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A. Methyl 2-Amino-4-[1-(tert-

butoxycarbonyl)azetidin-3-Yl]-1,3-

selenazole-5-carboxylate. Molbank

2021, 2021, M1207. https://doi.org/

10.3390/M1207

Academic Editors: Panayiotis

A. Koutentis and Andreas

S. Kalogirou

Received: 16 April 2021

Accepted: 29 April 2021

Published: 1 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19,
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Abstract: Methyl 2-amino-4-[1-(tert-butoxycarbonyl)azetidin-3-yl]-1,3-selenazole-5-carboxylate as a
newly functionalized heterocyclic amino acid was obtained via [3+2] cycloaddition. The structure
of the novel 1,3-selenazole was unequivocally confirmed by detailed 1H, 13C, 15N, and 77Se NMR
spectroscopic experiments, HRMS and elemental analysis.
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1. Introduction

Selenium is an essential bio-trace element that plays an important role in antioxi-
dant selenoproteins for protection against oxidative stress in humans and other animal
species [1]. Functionalized organoselenium compounds possess a wide range of biological
activities and are present in many pharmacologically important substances [2]. Well-known
representative bioactive molecules that contain selenium in their structure are potent the
antiviral agent selenazofurin [3], histamine H2-agonist known as amselamine [4], as well
as ebselen and its analogues exhibiting anti-inflammatory, antioxidant, and cytoprotective
properties [5,6]. Moreover, the synthesis of new Se-containing β-lactams such as sele-
napenam, selenacepham and selenazepine as a potential antibacterial agents has been
reported [7] (Figure 1).
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ities and are present in many pharmacologically important substances [2]. Well-known 
representative bioactive molecules that contain selenium in their structure are potent the 
antiviral agent selenazofurin [3], histamine H2-agonist known as amselamine [4], as well 
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Figure 1. Biologically active organoselenium compounds. 
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Figure 1. Biologically active organoselenium compounds.

On the other hand, the azetidine ring has been identified as a conformationally
restricted component of important pharmacological molecules [8], including synthetic
analogues of natural amino acids, such as γ-aminobutyric acid (GABA) [9]. The azetidine
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ring is also present in the molecular structure of the well-known antihypertensive drug
azelnidipine (Figure 2) [10].
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The aim of the present study was to extend our previous work on heterocyclic amino
acids containing selenazole and azetidine cores [11–14], as it is still a new and potentially
relevant field. In this work, a molecular system containing both selenazole and azetidine
scaffolds was synthesized through Hantzsch cyclization of β-ketoester.

2. Results and Discussion

Selenazoles can be obtained using analogous synthetic strategies similar to the ones
used for thiazoles. Among a variety of ring construction reactions, the most widely used
approach is Hantzsch synthesis and its variations [15–17]. This methodology reliably leads
to the formation of diverse heterocyclic rings in good yields.

The synthetic strategy for obtaining novel selenazole-azetidine building blocks is
outlined in Scheme 1. The target compound was synthesized in four steps using commer-
cially available N-Boc-protected azetidine-3-carboxylic acid 1. The synthetic sequence was
started with preparation of β-ketoester 2 by its adduct methanolysis with Meldrum’s acid.
In the following step, bromination of ester 2 was carried out in the presence of NBS in ace-
tonitrile. The reaction afforded an α-bromocarbonyl compound 3, which was immediately
used in the final step. The condensation of 3 with selenourea afforded the desired methyl
2-amino-4-[1-(tert-butoxycarbonyl)azetidin-3-yl]-1,3-selenazole-5-carboxylate 4.
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Scheme 1. Synthesis of methyl 2-amino-4-[1-(tert-butoxycarbonyl)azetidin-3-yl]-1,3-selenazole-5-
carboxylate (4). Reagents and conditions: (i) Meldrum’s acid, DMAP, EDC, DCM, r.t., 18 h; (ii) MeOH,
60 ◦C, 18 h; (iii) NBS, ACN, r.t., 2 h; (iv) selenourea, MeOH, r.t., 2 h.

The final structure of compound 4 was easily deduced after a detailed analysis of
spectral data (Figures S1–S8). The 1H-15N HSQC experiment revealed that the most
downfield protons at 7.25 ppm belong to the NH2 group, which resonates at −294.6 ppm.
The multiplicity-edited 1H-13C HSQC spectrum revealed a cross-peak correlating a methine
proton at 4.67 ppm with the 13C signal at 28.1 ppm from the azetidine ring (Figure 3).
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The connectivity of the 2-amino-1,3-selenazole-5-carboxylate moiety and the N-Boc-
protected azetidine fragment could be confirmed based on long-range 1H-13C and 1H-15N
correlations, obtained from gs-HMBC spectra of the aforementioned protons. The 1H-15N
HMBC experiment revealed a strong three-bond correlation between the 1,3-selenazole N-3
nitrogen, which resonated at −128.1 ppm, and the protons from the 2-amino functional
group. In the case of 3-H from the azetidine ring system, it showed a strong correlation
with the selenazole N-3, and additionally revealed data for azetidine N-1 at −309.0 ppm.
The data from 1H–13C HMBC and LR-HSQMBC experiments allowed an unambiguous
assignment of the 1,3-selenazole ring system, as we were able to easily distinguish the
carbonyl carbons from the N-Boc and carboxylate moieties. Lastly, the protonated azetidine
carbon C-3 at 21.8 ppm showed a correlation with an adjacent selenazole quaternary carbon
C-4 at 162.2 ppm in the 1,1-ADEQUATE spectrum. By a process of elimination, this allowed
the assignment of the last selenazole C-2 signal, which resonated at 173.6 ppm. The 77Se
NMR spectra contained a singlet at 581.4 ppm. The observed 15N and 77Se chemical shifts
are consistent with data reported in the literature for 1,3-selenazoles possessing similar
structures [18].

The optical properties of compound 4 were investigated by UV/vis spectroscopy.
The electronic absorption spectra of compound 4 in tetrahydrofuran (THF) contained an
intense absorption band at 314 nm. Fluorescence spectra displayed an emission maximum
at 375 nm (Figure 4).
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3. Materials and Methods
3.1. General

All chemicals and solvents were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and used without further purification unless otherwise specified. Prior to use,
dichloromethane (DCM) was stored over molecular sieves (4 Å). Reaction progress was
monitored by thin-layer chromatography (TLC) analysis on Macherey–Nagel™ ALUGRAM®

Xtra SIL G/UV254 plates (Macherey−Nagel™, Düren, Germany). TLC plates were visual-
ized with ultraviolet (UV) light (wavelength 254 nm). Compounds were purified by flash
chromatography in a glass column (stationary phase—silica gel, high-purity grade 9385,
pore size 60 Å, particle size: 230–400 mesh, Sigma-Aldrich, St. Louis, MO, USA). The 1H,
13C and 15N-NMR spectra were recorded in chloroform-D (CDCl3) at 25 ◦C on a Bruker
Avance III 700 (700 MHz for 1H, 176 MHz for 13C, 71 MHz for 15N) spectrometer equipped
with a 5 mm TCI 1H-13C/15N/D z-gradient cryoprobe (Bruker BioSpin AG, Fallanden,
Switzerland). 77Se NMR spectra (76.31 MHz, absolute referencing via Ξ ratio) were ob-
tained on a Bruker Avance III 400 (Bruker BioSpin AG, Fallanden, Switzerland) instrument
with a ‘directly’ detecting broadband observe probe (BBO). The chemical shifts, expressed
in ppm, were relative to tetramethylsilane (TMS). The 15N NMR spectrum was referenced to
neat, external nitromethane (coaxial capillary). The full and unambiguous assignments of
the 1H, 13C, 15N, and 77Se-NMR resonances were achieved using standard Bruker software
(TopSpin 3.5.6, Bruker BioSpin AG, Fallanden, Switzerland) and a combination of standard
NMR spectroscopic techniques, such as distortionless enhancement by polarization transfer
(DEPT), homonuclear correlation spectroscopy (COSY), gradient-selected heteronuclear
single quantum coherence (gs-HSQC), gradient-selected heteronuclear multiple bond cor-
relation (gs-HMBC), heteronuclear 2-bond correlation (H2BC), long-range heteronuclear
single-quantum multiple-bond correlation (LR-HSQMBC) and 1,1-ADEQUATE experi-
ments. The infrared (IR) spectra were recorded on a Bruker TENSOR 27 spectrometer
(Bruker Optik GmbH, Ettlingen, Germany) using potassium bromide (KBr) pellets. The
melting point was determined in open capillary tubes with a DigiMelt MPA160 apparatus
(temperature gradient: 1 ◦C/min) and was uncorrected. The HRMS spectrum was obtained
in electrospray ionization (ESI) mode on a Bruker MicrOTOF-Q III spectrometer (Bruker
Daltonik GmbH, Bremen, Germany). Elemental analysis (C, H and N) was determined
using a CE-440 Elemental Analyzer (Exeter Analytical Ltd, Coventry, UK), Model 440
CHN/O/S. The UV/vis spectrum was recorded using 10−4 M solution of the compound
in THF on a Shimadzu 2600 UV/vis spectrometer (Shimadzu EUROPA GmbH, Duisburg,
Germany). The fluorescence spectrum was recorded on a FL920 fluorescence spectrometer
from Edinburgh Instruments (Edinburg Instruments Ltd, Livingston, UK).

3.2. Synthesis

1-Boc-azetidine-3-carboxylic acid 1 (3.267 g, 16.2 mmol), Meldrum‘s acid (2.811 g,
19.5 mmol), DMAP (2.969 g, 24.3 mmol) and EDC (3.738 g, 19.5 mmol) were dissolved
in DCM (70 mL). The resulting mixture was stirred at room temperature for 18 h. The
reaction mixture was diluted with an additional volume of DCM (50 mL) and washed with
10% KHSO4 aqueous solution (3 × 50 mL) and brine (1 × 100 mL). The organic layer was
separated, dried over anhydrous Na2SO4, filtered, and the solvent was evaporated under
reduced pressure. The residue was dissolved in MeOH (70 mL) and stirred at 60 ◦C for 18 h.
The solvent was evaporated in vacuo. The residue was purified by column chromatography
on silica gel (n-hexane/ethyl acetate, gradient from 6:1 to 1:1 v/v). Obtained β-ketoester 2
(3.458 g, 13.4 mmol) was dissolved in ACN (100 mL) and NBS (3.588 g, 20.2 mmol) was
added. The reaction mixture was stirred at room temperature for 2 h. After the reaction,
the solvent was removed under reduced pressure. The residue was dissolved in EtOAc
(50 mL) and filtered through a pad of silica. The filter pad was washed out with EtOAc
(150 mL). The filtrate was concentrated in vacuo. The residue was dissolved in MeOH
(40 mL) and selenourea (0.915 g, 7.4 mmol) was added. The reaction mixture was stirred at
room temperature. After 2 h, the resulting mixture was added dropwise to 2% Na2CO3
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aqueous solution (100 mL) while stirring. The precipitate was filtered and dissolved in
DCM (100 mL). The solution was dried over anhydrous Na2SO4, filtered, and the solvent
was removed in vacuo. The residue was purified by column chromatography on silica gel
(n-hexane/ethyl acetate, gradient from 4:1 to 1:1 v/v) to afford compound 4. The obtained
solid was recrystallized from hexane. Colorless crystals (683 mg) were obtained with an
overall of yield 21%. Rf = 0.19 (n-hexane/ethyl acetate 2/1, v/v), m.p. 167−168 ◦C. IR (KBr)
νmax, cm−1: 3388 (NH), 3293 (NH), 3175, 2975, 2955, 2890, 1680 (C=O), 1628 (C=O), 1505,
1415, 1284, 1139, 1067, 909, 772 and 757, 527. 1H NMR (700 MHz, CDCl3) δ, ppm: 1.47 (9H,
s, 3 × CH3), 3.75 (3H, s, OCH3), 4.01 (2H, br s, 2 × CHaHb), 4.20−4.27 (2H, m, 2 × CHaHb),
4.67 (1H, tt, J = 8.7, 5.5 Hz, CH), 7.25 (2H, s, NH2). 13C NMR (176 MHz, CDCl3) δ, ppm:
28.1 (CH), 28.5 (3 × CH3), 51.8 (OCH3), 53.6 (CH2), 55.1 (CH2), 79.9 (C(CH3)3), 113.8 (Sel
C-5), 156.6 (Boc C=O), 162.2 (Sel C-4), 164.0 COOCH3), 173.6 (Sel C-2). 15N NMR (71 MHz,
CDCl3) δ, ppm: −309.0 (Az N-1), −294.6 (NH2), −128.1 (Sel N-3). 77Se NMR (76 MHz,
CDCl3) δ, ppm: 581.4. HRMS (ESI) for C13H19N3NaO4Se ([M + Na]+): found m/z 384.0434,
calculated m/z 384.0434. Elem. An. for C13H19N3O4Se (%): found C, 43.87; H, 5.33; N, 11.22;
calculated C, 43.34; H, 5.32; N, 11.66.

4. Conclusions

In this short note, we reported the synthesis and structure elucidation of methyl
2-amino-4-[1-(tert-butoxycarbonyl)azetidin-3-yl]-1,3-selenazole-5-carboxylate 4. This com-
pound is a valuable building block for more complex molecular systems as well as for the
development of DNA-encoded chemical libraries.

Supplementary Materials: The following are available online: NMR, HRMS, and IR spectra of
compound 4. Figure S1: 1H NMR spectrum of compound 4. Figure S2: 13C NMR spectrum of
compound 4. Figure S3: 1H-15N HSQC NMR spectrum of compound 4. Figure S4: The overlaid
1H-13C gs-HSQC and gs-HMBC NMR spectra of compound 4. Figure S5: 1H-15N HMBC NMR
spectrum of compound 4. Figure S6: 1H-13C 2 Hz LR-HSQMBC NMR spectra of compound 4.
Figure S7: The overlaid 1H-13C gs-HSQC (red) and 60 Hz 1,1-ADEQUATE (black) NMR spectra of
compound 4. Figure S8: 77Se NMR spectrum of compound 4. Figure S9: IR spectrum of compound 4.
Figure S10: HRMS spectrum of compound 4.
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17. Kanapickaitė, V.; Martynaitis, V.; Šačkus, A. Facile synthesis of novel functionalized 1,3-selenazoles. Arkivoc 2009, 11, 268–276.
[CrossRef]

18. Duddeck, H.; Bradenahl, R.; Stefaniak, L.; Jazwinski, J.; Kamienski, B. Synthesis and multinuclear magnetic resonance investiga-
tion of some 1,3-selenazole and 1,3-selenazoline derivatives. Magn. Reson. Chem. 2001, 39, 709–713. [CrossRef]

http://doi.org/10.1021/cr800325e
http://www.ncbi.nlm.nih.gov/pubmed/18781723
http://doi.org/10.1016/j.ejmech.2010.02.029
http://www.ncbi.nlm.nih.gov/pubmed/20219271
http://doi.org/10.1254/fpj.122.539
http://www.ncbi.nlm.nih.gov/pubmed/14639008
http://doi.org/10.1007/s10593-018-2291-1
http://doi.org/10.1007/s11030-019-09987-8
http://www.ncbi.nlm.nih.gov/pubmed/31420788
http://doi.org/10.1007/s00726-011-0879-1
http://www.ncbi.nlm.nih.gov/pubmed/21424811
http://doi.org/10.1016/j.tetlet.2008.09.119
http://doi.org/10.1055/s-0035-1560534
http://doi.org/10.1080/00397911.2011.557516
http://doi.org/10.3998/ark.5550190.0010.b24
http://doi.org/10.1002/mrc.934

	Introduction 
	Results and Discussion 
	Materials and Methods 
	General 
	Synthesis 

	Conclusions 
	References

