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Abstract: The title compound was obtained in moderate yield by a new and unexpected base-induced
ring contraction from a 1,4-thiazine precursor. Its x-ray structure showing hydrogen bonded dimers
was compared with those of other crystallographically characterised 2-acylpyrroles.
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1. Introduction

Diethyl pyrrole-2,5-dicarboxylate 1 was first described in 1886 [1], and has since been prepared by
a variety of methods [2,3]. It has found uses in medicinal chemistry as a precursor in the synthesis of
pyrrolo[1,2-b]pyridazines for the treatment of proliferative disorders [4] and as potential Janus kinase
inhibitors [5] as well as in the photochemical synthesis of tricyclic aziridines [6]. Despite its long history,
the compound is seldom mentioned in the literature and was not characterised spectroscopically until
2009 [3]. We recently obtained pyrrole diester 1 by an unexpected and novel route and report here the
determination of its molecular and crystal structure by x-ray diffraction. The structure was compared
with those previously reported for similar pyrrole esters.

2. Results

Our intention was to try and form the parent heterocycle 1,4-thiazine whose synthesis was claimed
in 1948 [7], but has never been repeated. Starting from ethyl bromopyruvate 2 and cysteine ethyl
ester hydrochloride 3, the diethyl dihydrothiazinedicarboxylate 4 was prepared [8] (Scheme 1). This
could be effectively dehydrogenated to give compound 6 either by oxidation with m-chloroperbenzoic
acid to the sulfoxide 5, followed by spontaneous thermal dehydration [8] or directly using DDQ
(2,3-dichloro-5,6-dicyano-1,4-benzoquinone) as described in the literature [8]. We then attempted to
hydrolyse the ester groups of 6 to get the corresponding diacid for subsequent decarboxylation, but
when a solution of the diester in ether was stirred with NaOH in ethanol at RT for 17 h, it gave upon
evaporation and chromatographic purification a moderate yield of a compound that proved to be
pyrrole diester 1 (41%), showing excellent agreement with the spectroscopic data in the literature [3].
Since it has not been reported before, we include here the UV–Visible spectrum of 1 (see Experimental
Section and Supplementary Materials).

It seems likely that the reaction involves the loss of elemental sulfur, most likely from an
anionic form of thiazine diester 6 as shown in Scheme 2. Although extrusion of sulfur from various
ring-fused thiazine systems to give the corresponding pyrroles is known to occur thermally [9–11],
the corresponding reaction of monocyclic thiazines is rather rare [12], and the only similar examples
we are aware of are a series of the isomeric 1,4-thiazine-2,6-diesters 7, which are reported to give the
pyrrole diesters 8 upon treatment with triethylamine [13,14].
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Scheme 1. Synthetic route to 1.
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Scheme 2. Possible route for the formation of 1 from 6 with base and similar transformation of 7 to 8.

In light of the unexpected reaction involved in going from 6 to 1, we took the opportunity to
confirm the product structure unambiguously through x-ray diffraction. The resulting molecular
structure (Figure 1) shows bond lengths and angles within the expected range, but a slight inequivalence
in the dimensions around the two ester carbonyls (Tables 1 and 2), which reflects the fact that one is
involved in hydrogen bonding and the other is not.
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Figure 1. The molecular structure of 1 with numbering scheme.
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Table 1. Selected bond lengths.

Bond Length/Å Bond Length/Å

N(1)–C(2) 1.366(2) N(1)–C(5) 1.358(2)
C(2)–C(6) 1.458(2) C(5)–C(9) 1.467(3)
C(6)–O(6) 1.214(2) C(9)–O(9) 1.210(2)
C(6)–O(7) 1.341(2) C(9)–O(10) 1.348(2)

Table 2. Selected angles.

Angle Value/◦ Angle Value/◦

N(1)–C(2)–C(6) 120.57(13) N(1)–C(5)–C(9) 121.45(13)
C(2)–C(6)–O(6) 124.31(15) C(5)–C(9)–O(9) 125.91(16)
N(1)–C(2)–C(3) 108.43(15) N(1)–C(5)–C(4) 108.51(16)
C(2)–C(3)–C(4) 106.96(15) C(5)–C(4)–C(3) 107.25(14)

This was clearer when we examined the unit cell and saw that the crystal structure consisted of
pairs of hydrogen bonded molecules. When these are viewed along the b axis, they appear to be all
coplanar, but this is misleading as the view along the a axis makes clear (Figure 2). The hydrogen
bonding parameters (Table 3) are in agreement with the expectation for a strong NH to C=O interaction.
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Figure 2. Unit cell of 1 viewed along the b axis showing the four molecules present along with their
hydrogen bonded partners, and along the a axis showing that the molecules at the top left and bottom
right are actually at right angles to those at the top right and bottom left.

Table 3. Hydrogen bonding parameters for 1 (Å, ◦).

D—H . . . A D—H H . . . A D . . . A D—H . . . A

N(1)–H(1) . . . O(6) 0.89(2) 1.97(2) 2.850(2) 171(2)

A survey of the relatively small number of other crystallographically characterised 2-acylpyrroles
in the Cambridge Structural Database (CSD) showed that such dimers are in fact the commonest
structural motif with the alternative linear arrangement being much less common (Figure 3).
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Figure 3. A survey of crystallographically characterised 2-acylpyrroles with CSD reference codes and
the commonly occurring dimer and linear hydrogen-bonded structures.

A study by Senge and Smith in 2005 [15] showed that the series of six 2-acyl-3,5-dimethylpyrroles
9–14 all adopted such hydrogen bonded dimer structures, except for compound 13 where
chains formed by hydrogen bonding of NH to the 4-acetyl-C=O. In another study of the three
3-methoxy-4-methylpyrrole esters 15–17, 15 and 16 were also found to form hydrogen bonded dimers
whereas the 5-unsubstituted compound 17 instead exhibited the chain structure [16]. Interestingly,
the formyl group in 16, which could also have been involved in hydrogen bonding, was oriented away
from NH, presumably for steric reasons. For the 3-hydroxy compound 18, the ester carbonyl was
oriented away from NH as it was intramolecularly hydrogen bonded to the OH, and NH, then formed
chains by hydrogen bonding intermolecularly to the OH as shown [16].

In summary, we obtained diethyl pyrrole-2,5-dicarboxylate in moderate yield by a new and
unexpected heterocyclic transformation, and found that its crystal structure featured hydrogen bonded
dimers similar to the structure adopted by most crystallographically characterised 2-acylpyrroles.
Work to determine the scope and applications of this new pyrrole synthesis is currently in progress.

3. Experimental

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna, Austria) and
are uncorrected. IR spectra were recorded on a Perkin-Elmer 1420 instrument (Perkin-Elmer, Waltham,
MA, USA). NMR spectra were obtained for protons at 400 MHz and for carbon at 100 MHz using
a Bruker AV400 instrument (Bruker, Billerica, MA, USA). Spectra were run at 25 ◦C on solutions in
CDCl3 with internal Me4Si as the reference. Chemical shifts are reported in ppm to high frequency of
the reference and coupling constants J are in Hz.

Diethyl pyrrole-2,5-dicarboxylate (1)

A solution of compound 6 [8] (0.5 g, 2.06 mmol) in diethyl ether (15 mL) was stirred while a
solution of sodium hydroxide (0.166 g, 4.15 mmol) in ethanol (8 mL) was added dropwise. After the
addition, the mixture was stirred at RT for 17 h before being filtered and the filtrate was evaporated
to dryness under reduced pressure. The residue was subjected to column chromatography (SiO2,
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Et2O/hexanes, 50:50) to give at Rf 0.30 the title compound (0.18 g, 41%) as colourless crystals after
recrystallisation (hexanes), mp 79–81 ◦C (lit. [1] 82 ◦C; [3] 83–84 ◦C); UV/Vis (MeCN): λmax (log ε) 281
(4.08), 271 (4.14), 210 nm (3.87); IR (Nujol): 3273, 1726, 1557, 1261 cm–1 (lit. [3]: 3276, 1736, 1556, 1266);
1H-NMR (400 MHz, CDCl3): 9.96 (1H, br, NH), 6.87 (2H, d, J 2.4), 4.36 (4H, q, J 7.2), 1.38 (6H, t, J 7.2)
(lit. [3]: 9.72, 6.86, 4.36, 1.37); 13C-NMR (100 MHz, CDCl3): 160.4 (C=O), 126.2 (C), 115.4 (CH), 61.0
(CH2), 14.3 (CH3) (lit. [3]: 160.3, 126.2, 115.4, 61.0, 14.3); HRMS (ESI): Calcd. for C10H14NO4 (M+H):
212.0923. Found: 212.0917.

Crystal data for C10H13NO4, M = 211.22 g mol–1, colourless platelet, crystal dimensions
0.12 × 0.03 × 0.01 mm, monoclinic, space group P21/n, a = 15.552(7), b = 4.355(2), c = 16.234(7) Å,
β = 107.410(11)◦, V = 1049.1(8) Å3, Z = 4, Dcalc = 1.337 g cm–3, T = 125 K, R1 = 0.0607, Rw2 = 0.1456 for
1656 reflections with I > 2σ(I), and 142 variables. Data were collected using graphite monochromated
Cu Kα radiation λ = 1.54187 Å and have been deposited at the Cambridge Crystallographic Data
Centre as CCDC 1942514. The data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via http://www.ccdc.cam.ac.uk/getstructures. The structure was solved by direct methods
and refined by full-matrix least-squares against F2 (SHELXL, Version 2018/3 [17]). Hydrogen atoms
were assigned riding isotropic displacement parameters and constrained to idealised geometries except
for H(1), which was refined with a distance restraint.

Supplementary Materials: The following is available online www.mdpi.com/xxx/s1, Figure S1: UV–Visible
spectrum of 1 in MeCN.

Author Contributions: C.B. and L.J.R.M. prepared the compound; A.M.Z.S. collected the x-ray data and solved
the structure; R.A.A. designed the experiments, analysed the data, and wrote the paper. All authors have read and
agreed to the published version of the manuscript.
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