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Abstract: The novel N-(3,5-bis(trifluoromethyl)benzyl)stearamide 3 was prepared in moderate yield
by a solventless direct amidation reaction of stearic acid 1 with 3,5-bis(trifluoromethyl)benzylamine
2 at 140 ◦C for 24 h under metal- and catalyst-free conditions. This practical method was conducted
in air without any special treatment or activation. The fatty acid amide 3 was fully characterized
by IR, UV–Vis, 1D and 2D NMR spectroscopy, mass spectrometry, and elemental analysis. More-
over, molecular electrostatic potential studies, determination of quantum descriptors, fundamental
vibrational frequencies, and intensity of vibrational bands were computed by density functional
theory (DFT) using the B3LYP method with 6-311+G(d,p) basis set in gas phase. Simulation of the
infrared spectrum using the results of these calculations led to good agreement with the observed
spectral patterns.

Keywords: solventless direct amidation; nonactivated carboxylic acid; benzylamine derivative; fatty
acid amide; DFT quantum-chemical studies

1. Introduction

The amide bond is one of the most important and fascinating functional groups
in organic chemistry and biochemistry owing to its widespread occurrence in natural
products, peptides, proteins, and a plethora of other biomolecules [1,2]. Medicinally,
the amide-forming reactions are pivotal in the pharmaceutical industry and medicinal
chemistry for the preparation of active pharmaceutical ingredients [3,4], insecticides [5,6],
polymers [7], and a vast number of bioactive molecules [8–12]. Most notably, the amide
functional group is present in approximately a quarter of clinically approved drugs and
two-thirds of all drug candidates [13]. In particular, the fatty acid amides (FAAs) have
received augmented interest due to their wide range of physiological and pharmacological
activities. Members of FAAs include the N-acyltaurines such as N-arachidonoyltaurine that
activates TRPV1 and TRPV4 calcium channels of the kidney [14]; the N-acylethanolamines
(NAEs) such as N-arachidonoylethanolamine (anandamide), an endogenous ligand for the
cannabinoid CB1 and CB2 receptors in the mammalian brain [15,16]; the N-acylamino acids
(NAAs) such as N-arachidonylglycine that suppresses pain via a peripheral action [17];
and the primary fatty acid amides (PFAMs) such as oleamide that shows an important
therapeutic potential in the management of sleep disorders and pain [18,19], as illustrated
in Figure 1.

The procedures most used in the pharmaceutical industry for amide synthesis in-
volve the acylation reaction of activated carboxylic acid derivatives such as acyl chlorides,
anhydrides, or esters with amines, as well as the direct amidation of carboxylic acids
with amines employing stoichiometric quantities of diverse coupling reagents, which
generate large quantities of waste leading to poor atom-economy and tricky purification
procedures [20–22]. Hence, in the past two decades, there was a significant increase in
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the development of sustainable catalytic methods for amide bond formation under mild
conditions with a broad synthetic scope [23–26]. In particular, we recently reported a
solventless direct amidation of non-activated carboxylic acids with amines employing
a biogenic CuO−CaCO3 catalyst for amide synthesis in moderate to high yields under
normal atmospheric conditions [27]. Despite the elegant progress that has been accom-
plished, most catalytic direct amidation methods are unattractive for large-scale production
owing to the limited substrate scope, low energy efficiency, poor sustainability, and not
industrially relevant levels of recyclability of most current catalysts [23,24]. Importantly,
the metal- and catalyst-free direct amidation of carboxylic acids with amines has been ne-
glected for many years owing to its high temperatures and long reaction times; nonetheless,
this thermal approach can eliminate some of the previously reported synthetic drawbacks.
In connection with the ongoing development of efficient and simple protocols for the
construction of carbon–nitrogen bonds [27–31] and our current studies on the synthetic
utility of benzylamine derivatives [32,33], we describe a solventless synthesis of N-(3,5-
bis(trifluoromethyl)benzyl)stearamide 3 through an uncatalyzed process under normal
atmospheric conditions. Moreover, molecular electrostatic potential studies, determination
of quantum descriptors, fundamental vibrational frequencies, and intensity of vibrational
bands were computed by the B3LYP method using 6–311+G(d,p) basis set in gas phase.
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Figure 1. Bioactive amides of fatty acids.

2. Results and Discussion
2.1. Synthesis

We report a metal- and catalyst-free synthesis of N-(3,5-bis(trifluoromethyl)benzyl)
stearamide 3 by a direct amidation reaction between equimolar amounts of stearic acid
1 with 3,5-bis(trifluoromethyl)benzylamine 2 at 140 ◦C for 24 h under solvent-free condi-
tions, as depicted in Scheme 1. It should be noted that the water vapor condensed on the
walls of the open-topped tube was removed with a small piece of cotton attached to a
spatula to displace the equilibrium towards amide formation. After the specified reaction
time, the mixture was allowed to cool to ambient temperature, and the resulting crude prod-
uct was purified by flash chromatography on silica gel using a mixture of DCM/MeOH
(100:1, v/v) as eluent to furnish the fatty acid amide 3 in 41% yield. Conceptually, the
condensation reaction between a carboxylic acid and an amine is the most attractive and
practical synthetic approach to form the amide bond via the expulsion of a molecule of
water. Nonetheless, the amide 3 was isolated in moderate yield (41%) because the innate
acidity of the stearic acid and the basicity of the 3,5-bis(trifluoromethyl)benzylamine can
generate ionized forms that limit its thermal condensation. Despite the moderate yield,
the collateral formation of substituted ammonium carboxylate salt was not detected by
thin-layer chromatography (TLC) and 1H NMR spectroscopy. In consequence, the releasing
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of water as the unique by-product gives to this approach a remarkable eco-friendly quality.
It should be noted that the synthesis and full characterization of amide 3 have not been
reported on Reaxys and SciFinder databases. For that reason, a full spectroscopic and
analytical characterization was performed in this work (see Section 3 and Figures S1–S5).
The IR, 1D NMR, and MS spectra and elemental analysis suggest that the structure of the
isolated white solid corresponds to the amide 3. Furthermore, 2D HSQC, HMBC, and
COSY experiments permit the assignment of all proton and carbon atoms, confirming the
proposed structure for amide 3 without ambiguity (see Supplementary Material).
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Scheme 1. Solventless synthesis of N-(3,5-bis(trifluoromethyl)benzyl)stearamide 3 by a metal- and
catalyst-free direct amidation.

The 1H-NMR spectrum recorded in deuterated chloroform using TMS as internal
standard showed 35 protons in the range of 0.86–2.28 ppm assigned to the long aliphatic
chain, a doublet at 4.56 (J = 6.4 Hz) ppm attributed to CH2N protons, a triplet at 6.02
(J = 5.6 Hz) assigned to the NH proton, two singlets at 7.72 and 7.78 ppm associated with
aromatic protons, and the absence of COOH and NH2 protons, indisputably confirming
the thermal direct amidation of fatty acid 1 with benzylamine derivative 2. The presence
of 1 methyl carbon at 14.3 ppm, 17 different types of methylene carbons in the range of
22.8–42.7 ppm, 2 methinic carbons at 121.5 (3JC-F = 4.0 Hz) and 127.8 (3JC-F = 3.0 Hz) ppm,
and 4 quaternary carbons involving CF3 and C=O functionalities at 123.3 (1JC-F = 274.0 Hz)
and 173.6 ppm, respectively, are the most relevant features of the 13C{1H} NMR spectrum.
As expected, some aromatic carbons appeared as quartets with intensities 1:3:3:1 due
to the splitting caused by the fluorine atoms on trifluoromethyl groups attached to the
benzene ring. A molecular ion with m/z 509 in the mass spectrum is also consistent
with the structure 3. Ultimately, two well-defined absorptions are noted in the UV–Vis
spectrum recorded in acetonitrile at 205.0 and 265.7 nm corresponding to π→π*(C=O)) and
n→π*(C=O)) transitions, respectively (see Supplementary Material).

2.2. Molecular Electrostatic Potential (MEP) Mapping

In order to study the electronic behavior of amide 3, the geometric optimization was
computed using density functional theory (DFT), employing Becke’s three-parameter hybrid
function with the nonlocal correlation of Lee–Yang–Parr (B3LYP) method at 6–311+G(d,p) ba-
sis set in gas phase [34,35]. The atomic coordinates of the optimized structure of 3 are given
in Table S1. Afterward, the molecular electrostatic potential (MEP) was calculated to find
the charge distribution on the surface of 3, as well as to determine the sites with higher and
lower electrostatic potential, as shown in Figure 2. It is important to mention that electro-
static potentials at the surface are represented by different colors, such as red, electron-rich;
blue, electron-deficient; light blue, slightly electron-deficient; and yellow, slightly electron-
rich. The MEP analysis for amide 3 showed an electron-rich region around the carbonyl
oxygen, whereas an electron-deficient region is located around the amide nitrogen; these
findings are in good agreement with the resonance hybrid contributions in amides [36]. In
addition, two green regions located around both 3,5-bis(trifluoromethyl)phenyl moiety and
long aliphatic chain showed potential sites for lipophilic interactions.



Molbank 2021, 2021, M1215 4 of 9

Molbank 2021, 2021, x FOR PEER REVIEW 4 of 10 
 

hybrid contributions in amides [36]. In addition, two green regions located around both 
3,5-bis(trifluoromethyl)phenyl moiety and long aliphatic chain showed potential sites for 
lipophilic interactions. 

 
Figure 2. Molecular electrostatic potential mapped of amide 3. 

2.3. Frontier Orbitals and Global Reactivity Descriptors  
The frontier molecular orbitals (FMO) energy levels highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for amide 3 were 
computed using the B3LYP method with 6–311+G(d,p) basis set in gas phase. The HOMO 
and LUMO energies represent the ability to donate and gain an electron, respectively. The 
HOMO–LUMO energy gap and the pictorial illustration of HOMO and LUMO are shown 
in Figure 3. For the optimized structural models, the HOMO is located over the amide 
nitrogen (N2pz), which indicates that the majority of charge transfer occurs between 
amide nitrogen and carbonyl carbon, in line with the resonance model in amides [36]. 
Furthermore, the LUMO is mainly located over the 3,5-bis(trifluoromethyl)phenyl moiety 
with a minor contribution of the π*C=O orbital, which indicates the small contribution of 
carbonyl oxygen to the LUMO. As a result, the basic amide nitrogen and the acidic 
carbonyl group in amide 3 become less reactive, which is evidenced by the high HOMO–
LUMO gap (5.54 eV). 

 
Figure 3. Computed energy levels HOMO–LUMO of amide 3 using the B3LYP method with 6–
311+G(d,p) basis set in gas phase. 

The calculated ionization potential (IP), electron affinity (EA), electrophilicity index 
(ω), chemical potential (μ), electronegativity (χ), and hardness (η) for amide 3 are 
illustrated in Table 1. The Koopmans' theorem in density functional theory has shown that 

Figure 2. Molecular electrostatic potential mapped of amide 3.

2.3. Frontier Orbitals and Global Reactivity Descriptors

The frontier molecular orbitals (FMO) energy levels highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) for amide 3 were computed
using the B3LYP method with 6–311+G(d,p) basis set in gas phase. The HOMO and LUMO
energies represent the ability to donate and gain an electron, respectively. The HOMO–
LUMO energy gap and the pictorial illustration of HOMO and LUMO are shown in Figure 3.
For the optimized structural models, the HOMO is located over the amide nitrogen (N2pz),
which indicates that the majority of charge transfer occurs between amide nitrogen and
carbonyl carbon, in line with the resonance model in amides [36]. Furthermore, the LUMO
is mainly located over the 3,5-bis(trifluoromethyl)phenyl moiety with a minor contribution
of the π*C=O orbital, which indicates the small contribution of carbonyl oxygen to the
LUMO. As a result, the basic amide nitrogen and the acidic carbonyl group in amide
3 become less reactive, which is evidenced by the high HOMO–LUMO gap (5.54 eV).
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Figure 3. Computed energy levels HOMO–LUMO of amide 3 using the B3LYP method with
6–311+G(d,p) basis set in gas phase.

The calculated ionization potential (IP), electron affinity (EA), electrophilicity index
(ω), chemical potential (µ), electronegativity (χ), and hardness (η) for amide 3 are illustrated
in Table 1. The Koopmans’ theorem in density functional theory has shown that the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
energies of typical molecules are compared with the ionization potential (IP) and electron
affinity (EA), respectively [37]. The average value of HOMO and LUMO energies is related
to the electronegativity (χ), as χ = (IP + EA)/2 [38]. The HOMO−LUMO energy gap is
correlated to the hardness (η), which is a good indicator of the chemical stability [39]. Parr
and coworkers incorporated the term electrophilicity index (ω), as ω = µ2/2η where µ is
the chemical potential taking the average value µ = −(IP + EA)/2 [40]. The negative value
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of the chemical potential (µ = −4.61 eV) for amide 3 is associated with a good chemical
stability resulting in a high melting point. The magnitude of the hardness (η) supported by
the HOMO–LUMO energy gap is 5.54 eV, indicating a low chemical reactivity. Besides, the
low HOMO energy (−7.38 eV) indicates the difficulty of electron donation of the amide
3 due to its high electronegativity value (χ = 4.61 eV). Electrophilicity is an important
descriptor of reactivity that allows the quantitative classification of the global electrophilic
nature of a molecule within a relative scale. Consequently, Domingo and coworkers
established an electrophilicity (ω) scale for the classification of organic molecules as strong
electrophiles with ω > 1.5 eV, moderate electrophiles with 0.8 < ω < 1.5 eV, and marginal
electrophiles with ω < 0.8 eV [38]. As shown in Table 1, the amide 3 can be regarded as a
strong electrophile (ω = 1.92 eV).

Table 1. HOMO and LUMO orbital energies (eV) and global reactivity descriptors (eV) of amide 3.

Parameters Amide 3

HOMO energy −7.38
LUMO energy −1.84

HOMO–LUMO energy gap 5.54
Ionization potential (IP) 7.38

Electron affinity (EA) 1.84
Electrophilicity index (ω) 1.92

Chemical potential (µ) −4.61
Electronegativity (χ) 4.61

Hardness (η) 5.54

2.4. Vibrational Analysis

For visual comparison, a superposition of experimental and calculated [B3LYP/6–
311+G(d,p)] FT-IR spectra is illustrated in Figure 4. The vibrational frequencies from DFT
calculations are often overestimated and commonly scaled by empirical factors. A scaling
factor of 1.0 was used in this study to fit the calculated frequencies to the experimental ones.
For the amide 3, the most relevant computed scaled frequencies attributed to N–H and
C=O stretching vibrations were 3642.71 and 1739.37 cm−1, while experimental frequencies
were observed at 3290.54 and 1647.48 cm−1, respectively. Moreover, the computed scaled
frequencies attributed to C–N–H in-plane deformation and C–N stretching vibrations were
1536.04 and 1280.41 cm−1, while experimental frequencies were assigned at 1557.52 and
1285.09 cm−1, respectively. Ultimately, absorption bands at 1174.98 cm−1 (νas C–F) and
1115.40 cm−1 (νs C–F) were observed for CF3-containing amide 3, while the calculated
scaled vibrations were assigned at 1169.85 and 1123.66 cm−1, respectively.
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3. Materials and Methods
3.1. General Information

Stearic acid and 3,5-bis(trifluoromethyl)benzylamine were purchased from Sigma-
Aldrich and used without further purification. Starting materials were weighed and
handled in air at ambient temperature. Silica gel aluminum plates (Merck 60 F254, Darm-
stadt, Germany) were used for analytical TLC. The IR absorption spectrum was recorded
at room temperature from 4000 to 500 cm−1 employing a Nicolet iS50 FTIR spectrom-
eter (Thermo Fischer Scientific Inc., Madison, WI, USA) equipped with an attenuated
reflectance accessory. 1H and 13C{1H}-NMR spectra were recorded at 25 ◦C on a Bruker
Avance 400 spectrophotometer (Bruker BioSpin GmbH, Rheinstetten, Germany) operating
at 400 and 101 MHz, respectively. The concentration of the sample was approximately
15 mg/0.6 mL of CDCl3. Chemical shifts of 1H and 13C{1H} NMR experiments were refer-
enced by tetramethylsilane (δ = 0.0 ppm). Alternatively, chemical shifts of 1H and 13C{1H}-
NMR experiments can be referenced by the residual nondeuterated signal (δ = 7.26 ppm)
and the deuterated solvent signal (δ = 77.16 ppm), respectively. DEPT spectra were used
for the assignment of carbon signals. Chemical shifts (δ) are given in ppm and coupling
constants (J) are given in Hz. The following abbreviations are used for multiplicities:
s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. 2D NMR experiments
HSQC, HMBC, and COSY were performed using the standard Bruker pulse sequence. NMR
data were analyzed using MestReNova 12.0.0 (2017) software. Mass spectrum was run on a
SHIMADZU-GCMS 2010-DI-2010 spectrometer (Scientific Instruments Inc., Columbia, WA,
USA) (equipped with a direct inlet probe) operating at 70 eV. Microanalysis was performed
on a CHNS elemental analyzer (Thermo Fischer Scientific Inc., Madison, WI, USA), and
the values were within ±0.4% of the theoretical values. The UV–Vis absorption spectrum
was obtained from an acetonitrile solution (5.0 × 10−4 M) in an Evolution 201 UV–Vis
spectrophotometer (Thermo Fischer Scientific Inc., Madison, WI, USA).

3.2. Computational Study

The geometry optimization of the N-(3,5-bis(trifluoromethyl)benzyl)stearamide 3 was
performed using density functional theory (DFT), employing Becke’s three-parameter
hybrid function with the nonlocal correlation of Lee–Yang–Parr (B3LYP) method with
6–311+G(d,p) basis set in gas phase. Theoretical calculations were performed by DFT using
Gaussian 16 [34,35,41]. The molecular visualization, optimized geometry, and molecular
electrostatic potential were obtained using GaussView 6.0.16. The multiwfn algorithm was
used for these calculations. It should be noted that DFT calculations were performed for the
prediction of chemical stability and reactivity of amide 3 with the help of quantum chemical
descriptors such as frontier molecular orbitals and HOMO–LUMO energy gap, as well as
global reactivity descriptors such as potential (IP), electron affinity (EA), electrophilicity
index (ω), chemical potential (µ), electronegativity (χ), and hardness (η). The molecular
electrostatic potential (MEP) analysis is presented as a powerful tool for the knowledge of
charge distribution, and its results can be useful in determining how amide 3 molecules
could interact with each other.

3.3. Synthesis of N-(3,5-Bis(trifluoromethyl)benzyl)stearamide 3

A 10.0 mL open-topped tube was filled with stearic acid 1 (142 mg, 0.50 mmol, CAS
57-11-4) and 3,5-bis(trifluoromethyl)benzylamine 2 (122 mg, 0.50 mmol, CAS 85068-29-7),
and the resulting mixture was heated in an oil bath at 140 ◦C for 24 h under solvent-free
conditions. It should be noted that the water vapor condensed on the walls of the open-
topped tube was removed with a small piece of cotton attached to a spatula to displace the
equilibrium towards amide formation. Then, the mixture was allowed to cool to ambient
temperature, and the resulting crude product was purified by flash chromatography
on silica gel using a mixture of DCM/MeOH (100:1, v/v) as eluent to afford the fatty
acid amide 3 as a white solid (104 mg, 41% yield). Rf (DCM/MeOH: 50/1) = 0.70. M.p
83–85 ◦C. FTIR–ATR: ν = 3290 (v N–H), 2953, 2916, 2848, 1647 (v C=O, v C=C), 1557 (δ N–H),
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1285 (v C–N), 1174 (νas C–F), 1115 (νs C–F), 908, 843, 730, 684 cm−1. UV–Vis (acetonitrile)
λmax (ε, L·mol−1·cm−1): 205.0 (5740, π→π*(C=O)), 265.7 (576, n→π*(C=O)) nm. 1H-NMR
(400 MHz, CDCl3): δ = 0.87 (t, J = 6.6 Hz, 3H), 1.20–1.35 (m, 28H), 1.66 (quint, J = 6.8 Hz, 2H),
2.26 (t, J = 7.6 Hz, 2H, CH2CO), 4.56 (d, J = 6.4 Hz, 2H, CH2NH), 6.02 (t, J = 5.6 Hz, 1H, NH),
7.72 (s, 2H, Ho), 7.78 (s, 1H, Hp) ppm. 13C{1H}-NMR (101 MHz, CDCl3): δ = 14.3 (CH3),
22.8 (CH2), 25.8 (CH2), 29.4 (CH2), 29.5 (CH2 × 2), 29.6 (CH2), 29.7 (CH2), 29.8 (CH2 × 7),
32.1 (CH2), 36.8 (CH2), 42.7 (NCH2), 121.5 (q, 3JC-F = 4.0 Hz, CH, Cp), 123.3 (q, 1JC-F =
274.0 Hz, Cq, 2CF3), 127.8 (q, 3JC-F = 3.0 Hz, CH, 2Co), 132.1 (q, 2JC-F = 33.3 Hz, Cq, 2Cm),
141.4 Cq, Ci), 173.6 (Cq, C=O) ppm. Anal. calcd. for C27H41F6NO (509.30): C, 63.63; H,
8.11; N, 2.75. Found: C, 63.78; H, 8.06; N, 2.79. MS (EI, 70 eV) m/z (%): 509 (65) [M+], 466
(16), 354 (34), 340 (36), 284 (100), 243 (61), 227 (13), 174 (15).

4. Conclusions

In summary, we described an operationally simple and sustainable method for the
thermal direct amidation of a nonactivated carboxylic acid with amine in the absence of a
solvent, catalyst, coupling reagent, and drying agent under normal atmospheric conditions.
The releasing of water as the unique by-product gives this approach a remarkable eco-
friendly quality. Accomplishing the synthesis of the amide 3 contributed to expanding our
previous amide library [27]. The MEP total density showed an electron-rich region around
the carbonyl oxygen, whereas an electron-deficient region is located around the amide
nitrogen. The frontier molecular orbital energies and global reactivity descriptors showed
that the molecule 3 would have a low reactivity owing to its high HOMO–LUMO energy
gap (5.54 eV). Besides, the low HOMO energy (−7.38 eV) would indicate the difficulty of
electron donation due to its high electronegativity value (χ = 4.61 eV). Simulation of the
infrared spectrum led to good agreement with the observed spectral patterns. Ultimately,
the fatty acid amide 3 could be used as an analog of the endogenous cannabinoid receptor
ligand arachidonylethanolamide (anandamide) with potential applications in medicinal
chemistry and drug discovery.

Supplementary Materials: The following are available online. Figure S1: MS spectrum of the
compound 3 (EI technique); Figure S2: IR spectrum of the compound 3 (ATR technique); Figure S3:
1H-NMR spectrum of the compound 3; Figure S4: Expansion 1H-NMR spectrum of the compound 3;
Figure S5: 13C{1H}-NMR and DEPT-135 spectra of the compound 3; Figure S6: Expansion 13C{1H}-
NMR and DEPT-135 spectra of the compound 3; Figure S7: HSQC 2D C–H correlation spectrum
of the compound 3; Figure S8: HMBC 2D C–H correlation spectrum of the compound 3; Figure S9:
Expansion HMBC 2D C–H correlation spectrum of the compound 3; Figure S10: COSY 2D H–H
correlation spectrum of the compound 3; Figure S11: UV–Vis spectrum of the compound 3; Figure
S12: TLC analysis of amide 3 compared to stearic acid 1 and 3,5-bis(trifluoromethyl)benzylamine 2
using DCM/MeOH (50/1) as mobile phase under UV lamp, 254 nm; Table S1: Atomic coordinates of
the optimized structure of 3 calculated at the B3LYP/6-311+G(d,p) level theory in gas phase.
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