
γδ)

Kα(
√

γδ)
(14)

and

E(log(z)) =
dE(zr)

dr
∣∣

r=0
, (15)

where K is a modified Bassel function of the second kind (see [23] for more details). The
above relations (14) and (15) will be useful in calculating the conditional expectation of
the log-likelihood function, with respect to the conditional distribution of zt given y, when
applying the following two EM steps, described as follows:

Step E

To applying EM to model (10) (with GARMA errors), we start by writing down
the expected complete log-likelihood, given by Equation (2), known as the Q-function,
Q(ϑ/ϑ(h)) = E(log(ϑ/y, z)/y, ϑ(h)), where Eϑ(h))[.] means that the expectation is being
affected using ϑ(h) for ϑ , with respect to the unknown data z given the observed data y
and the current parameter estimates ϑ(h) , which is the estimated value of the h-th iteration.
Calculating this expectation at the (h − 1)-th iteration yields

Q(βτ , Φ, σ/y, ϑ(h)) = E(log(L(βτ , Φ, σ/y, x, z))/y, ϑ(h)).

Then,

Q(βτ , Φ, σ/y, ϑ(h−1)) = −nlog(
√

2πτω)− 3n
2

log(σ)− 1
2

n

∑
t=1

λt

−
n

∑
t=1

(Φp(L)P(L)(yt − x′tβτ))2

2ω2σ
µt + 2

n

∑
t=1

Φp(L)P(L)(yt − x′tβτ)θ

2ω2σ

−
n

∑
t=1

(
θ2

2ω2σ
+

1
σ
)νt

, (16)

where we have defined the pseudo-values λt = E(log(zt)/y, ϑ(h−1)), µt = E(z−1
t /y, ϑ(h−1)),

and νt = E(zt/y, ϑ(h−1)).
For evaluating (2), it is necessary to compute λt , µt, and νt, as in (14) and (15) , which

will depend of the conditional pdf of z in Equation (11).
These expressions are straightforward to derive using Equations (14) and (15), as

discussed in Eberlein and Hammerstein [24]. The elements of the partial derivatives of the
t-th moment of zt evaluated at ϑ(h−1) are as follows:
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λt =
dE(za/y,ϑ(h−1))

da

∣∣
a=0

µt =
√

θ2+2ω2

Φp(L)P(L)(yt−x′t βτ)

νt =
Φp(L)P(L)(yt−x′t βτ)√

θ2+2ω2 ×
K 3

2
(

Φp(L)P(L)(yt−x′t βτ )

ω2σ(t−1) )

K 1
2
(

Φp(L)P(L)(yt−x′t βτ )

ω2σ(t−1)

.

We can calculate νt explicitly by applying the well-known recursion formula defined
by xKa−1(x)− xKa+1(x) = −2aKa(x), resulting in the following expression:

νt =
ω2σ(t−1)

θ2 + 2ω2 +
Φp(L)P(L)(yt − x′tβτ)√

θ2 + 2ω2
.

Step M (Maximization)
The above E-step of the EM algorithm simply uses L(y|x, z, ϑ(h−1)) to calculate the

expectation of the unobservable information, z, given the observed data (y, x) and the
existing estimates of unknown parameters ϑ(h−1).

In the M-step, the parameters are re-estimated by maximizing the Q-function to find
the new estimate ϑ(h) by solving the (h)th step; the M-step procedures is as follows:

ϑ(h) = argmax
ϑ

Q(ϑ, ϑ(h−1)) = argmax
ϑ

Q(ϑ, (β(h−1), Φ(h−1), σ(h−1))),

where each estimate parameter can be acquired by partially maximizing the objective
Q-function:

(A.1) β
(h)
τ = argmax

β
Q(ϑ(h), (β, Φ(h−1), σ(h−1)))

(A.2) Φ(h) = argmax
Φ

Q(ϑ(h), (β(h), Φ, σ(h−1)))

(A.3) σ(h) = argmax
σ

Q(ϑ(h), (β(h), Φ(h), σ)).

In this regard, starting values, ϑ(0) = (β
(0)′
τ , Φ(0)′ , σ(0))′, are necessary in order to

initiate the iterative procedure. These can be obtained from the Least Squares Estimates
(LSE) method (see [25]).

An estimate of ϑ = (β′
τ , Φ′, σ)′ can be obtained by equating the score vector, including

the first-order partial derivatives of Q(ϑ) with respect to each parameter, denoted by
∂Q(ϑ)

∂ϑ = ( ∂Q
∂σ , ∂Q

∂ϕ1
, ..., ∂Q

∂ϕp
, ∂Q

∂σ ) , to zero vector, leading to Q-function equations. In particular,
we have the following explicit expressions:

2.1.1. Estimator of βτ

Let βτ be the parameter value at a local maximum of the Q-function in Equation (2).
Differentiating the previous expression in respect to βτ , we find

∂Q
∂βτ

= 0 ⇔ 1
ω2σ

n

∑
t=1

µt(Φp(L)P(L))2(yt − x′tβτ)xt −
θ

ω2σ

n

∑
t=1

Φp(L)P(L)xt = 0

⇔
n

∑
t=1

µt(Φp(L)P(L))2x′txtβτ =
n

∑
t=1

µt(Φp(L)P(L))2ytxt − θ
n

∑
t=1

Φp(L)P(L)xt.

In matrix form, we have:

XΓ(h−1)X′βτ = XΓ(h−1)Y − XΘ,

where:

X = (Φp(L)P(L)x1, ..., Φp(L)P(L)xn)
Y = (Φp(L)P(L)y1, ..., Φp(L)P(L)yn)′

Γ(h−1) = diag(µ1, ..., µn) and Θ = (θ, ...θ)′
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Denoting:

X̂ = (Φ̂(h−1)
p (L)P(L)x1, ..., Φ̂(h−1)

p (L)P(L)xn)

Ŷ = (Φ̂(h−1)
p (L)P(L)y1, ..., Φ̂(h−1)

p (L)P(L)yn)′

We obtain the h-th iteration estimator of the parameter βτ as follows:

β̂τ
(h)

= (X̂Γ(h−1)X̂′)−1(X̂Γ(h−1)Ŷ − X̂Θ). (17)

2.1.2. Estimator of Φ

Now, we apply the same procedure for our parameters ϕ1,....,ϕp:
For k ∈ {1, ..., p}, we have:

∂Q
∂ϕk

= 0

⇔ 1
ω2σ

n

∑
t=1

µtP(L)2(yt−k − x′t−kβτ)Φp(L)(yt − x′tβτ)−
θ

ω2σ

n

∑
t=1

P(L)(yt−k − x′t−kβτ) = 0

⇔
n

∑
t=1

µtP(L)2(yt−k − x′t−kβτ)

(
(yt − x′tβτ)−

p

∑
j=1

ϕj(yt−j − x′t−jβτ)

)
− θ

n

∑
t=1

P(L)(yt−k − x′t−kβτ) = 0

⇔
p

∑
j=1

ϕj

n

∑
t=1

µtP(L)2(yt−k − x′t−kβτ)(yt−j − x′t−jβτ) =
n

∑
t=1

P(L)(yt−k − x′t−kβτ)
(
µtP(L)(yt − x′tβτ)− θ

)
.

Then, we write the matrix form as follows:

(E′Γ(h)E)Φ = E′(Γ(h) J − Θ),

where:
E = (Ei,j)p×p, Ei,j = P(L)(yi−j − x′i−jβτ) and J = (J1, ..., Jn)′, Ji = P(L)(yi − x′i βτ) for

i = 1, ..., n
Therefore, the h-th iteration estimators of the parameters ϕj are given by:

Φ̂(h) = (Ê′Γ(h)Ê)−1(Ê′(Γ(h) Ĵ − Θ)). (18)

2.1.3. Estimator of σ

Finally, for σ, we have:

∂Q
∂σ = 0

⇔ 3n
2σ = 1

ω2σ2

(
n
∑

t=1
(Φp(L)P(L)(yt − x′tβτ))2µt +

n
∑

t=1
(θ2 + 2ω2)νt − 2θ

n
∑

t=1
Φp(L)P(L)(yt − x′tβτ)

)
.

Then, we get:

σ̂(h) =

n
∑

t=1
Φ̂(h)

p (L)P(L)(yt − x′t β̂τ
(h)

)2µt +
n
∑

t=1
(θ2 + 2ω2)νt − 2θ

n
∑

t=1
Φ̂(h)

p (L)P(L)(yt − x′t β̂τ
(h)

)

3nω2 . (19)

3. Consistency and Asymptotic Normality

In this section, we establish the consistency and asymptotic results of our estimators
in Equations (17)–(19). We will begin by stating and discussing a set of basic notations and
some assumptions that will be used throughout the remaining parts of this paper.

For the derivation of asymptotic normality of the estimator of βτ , we need consistency
and some additional assumptions. Because we try to show the asymptotic normality of√

n(β̂τ − βτ), it is convenient to apply the notation introduced in (1)–(2) and make the
following assumptions of regularity conditions:
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C1: W := E((Φ̂(h−1)
p (L)P(L)x1)

2µ
(h−1)
1 ) < ∞

C2: T := E(Φ̂(h−1)
p (L)P(L)x1µ

(h−1)
1 − θx1) < ∞.

While condition (C1) is needed in order to apply the ergodic theorem, condition (C2)
allows us to apply the martingale central limit theorem of Billingsley [26]. Then, we have
the following theorem:

Theorem 1. Let β̂τ
(h)

the EM estimator of βτ . Under (C1) and (C2) we have:

√
n(β̂τ

(h) − βτ) −→
n→+∞

N (0, W−1TW). (20)

Proof. Note that:

β̂τ
(h) − βτ = (X̂Γ(h−1)X̂′)−1(X̂Γ(h−1)Ŷ − X̂Θ)− βτ .

Then

√
n(β̂τ

(h) − βτ) =

(
X̂Γ(h−1)X̂

′

n

)−1(
X̂Γ(h−1)Ŷ − X̂Θ√

n

)
−
√

nβτ

=

(
X̂Γ(h−1)X̂

′

n

)−1(
X̂Γ(h−1)Ŷ − X̂Θ − X̂Γ(h−1)X̂

′
βτ√

n

)

=

(
X̂Γ(h−1)X̂

′

n

)−1(
X̂Γ(h−1) ξ̂ − X̂Θ√

n

)
−
√

nβτ (ξ̂ = Ŷ − X̂
′
βτ)

= A−1
n Bn,

where

An =
X̂Γ(h−1)X̂

′

n
and Bn =

X̂Γ(h−1) ξ̂ − X̂Θ√
n

.

Under (C1) and using the ergodic theorem, we find that:

An
a.s−→

n→+∞
W.

Furthermore, using the martingale central limit theorem of Billingsley [26] and (C2),
we find that:

Bn
d−→N (0, T).

Finally, we have:

√
n(β̂τ

(h) − βτ) = A−1
n Bn −→

n→+∞
N (0, W−1TW).

To obtain the asymptotic convergence of the EM estimator of Φ, let:

(Gt)p×p, (Gt)i,j = P(L)(yt−i − x′t−i β̂τ
(h)

)P(L)(yt−j − x′t−j β̂τ
(h)

)

and

Ht = (P(L)(yt−1 − x′t−1 β̂τ
(h)

), ..., P(L)(yt−p − x′t−p β̂τ
(h)

))′,

and consider the conditions
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C3: G := E(µ(h)
1 Ĝ1) < ∞

C4: H := E((µ(h)
1 (ŷ1 − x̂′1 β̂τ

(h)
)− θ)Ĥ1) < ∞.

As well as conditions (C1) and (C2), we will use condition (C3) to apply the ergodic
theorem and condition(C4) for the martingale central limit theorem of Billingsley [26].
Thus, we have the following theorem:

Theorem 2. Let Φ̂(h) the EM estimator of Φ. Under (C3) and (C4), we have:

√
n(Φ̂(h) − Φ) −→

n→+∞
N (0, G−1HG). (21)

Proof. Note that ξ̂ = Ĵ − ÊΦ, we have:

√
n(Φ̂(h) − Φ) =

(
Ê

′
Γ(h)Ê
n

)−1(
Ê

′
Γ(h) Ĵ − Ê′Θ√

n

)
−
√

nΦ

=

(
Ê

′
Γ(h)Ê
n

)−1(
Ê

′
Γ(h) Ĵ − Ê

′
Θ − Ê

′
Γ(h)ÊΦ√

n

)

=

(
Ê

′
Γ(h)Ê
n

)−1(
Ê

′
Γ(h) ξ̂ − Ê′Θ√

n

)
= C−1

n Dn.

Similarly to Proof 1, we found that:

√
n(Φ̂(h) − Φ) = C−1

n Dn −→
n→+∞

N (0, G−1HG).

□

4. Simulation

In this section, we present a simulation study in order to illustrate the performance
of our proposed estimation procedure of ϑ = (β′

τ , Φ′, σ)′ under different scenarios. This
study was performed based on the QR model with GARMA errors, designed with two
covariates each measuring n samples. The response variable, yt, is generated from the
following equation:

yt = x′tβ + ϵt = β1xt,1 + β2xt,2 + ϵt, t = 1,2,...,n with (1 − ϕL)(1 − 2ηL + L2)dϵt = ξt.

The simulation scenario considers the following setting:
The sample size (n) is fixed at n = 50, n = 100, and n = 200 and combinations of

the vector of the true values for the parameters stated as η = −0.9, d = −0.4, ϕ = −0.5,
β = (β1, β2)

′ = (3, 2)′ σ = 1, including different degrees of asymmetry considered by
choosing τ = 0.25, 0.5, and 0.75 as the quantile points for estimation, with 500 Monte Carlo
replications for each n.

The covariate values for xt = (xt,1, xt,2)
′ , t = 1, 2, . . . , n are i.i.d random vectors

generated from the standard normal distribution. The data for the error term, ϵt, are also
generated by taking the different distributions, density-Gaussian, N (0, 1), density function
for Student distribution with k = 3 degrees of freedom (t3), and the density function
for the skewed t distribution with k = 5 degrees of freedom (st5). The performance and
recovery of the estimators are assessed by the bias and Root Mean Square Error (RMSE) to
ensure that the parameters estimated have small bias and small variance, which are stated,
respectively, by:

RMSE =

√
E((βτ − β̂τ

(h)
)2)
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and
Bias(β̂τ

(h)
) = E(β̂τ

(h)
)− βτ ,

where βτ and β̂τ
(h)

are the true parameter value and its respective h − th maximum-
likelihood estimate using the EM algorithm. The Monte Carlo simulation experiments
were performed using the R software (version 4.4.1); see www.r-project.org, accessed on 31
October 2023.

The results derived from simulation studies are presented in Tables 1–3. A look at the
results in all these tables allows us to conclude that, as expected, in general, as the sample
size increases, the bias and RMSE of the estimators decrease for all values of quantile
points (τ) considered. Moreover, β̂1, β̂2, and ϕ̂ all seem to be consistent and asymptotically
normally distributed.

Table 1. The estimation results for the Standard Normal distribution (out of 500 replications).

Parameter τ n = 50 n = 100 n = 200

β1

0.25
Bias 0.094 0.029 0.021

RMSE 0.341 0.233 0.087

0.5
Bias 0.149 0.052 −0.014

RMSE 0.242 0.225 0.104

0.75
Bias −0.071 −0.023 −0.016

RMSE 0.328 0.291 0.124

β2

0.25
Bias 0.121 −0.083 −0.030

RMSE 0.317 0.226 0.136

0.5
Bias −0.131 0.065 −0.017

RMSE 0.342 0.225 0.085

0.75
Bias 0.113 0.005 0.002

RMSE 0.317 0.203 0.139

ϕ

0.25
Bias 0.132 0.095 0.074

RMSE 0.344 0.222 0.176

0.5
Bias 0.092 0.015 0.012

RMSE 0.324 0.175 0.109

0.75
Bias −0.070 −0.067 0.036

RMSE 0.330 0.212 0.154

Table 2. The estimation results for the Student (t3) distribution (out of 500 replications).

Parameter τ n = 50 n = 100 n = 200

β1

0.25
Bias 0.0692 0.034 −0.012

RMSE 0.361 0.257 0.155

0.5
Bias 0.095 0.027 0.017

RMSE 0.238 0.164 0.080

0.75
Bias 0.095 -0.083 0.049

RMSE 0.330 0.215 0.085

www.r-project.org
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Table 2. Cont.

Parameter τ n = 50 n = 100 n = 200

β2

0.25
Bias 0.057 0.041 −0.002

RMSE 0.290 0.133 0.062

0.5
Bias 0.065 0.038 0.025

RMSE 0.337 0.237 0.174

0.75
Bias 0.088 0.040 0.039

RMSE 0.299 0.215 0.088

ϕ

0.25
Bias 0.125 −0.043 0.038

RMSE 0.245 0.134 0.094

0.5
Bias 0.067 0.053 0.025

RMSE 0.283 0.192 0.085

0.75
Bias 0.104 −0.033 0.001

RMSE 0.269 0.136 0.062

Table 3. The estimation results for the Skew Student (st5) distribution (out of 500 replications).

Parameter τ n = 50 n = 100 n = 200

β1

0.25
Bias 0.0822 0.049 −0.011

RMSE 0.327 0.287 0.124

0.5
Bias 0.086 -0.068 0.050

RMSE 0.271 0.184 0.097

0.75
Bias 0.083 0.069 −0.040

RMSE 0.332 0.269 0.113

β2

0.25
Bias 0.109 0.034 −0.007

RMSE 0.359 0.213 0.096

0.5
Bias 0.091 0.075 0.020

RMSE 0.334 0.280 0.137

0.75
Bias −0.017 0.040 −0.007

RMSE 0.292 0.169 0.085

ϕ

0.25
Bias −0.113 −0.063 0.020

RMSE 0.310 0.193 0.100

0.5
Bias 0.098 0.032 −0.025

RMSE 0.231 0.182 0.086

0.75
Bias 0.109 0.071 −0.052

RMSE 0.325 0.223 0.090

5. Real Data Example

In this work, to evaluate our proposed quantile-regression model with GARMA errors
formulated in this paper, we used a dataset called Engel (Engel food expenditure data),
sourced from the R package quantreg. Koenker and Bassett [27] utilized this dataset to
exemplify the application of quantile regression in R using authentic, real-world data.

In Figure 1, displayed below, Koenker and Bassett show the scatter plot of the original
data on double log axes. Fitted regression quartile lines are superimposed on the same
figure. The estimated slope parameters (Engel elasticities), 0.8358, 0.8326, 0.8780, and 0.9170,
for the quartiles corresponding to the 20th, 40th, 60th, and 80th percentiles, respectively.
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It is interesting to note in this example that the fitted quartile lines indicate an increasing
conditional scale effect.

Figure 1. Quartile Engel curves for food.

To investigate the influence of the GARMA error model’s “significance” in quantile-
regression models, we suggest the following approach with the GARMA errors
expressed as:

yt = β + x1,tβ1 + ϵt, t = 1,2,...,n,

with
(1 − ϕ1L − ϕ2L2)(1 − 2ηL + L2)dϵt = ξt,

where:

• yt is the food expenditure of observation t;
• x1,t is the income of observation t;
• d = 0.35 and η = −0.8.

Our methodology commences by estimating the parameters β, β1, ϕ1, and ϕ2 at the
quartiles 0.2, 0.4, 0.6, and 0.8 via our method described in Section 2 with the R software
(version 4.4.1). Table 4 shows the estimated coefficients (Estimate) and the corresponding
predictions at four quantile levels, τ : 0.2, 0.4, 0.6, and 0.8.

Table 4. Estimated parameters for Engel data with expectation-maximization algorithm.

Estimate
τ 0.2 0.4 0.6 0.8

Intercept 96.35 94.8 86.94 76.60

Income 0.58 0.59 0.62 0.63

ϕ1 −0.35 −0.27 −0.22 −0.23

ϕ2 −0.09 −0.12 −0.14 −0.06

Prediction for observation 235 721.6 723.27 736.9 744.35
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Upon examination of Table 4, the estimates associated with the covariate “income”
consistently escalate as τ increases, in accordance with our expectations. Moreover, the
values of prediction are close to the true value, which is 750.32, and tend to increase as τ
increases, as expected.

This closeness to the true value not only validates the efficacy of our method but also
underscores its reliability in making accurate predictions. Moreover, akin to the estimates,
the predicted values also manifest a tendency to increase with escalating τ, a phenomenon
that aligns seamlessly with our anticipated behavior of the model.

6. Conclusions

In this article, we have used the maximum-likelihood estimation method and the
EM algorithm to estimate the unknown parameters of the quantile regression model
with Generalized Autoregressive Moving Average error. To asses the performance of our
estimators, we conducted a simulation study. The results were promising, demonstrating
that our parameter estimates closely approximate the true values. Additionally, we provide
a practical illustration using real data.
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